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Abstract

Abnormalities in the response of the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex

(DLPFC) to negative emotional stimuli have been reported in acutely depressed patients.

However, there is a paucity of studies conducted in unmedicated individuals with major

depressive disorder in remission (rMDD) to assess whether these are trait abnormalities. To

address this issue, 19 medication-free rMDD individuals and 20 healthy comparison (HC)

participants were scanned using functional magnetic resonance imaging while performing an

implicit emotion processing task in which they labeled the gender of faces depicting negative
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(fearful), positive (happy) and neutral facial expressions. The rMDD and HC groups were

compared using a region-of-interest approach for two contrasts: fear vs. neutral and happy vs.

neutral. Relative to HC, rMDD showed reduced activation in left OFC and DLPFC to fearful (vs.

neutral) faces. Right DLPFC activation to fearful (vs. neutral) faces in the rMDD group showed a

significant positive correlation with duration of euthymia. The findings support deficits in left

OFC and DLPFC responses to negative emotional stimuli during euthymic periods of MDD,

which may reflect trait markers of the illness or a ‘scar’ due to previous depression. Recovery may

also be associated with compensatory increases in right DLPFC functioning.
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1. Introduction

There has been considerable progress in identifying the neural circuitry involved in major

depressive disorder (MDD), however, a neural circuitry marker for the MDD trait has not

yet been defined. Behavioral studies examining responses to emotional stimuli show

relatively consistent findings in MDD of biases towards negative emotional stimuli that

persist into remission when individuals with MDD are euthymic and medication-free

(Bhagwagar et al., 2004; Leppanen et al., 2004). There have also been reports of a bias away

from positive emotional stimuli in MDD patients during the acute and remitted illness stages

(Gur et al., 1992; Surguladze et al., 2004; Harmer et al., 2009). Though the consistency of

these reports implicate the neural circuitry that subserves emotional processing as a trait

feature of MDD, there is a paucity of neuroimaging studies examining the neural correlates

of these abnormalities in individuals who are in remission from MDD (rMDD) and

medication-free. Conducting such studies in remitted individuals, could be a pivotal step

forward in the identification of a trait marker for MDD (Bhagwagar and Cowen, 2008).

Neuroimaging studies performed during emotional processing in acutely depressed

individuals have consistently identified abnormalities in the dorsolateral prefrontal cortex

(DLPFC), ventrolateral prefrontal cortex (VLPFC) and the orbitofrontal cortex (OFC), key

areas within the PFC involved in voluntary and automatic emotion processing (Kennedy et

al., 2001; Lawrence et al., 2004; Drevets and Price, 2005; Keedwell et al., 2005; Johnstone

et al., 2007; Fales et al., 2008; Fales et al., 2009; Hsu et al., 2010). Models of affective

regulation suggest that regulation of emotion processing, and complex emotional behaviors,

involves the engagement of DLPFC, VLPFC and OFC thought to exert top-down regulation

(Ochsner et al., 2002; Phillips et al., 2008) of limbic and subcortical areas, including the

subgenual anterior cingulate cortex (sgACC), amygdala and ventral striatum responsible for

more rapid and automatic processing of emotional stimuli (Mayberg, 1997; Phillips et al.,

2008).

In line with earlier positron emission tomography (PET) studies showing reduced left-sided

DLPFC activation in individuals with MDD at “rest” (i.e. at baseline when not performing a

specific task) (Baxter et al., 1989; Bench et al., 1993), more recent functional magnetic
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resonance imaging (fMRI) studies of acutely depressed patients who performed tasks

requiring processing of implicit or explicit emotional face stimuli have reported reduced

PFC activation and elevated sgACC and amygdala activation in response to negative facial

expressions (Fu et al., 2004; Surguladze et al., 2005; Siegle et al., 2007). These findings

have predominantly been localized to the left-hemisphere, consistent with theories of

hemispheric localization of emotion (Davidson, 1992) and lesion-based studies in depressed

patients (Shimoda and Robinson, 1999). Altered activity in both left and right OFC has also

been found in individuals with MDD when acutely depressed and at rest (Ebert et al., 1991;

Cohen et al., 1992; Drevets et al., 1992; Biver et al., 1994), as well as during the

performance of implicit emotion processing tasks (Townsend et al., 2010) and reward-based

tasks involving negative and positive feedback (Taylor Tavares et al., 2008). These suggest

deficits in the appraisal of, and regulation of response to, emotionally valenced stimuli.

Collectively, these findings suggest PFC dysregulation may represent a potential trait

abnormality underlying emotion stimulus processing disturbances in individuals with MDD.

There are several neuroimaging studies in euthymic remitted MDD individuals to assess

whether abnormal neural responses to emotional stimuli represent illness trait markers

(Drevets et al., 1992; Liotti et al., 2002; Neumeister et al., 2006; Norbury et al., 2009; Victor

et al., 2010). These studies have identified abnormalities in PFC systems. However, some

studies included medicated subjects (Liotti et al., 2002), subjects with co-morbid illnesses

(Neumeister et al., 2006; Norbury et al., 2009) or did not require individuals to have a

family history of MDD (Norbury et al., 2009), making it difficult to draw conclusions about

potential trait markers of vulnerability to MDD. Furthermore, most of these studies did not

directly examine whether putative trait abnormalities in the processing of emotional stimuli

were specific to negative stimuli or were also found in response to positive stimuli.

In the present study we examined neural activation during an implicit emotional face

processing task using fMRI in fully recovered, medication-free individuals with MDD

(rMDD), to determine whether dysfunction in brain regions subserving emotion processing

persist into remission. Studying rMDD individuals who are medication-free offers an

opportunity to investigate the disorder, without the confounding effects of medication, or

symptom-induced (state-related) neural changes. In addition, we separately examined neural

responses to negative (fearful) and positive (happy) facial expressions (relative to neutral) to

assess whether disturbances are associated only with negative emotional processing, or

whether they are also associated with positive emotional processing. We hypothesized that,

relative to healthy control individuals, individuals with rMDD would show altered PFC

neural system response to the processing of negative emotional stimuli. Whole brain

exploratory analyses were performed to assess for potential regional differences not

hypothesized, and for associations with trait anxiety scores and duration of euthymia in the

rMDD group to assess for effects of trait anxiety and whether recovery is associated with

shifts in the functioning of the circuitry.
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2. Materials and methods

2.1 Participants

A total of 44 participants [21 medication-free rMDD patients and 23 healthy comparison

(HC) individuals] were recruited for the study. Five participants (2 rMDD and 3 HC) were

subsequently excluded for poor behavioral performance and/or excessive movement in

scanner (see sections 2.4 and 2.5 below), leaving a total of 39 participants who completed

the study (Table 1). The presence or absence of Axis I psychiatric diagnoses and mood state

were established by consensus of both a semi-structured clinical interview of an experienced

clinician (AS, DM) and a Structured Clinical Interview for DSM-IV Axis 1 disorders

(SCID) (First, 2002). Inclusion criteria for the rMDD participants included at least two past

major depressive episodes (MDEs), age of onset of the first MDE was before the age of 25

years, duration of current period of euthymia a minimum of four months, Hamilton

Depression Rating Scale, (Hamilton, 1960) score less than seven, and a Young Mania

Rating Scale (Young et al., 1978) score less than twelve. Additional inclusion criteria

included absence of another lifetime Axis I or II psychiatric diagnosis, a medication free

period for at least 4 months and one or more first-degree relatives with a past or current

diagnosis of MDD, which was obtained by administration of the structured Research

Diagnostic Criteria Family History Questionnaire (FH-RDC) (Andreasen et al., 1977). The

individuals in the rMDD group were ages 18-65 years, with mean age 33.6, SD± 13.5, 15

(79%) females. Individuals in the HC group were without personal current or past diagnosis

of an Axis 1 disorder or a first-degree family member with a history of such illnesses and

were ages 18-65 years, with mean age 35.8, SD± 12.10, 10 (50%) females. Participants with

rMDD were recruited by referrals from a university-based medical center and advertisement,

and HC participants by advertisement in the surrounding community. Exclusion criteria for

both groups included significant current or lifetime medical condition (by history and

physical examination), neurological condition, history of loss of consciousness for five

minutes or more, current use of psychotropic medication, current or lifetime substance or

alcohol dependence and/or abuse, or contraindication to magnetic resonance imaging

scanning.

Assessments also included the Edinburgh Handedness Inventory (Oldfield, 1971), the

American version of the Nelson Adult Reading Test (AMNART) (Grober and Sliwinski,

1991), and the State Trait Anxiety Inventory (STAI) (Spielberger, 1983). All participants

provided written informed consent in accordance with approval by the Yale Human

Investigation Committee (HIC) and Hartford Hospital Institutional Review Board (IRB).

2.2 Event-related emotional face paradigm

Details pertaining to the event-related emotional face gender-labeling task have been

described previously (Shah et al., 2008; Kalmar et al., 2009). Briefly, faces from the Ekman

series (Ekman and Friesen, 1979) depicting negative emotional expressions (fear), positive

emotional expressions (happiness) or neutrality were shown to participants via Eprime

software on a computer attached to a projector (Psychology Software Tools; Pittsburgh,

PA). Participants made a male-female discrimination by pressing one of two corresponding

buttons on a button box. Each face was presented for 2 seconds and separated by 4, 8 or 12
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second intervals, during which participants viewed a crosshair. Each run was comprised by

10 grey scale face stimuli (5 females, 5 males) with each actor exhibiting all 3 of the

expressions yielding a total of 30 stimuli in each run. Order of face stimuli was

counterbalanced for facial expression, sex, identity and the length of the inter-stimulus-

interval. Participants completed 4 runs of the task (total duration 19 minutes, 20 seconds).

Instructions were presented on the computer at the beginning of each run and subjects were

asked to respond as quickly and accurately as possible. Detailed instructions and practice

trials were completed on a computer outside the scanner prior to the scanning session.

2.3 MRI data acquisition

Participants were scanned using a 3-Tesla Siemens Allegra MR scanner (Siemens, Erlangen

Germany) at the Olin Neuropsychiatric Research Center (Hartford Hospital, CT). A custom

head cushion was used for head stabilization. T2* weighted images were acquired with a

gradient echo planar imaging (EPI) sequence as follows: TR= 1.86s, TE= 27ms, FOV=

220mm× 220mm, matrix size= 64 × 64, voxel size= 3.44mm × 3.44mm × 4mm, slice

thickness= 3mm with a 1mm slice gap, number of sequentially acquired slices= 36, flip

angle= 70°.

2.4 Behavioral data analysis

Behavioral data were analyzed using a mixed-model repeated measures MANOVA with

group as a between-subject factor, and facial expression type (fear, happy and neutral) as a

within-subject factor. The multivariate statistic reported is Wilk's lambda. If sphericity

assumptions were violated, Greenhouse-Geisser corrections were used. Participants were

excluded (and their imaging data discarded) if their reaction time data was greater or less

than two standard deviations of the group mean and/or if their mean accuracy was less than

90% resulting in the exclusion of 3 participants (all HC). Mean reaction times were

computed for each participant across each of the emotions (i.e. fear, happy and neutral).

2.5 fMRI data processing and analysis

Data preprocessing was performed with SPM2 software (Wellcome Department of Imaging

Neuroscience, Institute of Neurology, University College London, UK), running in Matlab

7.0 software. The first 5 images were discarded to account for the approach of the

hemodynamic response to steady state, and to achieve a better magnetic stabilization.

Images for each run were realigned to the 6th image of each run using the INRIAlign

toolbox (Freire et al., 2002) to reduce interscan motion, creating an overall mean image from

each run. Unusable imaging data due to susceptibility artifacts or translation motion greater

than 3mm and rotational movement greater than 1 degree were discarded and not included in

the analysis, resulting in the exclusion of 2 participants (1 rMDD, 1 HC). A mean image was

constructed for each run from the realigned image volumes. This mean image volume was

then used to determine parameters for spatial normalization into the Montreal Neurological

Institute (MNI) standardized space employed in statistical parametric mapping (SPM2). The

normalization parameters determined for the mean functional volume were then applied to

the corresponding functional image volumes for each participant. Finally the normalized

functional images were smoothed with a 12mm full-width half-maximum Gaussian filter.

Event-related hemodynamic response amplitudes, along with their time derivative were
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estimated for each participant using a general linear model for each of the three event types

(fearful, happy and neutral expressions) employed within the SPM2 (http://

www.fil.ion.ucl.ac.uk/spm/) software (Buxton, 2002). A high pass filter of 128 seconds was

used to remove low frequency artifact signals. Statistical maps for each subject were then

created for the two emotion-type contrasts: fear minus neutral and happy minus neutral.

Following this, at the group level, one-sample t-test contrast maps were used to assess

regional positive and negative BOLD change within each subject group for the two emotion

contrasts. To examine differences between the rMDD group and the HC group for the two

emotion contrasts we used two approaches. Firstly, to test region-based hypotheses of group

differences, we performed region of interest (ROI) analyses. ROIs were defined by WFU

PickAtlas Utility (http://www.fmri.wfubmc.edu/cms/software#WFU_PickAtlas).

Specifically, predefined anatomical masks (WFU Pickatlas Tool) were applied to define the

following bilateral areas: DLPFC (BA 9/46), VLPFC (BA 45/47), OFC (BA 11/12), sgACC

(BA 25), amygdala, and ventral striatum. To control for multiple statistical testing within the

search volume of each of the bilateral ROIs, we maintained a false positive detection rate at

P<0.05 at the voxel level for each of the contrasts and family-wise error (FWE) correction

using a spatial extent threshold (Forman et al., 1995) with AlphaSim software implemented

in AFNI. The number of contiguous voxels needed to maintain this false positive detection

rate in each ROI was computed separately for each contrast and empirically determined by

Monte Carlo simulations implemented in AlphaSim, which accounted for spatial

correlations between BOLD signal changes in neighboring voxels (Ward, 2000). AlphaSim

is a recommended approach for family-wise error correction as it provides adequate dual

thresholding of both type-I error and cluster size while taking into account the smoothness

of the data (Bennett et al., 2009).

Our second approach involved conducting exploratory analyses to assess patterns of

activation occurring across the whole brain. A random effects analysis was carried out in

SPM2 using a two-sample t-test for each contrast to generate two difference images (i.e.

activation significantly greater in HC vs. rMDD and vice versa) across the brain. Due to the

exploratory nature of this analysis, findings were considered significant at P<.001,

uncorrected, Ke= 20 contiguous voxels. Inclusion of gender as a covariate did not alter the

imaging results and were thus not included in all subsequent analyses.

2.6 Exploratory analyses examining relationships with clinical variables

Post-hoc analyses were performed to explore whether there was a relationship between

activation during the processing of fearful (vs. neutral) and happy (vs. neutral) emotional

stimuli across the brain including our ROIs, and trait anxiety scores, as well as duration of

the current period of euthymia. We did this to assess if trait anxiety has modulating effects

on neural activation that may persist into remission, and whether recovery is associated with

changes in the neural circuitry underlying emotional processing. For each correlation trait

anxiety and duration of euthymia scores were entered as regressors in a second-level

analysis for the 2 contrasts (fear vs. neutral and happy vs. neutral) within SPM2. Where

significant activations occurred that correlated with our covariates, a 2mm sphere was

applied around the coordinates of the peak voxel within the significant cluster to extract out
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the average signal from the sphere. The values for each individual obtained from this

analysis were then analyzed in SPSS to plot the data using Pearson's regression analyses. A

threshold of P<.001, uncorrected, and a cluster threshold of Ke = 20 was used for each

contrast.

3. Results

3.1 Behavioral data

There were no significant differences between the rMDD and HC groups in task

performance. All 39 participants were highly accurate on the task (>90% correct). For

response accuracy there was no significant main effect of group F(1, 37) = .790, P= 0.380,

or emotion F(2, 36)= 1.14, P= .331, or significant group x emotion interaction F(2, 36) =

2.44, P= .10. Similarly, with regard to reaction time, there was no significant main effect of

group F(1, 37) = 1.31, P= 0.26. There was a main effect of emotion F(2, 36) = 6.12, P= .

005. Post-hoc simple contrast analyses with facial expression type as a within-subject factor

indicated that all participants responded faster to happy faces compared to fearful faces F(2,

37) = 10.75, P= .002. There was also a significant group x emotion interaction F(2, 36) =

4.95, P= .013. Post-hoc independent t-tests with an adjusted threshold of P= .05/ (number of

t-tests) used to compare groups across each emotion type, revealed no significant differences

between the groups at the corrected or uncorrected level.

3.2 Functional magnetic resonance imaging results

In the following section, we present the ROI findings for each contrast (fear vs. neutral and

happy vs. neutral). This is followed by the results of the whole-brain exploratory analyses

for the same contrasts. The exclusion of two left-handed individuals (one MDD, one HC)

had no significant effect on neural activation across the brain or in any of the ROIs for either

contrast. Thus all subsequent analyses included all 39 participants.

3.2.1 ROI Analyses—For the fear vs. neutral face contrast, ROI analyses showed

significantly lower activation in left OFC (BA 11) (t37= 3.85, P<0.001, PFWE<0.05, Ke=

866 voxels) and left DLPFC (BA 46) (t37= 2.55, P=0.008, PFWE<0.05, Ke= 136 voxels) in

the rMDD group compared to the HC group (Figures 1 and 2 respectively). No significant

between-group differences were found in any other ROI.

To further clarify these findings we performed exploratory analyses comparing each

emotion condition (fear or neutral) with the baseline BOLD response (i.e. no face). For fear

vs. baseline, consistent with our findings for fear vs. neutral, we found reduced activation in

left DLPFC (BA 46) in rMDD relative to HC (P=0.003, uncorrected, Ke= 118 voxels).

There were no significant between-group differences for the happy vs. neutral face contrast

in any of our ROIs. Comparing each emotion condition (happy or neutral) with baseline

BOLD response revealed no significant differences.

3.2.2 Whole-brain Analyses—For the fear vs. neutral face contrast, in addition to the

findings in the hypothesized regions, the voxel-wise whole-brain exploratory analyses

revealed lower activation in rMDD group compared to HC in a cluster in right parietal lobe
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(t37= 3.79, P<0.001 uncorrected, Ke= 22) and left occipital lobe (t37= 2.52, P<0.001

uncorrected, Ke=31). However, these results did not survive FWE correction at P<0.05.

For the happy vs. neutral face contrast there were no additional regions of group differences.

3.3 Correlation analyses between neuroimaging data and clinical variables

No significant relationships were found between the ROIs and trait anxiety scores in the

rMDD group for either the fearful or happy (vs. neutral) contrasts.

Correlation analyses revealed a significant, positive relationship between right DLPFC

activation and duration of euthymia in rMDD individuals during the presentation of fearful

(vs. neutral) faces (r(19)= .69, P<0.001) (Figure 3). No significant relationships were found

between DLPFC activation and duration of euthymia for happy vs. neutral face contrast in

the DLPFC or in any of our ROIs in the rMDD group.

Together, the findings support diminished response of the left OFC and left DLPFC during

the implicit emotional stimulus processing in rMDD individuals, especially when the stimuli

are of a negative valence, and that recovery of MDD may include compensatory changes in

the right DLPFC.

4. Discussion

In this study we used fMRI during an implicit negative and positive emotion stimulus

processing task to investigate differences in blood oxygen level dependent response in fully

recovered individuals with MDD. Relative to HC participants, individuals with rMDD

showed significantly reduced activation in the left OFC (BA 11) and left DLPFC (BA 46)

during the processing of faces depicting negative emotions. The rMDD individuals were

euthymic, unmedicated, had a family history of MDD and were without psychiatric

comorbidity, suggesting that the findings may represent a trait marker for MDD. Duration of

euthymia was significantly associated with increases in right DLPFC activation. This

suggests that recovery from MDD may be associated with compensatory changes in the right

DLPFC.

Significant PFC reductions in the MDD group were found only during the processing of

negative emotional stimuli. This finding is significant as this is one of the few studies in

rMDD that has separately examined abnormalities in the processing of positive and negative

emotions. The findings suggest that abnormalities in the processing of stimuli of a negative

emotional valence may be a trait feature of MDD. These findings are consistent with

previous neuroimaging studies in rMDD. For example, in a PET study using a mood

challenge paradigm to induce sad mood, Liotti et al., (2002) reported significantly lower

activation in medial OFC (BA 10/11) in rMDD individuals compared to HC. Norbury et al.,

(2009) reported altered DLPFC activation in response to fearful faces during an explicit

face-matching paradigm in rMDD individuals. Our findings are also consistent with a

number of previous studies in acutely depressed and remitted MDD individuals which have

similarly reported abnormalities in the OFC and DLPFC in response to negatively valenced

stimuli including masked emotional faces (Fu et al., 2004; Neumeister et al., 2006; Fales et
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al., 2009), and negative emotional distracters (Fales et al., 2008; Wang et al., 2008).

Together these findings support cognitive theories of MDD in which abnormal responses to

negative emotional stimuli are central to the disorder (Beck et al., 1979). Whilst there are

some studies that have reported abnormalities in the processing of happy facial stimuli in

individuals with MDD when acutely depressed (i.e. during a major depressive episode)

(Surguladze et al., 2005) and in unmedicated, remitted MDD individuals (Kerestes et al.,

2011), the most predominant findings have been in response to negative emotional stimuli,

including consistent findings in remitted individuals, suggesting these may represent a trait

marker specific to MDD. The prominence of the findings in response to negative emotional

stimuli in MDD contrasts with that observed in individuals with Bipolar Disorder (BD)

where more pronounced functional abnormalities in response to positive emotional stimuli

have been reported (Lawrence et al., 2004; Blumberg et al., 2005). These impairments in

emotional processing of positive stimuli have been reported in BD individuals in all phases

of the illness including mania (Altshuler et al., 2005; Chen et al., 2006), depression (Malhi

et al., 2004), and euthymia (Hassel et al., 2008). This suggests that abnormal responses to

negative but not positive emotional stimuli may help to distinguish the MDD from the BD

trait. Future studies are needed which directly compare neural responses to positive and

negative emotional stimuli in remitted individuals with MDD and BD to help characterize

the different nature of the deficits in emotional processing.

We observed evidence for lateralization of the emotional processing deficits in rMDD. The

reduced left-sided OFC and DLPFC activation in rMDD individuals is consistent with

theories of the lateralization of emotions and findings of depression in association with

lesions in left frontal cortex (Robinson and Starkstein, 1989; Fedoroff et al., 1992; Jorge et

al., 1993). A variation of this theory suggests that in healthy individuals left lateral PFC

subserves approach behaviors (Wager et al., 2003), suggesting that left PFC lesions and/or

abnormal activation in this area may contribute to the manifestation of behavioral

constriction in MDD. Though at the trend-level, left-sided reductions in parietal and

occipital lobe activation observed in rMDD patients during the processing of negative faces

suggest that left hemisphere abnormalities may include these posterior association cortices

required for the rapid perception and evaluation of faces (Haxby et al., 2000).

Converging lines of evidence from structural neuroimaging and postmortem studies of

individuals with MDD provide further support for PFC trait markers in MDD. These studies

provide evidence for structural differences in MDD that may underlie the functional

differences observed. For example, magnetic resonance imaging (MRI) studies have

reported reductions in OFC grey matter volume in acutely depressed (Lai et al., 2000;

Wagner et al., 2008), and remitted (Bremner et al., 2002) individuals with MDD relative to

HC subjects. Postmortem studies also suggest cellular alterations that may contribute to the

differences. For example, significant reductions in neuronal size and glial densities in the

OFC and DLPFC have been documented in MDD (Rajkowska et al., 1999; Cotter et al.,

2002).

In the rMDD group, duration of remission was associated with activation in the right

DLPFC (BA 9), such that the longer duration of euthymia in rMDD individuals, the greater

the activation in the right DLPFC to negative facial expressions. We speculate that this
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additional recruitment of the contralateral PFC may represent a compensatory response in at

least a subset of rMDD patients that contributes to recovery. These findings are important,

as there has been little previous study of the changes in regional function in recovery from

mood disorders. Future longitudinal studies examining DLPFC activation could provide

valuable insights into the role of the DLPFC in recovery from depression and how it might

be targeted in the design of future interventions.

A limitation to interpreting the findings as trait markers of vulnerability to MDD is that all

of the rMDD participants were required to have experienced at least two previous major

depressive episodes. While this criterion reduced sample heterogeneity in order to study

recurrent MDD, it also raises the possibility that the group differences found reflect

vulnerability to depressive relapse, or a residual abnormality due to previous episodes of the

illness, rather than biological markers that predispose initial onset of MDD. In addition, the

lack of an acutely depressed group to which direct comparisons could be made with the

remitted group makes it difficult to identify state vs. trait markers of the illness. Future

longitudinal studies examining unaffected offspring at-risk are required in order to advance

our understanding of vulnerability markers of the illness that might be targeted for

prevention. Indeed, abnormal activations in the amygdala and nucleus accumbens to

negative facial expressions have been reported in children at-risk for MDD (Monk et al.,

2008). Similarly, studies examining siblings of MDD patients, as well as first-episode

patients will provide valuable insight to understanding trait markers of MDD. We did not

detect differences in the sgACC, amygdala or ventral striatum, areas implicated previously

in MDD studies (Drevets et al., 1997; Sheline et al., 2001; Neumeister et al., 2006; Victor et

al., 2010). Possible reasons for this could include that previous findings were related to state,

comorbidity or medication; however, differences in these regions may not have been

detected because of insufficient power owing to the small sample size in the present study,

or methodological differences across studies related to task design and emotional stimuli

employed. Finally, there was a gender imbalance in the rMDD group. We covaried for

gender in our analyses, however we did not have sufficient power to assess gender effects so

it is not clear whether the findings generalize to both genders. Replication of the present

findings in larger cohorts of females and males with rMDD is thus required.

In conclusion, the findings suggest that clinical recovery in unmedicated MDD individuals is

associated with enduring, trait-like abnormalities in the left OFC and DLPFC in the context

of processing negative emotional stimuli. Further, the right DLPFC may mediate a

compensatory response during recovery. Collectively these findings could have significant

clinical implications for the identification of trait markers of MDD, as well as for identifying

mechanisms contributing to recovery in MDD individuals.
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Figure 1. Left Orbitofrontal Cortex Decreases in rMDD individuals in the Fear vs. Neutral Condition
The 2mm axial-oblique slices display the region of orbitofrontal cortex (BA11) activation decreases in the fearful vs. neutral

face condition in the remitted major depressive disorder (rMDD, n=19) group compared to the healthy comparison (HC, n=20)

group, at P<0.005, uncorrected. The differences survived correction for multiple comparisons (PFWE<0.05). Numbers to the left

of the images are z-planes (Montreal Neurological Institute) in millimeters. The color bar shows the T values. The maxima was

at coordinates x= −42mm, y= 22mm, z=−20mm; Ke= 866 voxels.
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Figure 2. Left Dorsolateral Prefrontal Cortex Decreases in rMDD individuals in the Fear vs. Neutral Condition
The 2mm axial-oblique slices display the region of dorsolateral prefrontal cortex (BA9) activation decreases in the fearful vs.

neutral face condition in the remitted major depressive disorder (rMDD, n=19) group compared to the healthy comparison (HC,

n=20) group, at P<0.005, uncorrected. The differences survived correction for multiple comparisons (PFWE<0.05). Numbers to

the left of the images are z-planes (Montreal Neurological Institute) in millimeters. The color bar shows the T values. The

maxima was at coordinates x= −50, y= 40, z= 20; Ke= 136 voxels.
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Figure 3. Association between Dorsolateral Prefrontal Cortex Activation and Duration of Euthymia
Left: The sagittal image (Montreal Neurological Institute plane x= 12mm) displays the right dorsolateral prefrontal cortex region

(BA9) in which response during the fearful vs. neutral face condition was significantly associated with duration of the current

euthymic period in the participants with remitted major depressive disorder (n=19), at P<0.001. The color bar shows the T

values. The maxima was at coordinates x=12, y= 46, z= 34; Ke= 75 voxels. Right: The graph demonstrates the positive

correlation between the months of the current euthymic period in the participants with remitted major depressive disorder (n=19)

and the percent of blood oxygen level dependent signal change extracted from the peak of the right dorsolateral prefrontal region

shown in the image to the left, r= 0.69, r2= 0.47.
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Table 1

Participant demographics and clinical variables

rMDD (n= 19) HC (n= 20) Statistics P Value (two-tailed)

Age at Scan (SD) 33.6 (13.64) 35.8 (12.10) t(37) = 0.50 0.50

Gender (%F) 78 50 χ2(1) = 3.5 0.06

Handedness (R:L) 18:1 19:1 χ2(1) = .001 0.97

Verbal IQ (AMNART) (SD)
* 123.55 (4.8) 124.16 (2.25) t(34) = .50 0.13

Trait anxiety score STAI (SD) 37.5 (8.65) 27 (5.89) t(37) = −4.48 0.001

HAMD score (SD) 1.79 (1.27) 0.45 (0.99) t(37) = −3.67 0.11

Duration of Illness, months (SD) 33.9 (25.7) - - -

Lifetime number MDE's (SD) 4.42 (6.45) - - -

Duration of euthymia, months (SD) 15.10 (12.26) - - -

Note: MDE's= Major Depressive Episodes. HAMD= Hamilton Depression Rating Scale. STAI= State-Trait Anxiety Inventory. AMNART=
American version of the Nelson Adult reading test.

*
Information not available for 3 rMDD participants
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