
Computer assisted diagnosis in renal nuclear medicine:
rationale, methodology and interpretative criteria for diuretic
renography

Andrew T Taylor, MD and Ernest V Garcia, PhD
Department of Radiology and Imaging Sciences, Emory University School of Medicine

Abstract

The goal of artificial intelligence, expert systems, decision support systems and computer assisted

diagnosis (CAD) in imaging is the development and implementation of software to assist in the

detection and evaluation of abnormalities, to alert physicians to cognitive biases, to reduce intra

and inter-observer variability and to facilitate the interpretation of studies at a faster rate and with

a higher level of accuracy. These developments are needed to meet the challenges resulting from a

rapid increase in the volume of diagnostic imaging studies coupled with a concurrent increase in

the number and complexity of images in each patient data. The convergence of an expanding

knowledge base and escalating time constraints increases the likelihood of physician errors. Errors

are even more likely when physicians interpret low volume studies such as 99mTc-MAG3 diuretic

scans where imagers may have had limited training or experience. Decision support systems

include neural networks, case-based reasoning, expert systems and statistical systems. iRENEX

(renal expert) is an expert system for diuretic renography that uses a set of rules obtained from

human experts to analyze a knowledge base of both clinical parameters and quantitative

parameters derived from the renogram. Initial studies have shown that the interpretations provided

by iRENEX are comparable to the interpretations of a panel of experts. iRENEX provides

immediate patient specific feedback at the time of scan interpretation, can be queried to provide

the reasons for its conclusions and can be used as an educational tool to teach trainees to better

interpret renal scans. iRENEX also has the capacity to populate a structured reporting module and

generate a clear and concise impression based on the elements contained in the report; adherence

to the procedural and data entry components of the structured reporting module assures and

documents procedural competency. Finally, although the focus is CAD applied to diuretic

renography, this review offers a window into the rationale, methodology and broader applications

of computer assisted diagnosis in medical imaging.
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Introduction

Nuclear medicine physicians and radiologists have the responsibility to monitor scan

performance, analyze sequences of images, assimilate clinical information, assess

quantitative data, formulate an interpretation and generate a focused and coherent report.

These processes are demanding and require knowledge of multiple disease processes as well

as expertise in the performance and interpretation of a variety of imaging modalities; these

processes can also be associated with multiple sources of error including a lack of

procedural competency, cognitive bias, fatigue, insufficient training and lack of expertise.

Lack of training, experience or expertise—The problems of insufficient training,

limited experience and lack of expertise simply reflect the inevitable convergence of a

rapidly expanding knowledge base and escalating time constraints that characterize the

training and practice of medicine; these problems are especially acute in the setting of low

volume studies where training is even more likely to have been limited. For example,

radiology residents receive only 4 months of training to cover all of nuclear medicine

including nuclear cardiology yet radiologists perform the vast majority of non-cardiac

nuclear medicine studies. In contrast, the American Board of Nuclear Medicine has

determined that competency in nuclear medicine requires 36 months of training to master

the same material radiology residents will attempt to assimilate in 4 months. Moreover,

radiology residents are largely trained to interpret static or a series of static images that

require a detailed knowledge of anatomy while interpretation of studies such as diuretic

radionuclide renography depends much more on an understanding of renal physiology

and 99mTc-MAG3 (mercaptoacetyltriglycine) pharmacokinetics. Even so, interpretation of

low volume studies such as renal scintigraphy can be a challenge for fully trained nuclear

medicine physicians since a large percentage of an estimated 590,000 renal scans are

performed annually in the United States are interpreted at sites that perform fewer than 3

studies per week (1).

Because of differences in training and expertise, image interpretation is sometimes more

dependent on which physician interprets the study rather than the presence or absence of

underlying disease. Different specialists may disagree on the interpretation of the same study

between 9% and 72% of the time (2). In a recent study, Hunsche showed that 25% of the

diuretic renal scan interpretations (obstructed, equivocal, not obstructed) depended on which

experienced physician interpreted the study (3). This problem is not limited to nuclear

medicine but also applies to other areas of imaging such as MR imaging of the lumbar spine

and low-dose CT screening (4, 5).

Cognitive bias—The two major components of clinical decision consist of making a

diagnosis and devising a treatment plan based on that diagnosis; if the diagnosis is incorrect,

there is a much greater likelihood that the treatment plan will also be incorrect or

suboptimal. Although many factors contribute to diagnostic error, a principal cause consists

of cognitive errors where the problem lies not in a lack of knowledge but with the clinician's

thinking process (6). Our minds are quite vulnerable to cognitive biases, logical fallacies and

false assumptions. Cognitive failures are best understood in the context of how our brains
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manage and process information. The two principal modes can be categorized as System 1

and System 2 (7). System 1 operates automatically, intuitively and quickly, effortlessly

originating impressions and feelings while System 2 requires mental effort, focused

concentration and analysis. Cognitive errors are much more likely to occur when the scan,

radiograph or clinical problem are analyzed by System 1. Examples of System 1 errors

consist of reports that are internally contradictory or reports where diuretic renal scan

interpretations are primarily based on a simple heuristic rule governing the T1/2 (If the T1/2

is greater than 20 min, the kidney is obstructed). The cognitive error rate may be even higher

in areas where training, experience or expertise is compromised.

Lack of procedural competency—Many regulatory and oversight groups require peer

review processes to evaluate the interpretative competence of radiologists and nuclear

medicine physicians on an ongoing basis but systems for evaluating procedural competency

are not widely available (8). Appropriate procedures are essential to a quality study and

extensive procedure guidelines are provided by many professional organizations to facilitate

procedural competency. To help standardize practice and guide interpretation of renal scans,

for example, an international group of experts in renal nuclear medicine has published

guidelines for renovascular hypertension (9), suspected obstruction (10), clearance

measurements (11) and quality control (12); however, a recent survey showed that less than

50% of full time British nuclear medicine practitioners were even aware that a clearance

guideline existed (13). The situation is undoubtedly worse in the US where the vast majority

of the renal scans are interpreted by part time practitioners(1). Moreover, there has been a

proliferation of guidelines; the National Guideline clearinghouse (http://www.guideline.gov)

contains over 2373 clinical practice guidelines from 285 organizations. Too often physicians

lack the time and/or motivation to locate, read, assimilate and implement the current and

most appropriate guideline recommendations. Guidelines alone are not sufficient to ensure

procedural competency; future research must focus on innovative intervention approaches

that will help improve the translation of current knowledge into every day clinical practice

(14). Decision support systems that function in the reading room can overcome the

limitation of guidelines by providing immediate patient specific feedback at the time of scan

interpretation and help to minimize interobserver variability by providing standardized,

reproducible interpretative guidance.

Report generation—Too often, renal nuclear medicine reports fail to contain the essential

elements required to evaluate and interpret the study, fail to document the technical

components of the study necessary for accountability, quality assurance and reimbursement

or fail to communicate the results to the referring physician in a clear and unambiguous

structured report (15). Standardization of imaging reports represents an effort to counter this

limitation.

Artificial Intelligence (AI)

Artificial intelligence has the capacity to address the problems of training, expertise,

physician fatigue, cognitive bias, procedural competency and report generation and

represents a domain of science dealing with the processes of modeling and problem solving.

AI is a broad field and encompasses artificial neural networks (ANN), fuzzy logic, genetic
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algorithms, case based reasoning, expert systems and predictive statistical systems reasoning

(16-23). ANN are designed to model processing of information by neurons; genetic

processes mimic the process of natural evolution while expert systems model human

expertise in a given field of knowledge (24). Diagnostic imaging has now become largely

digital and computers have become an essential component of acquiring and processing

imaging studies thus facilitating the application of computer based artificial intelligence

methods to broad areas of nuclear medicine including planar and SPECT myocardial

perfusion studies SPECT (18, 25, 26), pulmonary embolism (27, 28), dementia (29), bone

scan interpretation (30), detection of lung cancer (31), renal transplant evaluation (32),

detection of renovascular hypertension (33, 34) and the evaluation of suspected renal

obstruction (35, 36).

Case-based reasoning—Case-based reasoning involves the process of solving new

problems based on the solutions of similar past problems. In imaging, an algorithm searches

a library of patient cases to find the ones with features that best match the features of the

patient study being analyzed and interprets the study using the cases with the best match.

Artificial Neural Networks—The artificial neural network (ANN) is an algorithm

designed to model living neuronal function and can be trained to recognize similarities in

patterns and learn by example. Neurons are grouped in layers and form connections with

cells from each neighboring layer but lack connections within layers; one of the more

straightforward types of artificial neural networks is the feed forward neural network in

which the signal spreads in one chosen direction. A fully connected network of neural nodes

arranged in input, hidden and output layers is shown in Figure 1.

Hamilton et al utilized a feed forward neural network to detect renal artery stenosis in renal

transplants while Nielsen et al employed a feed forward neural network for the analysis of

captopril augmented renal scintrigaphy in suspected renovascular hypertension (33, 34). In

these promising approaches, repeated recognition trials were run using sample 99mTc-

mercaptoacetyltriglycine (MAG3) renal scan data as inputs and the corresponding renal

angiography results or expert interpretation as outputs in order to optimize the strength

between the input and output nodes and thus train the net so that the input data eventually

predicts the output.

Predictive statistical system—Statistical methods for prediction incorporate scientific

knowledge about the data as well as the variability of the measurements in the observed

data. They also have the ability to make inferences from a sample to a population, test

hypotheses and estimate of parameters of interest.

Expert (knowledge-based) systems—In these systems, a knowledge base of heuristic

rules is obtained from human experts capturing how they make their interpretations. These

heuristic rules usually take the form of “If A, then B.” expressions. Building on our previous

expertise (25, 26), we have developed a generalized methodology to aid in the interpretation

of imaging studies and have applied this generalized methodology to develop a

comprehensive informed renal expert system (RENEX without clinical information,

iRENEX with clinical information) for detecting renal obstruction using both clinical
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information and data extracted from pre and post furosemide 99mTc-MAG3 acquisitions.

The goal of the RENEX and iRENEX projects is to develop and implement a knowledge

based decision support system that will integrate clinical information with automated image

analysis to provide a comprehensive renal scan interpretation indistinguishable from that of

experts.

Choosing an AI methodology

Two primary issues for any decision support system are its accuracy and its clinical

acceptance. Both are necessary in terms of the ultimate clinical utility. Direct application of

standard statistical methods such as logistic regression use well-understood mathematical

techniques; however, standard statistical programs have three limitations that are

impediments to acceptance by physicians in that they have no real “understanding” of their

problem area, they have no mechanism for “discussing” their knowledge with the user and

they have no means for “explaining” (justifying their findings) to physicians (37); these

limitations are also shared by ANN and case based reasoning.

While more sophisticated methods can overcome some of these deficiencies, knowledge-

based systems offer a natural environment for implementing the tools that are lacking in

many statistical, ANN and case based reasoning approaches and can provide the physician

with a rationale for medical decisions (38). We chose to implement a knowledge based

expert system for three reasons: (1) Expert systems can generally be developed with fewer

numbers of cases than are required for statistical, ANN and case-based systems; (2)

knowledge based systems have the capacity to justify or explain their conclusions; and (3)

we had previous experience with this approach (26). In spite of these advantages, knowledge

based systems may benefit from the insights derived from more formal mathematical

approaches and we also chose to implement both expert system development and predictive

statistical modeling with the expectation that each approach would inform and strengthen

the other approach and the project would serve as a benchmark for the scientific comparison

and collaboration of these two important fields of medical decision-making.

Which gold standard: expert interpretations or outcome?

Use of clinical outcome as the gold standard for a diuretic renography decision support

system is an attractive goal but it misses the point of an expert system which is to interpret

studies with the same level of expertise as experts. It is generally accepted that experts

interpret studies in their imaging specialty better than general radiologists; this is the basis

for having distinct areas of expertise within academic radiology departments and private

practice settings. Outcome is certainly an important measure but in diuresis renography,

outcome as a gold standard is confounded by the fact the scan interpretation (obstruction

versus no obstruction) has a major impact on the clinical outcome (intervention versus

observation); consequently, this gold standard is biased. An additional problem is illustrated

by a patient who had a pyeloplasty to relieve obstruction one year after a diuresis

renography scan was interpreted as “no obstruction”. In this example, did the scan miss

obstruction, was the study interpreted incorrectly, did the patient only become obstructed

one year following the scan or did an aggressive surgeon operate on a non-obstructed
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kidney? Using patient outcome as a gold standard has an inherent bias, interpretation of the

results is not straightforward and it is not the goal of an expert system.

Choice of protocol for diuretic renography

Our protocol is based on the 1996 international consensus panel recommendations for

diuresis renography (10). The consensus panel recommended the intravenous injection

of 99mTc-MAG3 followed by a 35 minute continuous acquisition with furosemide

administered at 20 minutes; an alternative protocol was to divide the continuous acquisition

into two stages: a 20 minute baseline acquisition followed by furosemide administration and

a second acquisition. Kuyvenhoven et al have pointed out that the inconvenience of

furosemide administration can be omitted if the baseline scan can exclude obstruction (39).

Our approach has been similar; we have used the two stage acquisition since 1990 and

omitted Stage 2 when the baseline acquisition was normal and excluded obstruction. The

details of our acquisition and processing protocols have been described in previous

publications (35, 36, 40).

Normal ranges, reproducibility and renal size

Implementation of the expert system required clinical data that was either unavailable or

insufficiently robust and led us to design studies to address areas of clinical uncertainty.

What are the ranges of normal values for the camera-based MAG3 clearance,
renogram and voiding parameters?—Clearance measurements and other specific

quantitative parameters can assist in scan interpretation and patient management (9-12,

41-47). However, to utilize these parameters in our decision support system, both normal as

well as abnormal ranges had to be specified and assigned a confidence level. To determine

normal ranges, archived 99mTc-MAG3 acquisitions from 106 subjects evaluated for kidney

donation were processed using QuantEM™ 2.0, an in-house upgrade to the initial

QuantEM™ software (48). The 99mTc-MAG3 clearance was obtained using a camera based

clearance technique previously validated in a multicenter trial (49). This results showed the

mean ± sd for the BSA corrected camera-based 99mTc- MAG3 clearance in normal subjects

to be 321 ± 69 mL/min/1.73 m2, essentially identical to the mean ± sd of the plasma

sample 99mTc-MAG3 clearances of potential renal donors measured at different institutions,

304 ± 70 and 317 ± 74 mL/min/1.73 m2 (50, 51). The percent relative uptake in the right and

left kidneys was 49% and 51% ± 4% respectively with no difference between males and

females and the mean cortical 20 min/maximum count ratio was 0.19 with a SD of 0.07 and

0.04 for the right and left kidneys, respectively. The mean post-void/max whole kidney

count ratio was < 0.1 and the mean post-void residual bladder volume was < 30 mL. These

results confirmed and extended previous studies(52-54), established normal limits adjusted

for age and gender (48) and provided the data to generate certainty factors (see below) for

each of the parameters. Selected values are shown in Tables 1 and 2.

What is the normal variation in relative uptake in stable patients? How much
of a change is required to be confident of a loss of function?—When patients

have more than one renal study, rules have to be developed to evaluate changes in parameter

values. For example, if the relative renal uptake of 99mTc-MAG3 changes from 50/50% to
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55/45% in a patient with suspected obstruction, does the kidney with the 45% uptake require

an intervention to preserve function or is that 5% change within the error of measurement?

In spite of the importance of this question, there were no hard data defining the error in

sequential 99mTc-MAG3 parameter measurements in stable patient populations. To address

this question, we conducted a prospective study to measure the reproducibility of 99mTc-

MAG3 parameter values and define the thresholds for change beyond that expected by

chance (55). Using a perirenal background region of interest, measurements of relative renal

uptake of 99mTc-MAG3 and common renogram parameters were highly reproducible; in

regard to relative uptake, a decrease of 7% (i.e., 50% to 43%) implies a loss in renal function

at the 95% confidence level (55).

Determined renal size based on the 99mTc-MAG3 images—Chronic renal diseases

result in bilateral small kidneys whereas the kidneys may be bilaterally enlarged in early

diabetic renal disease, acute interstitial nephritis, HIV nephropathy, and amyloidosis (56-

60). A unilateral small kidney is obvious but a symmetrical bilateral increase or decrease in

renal size is not likely to be recognized on a 99mTc-MAG3 scan. Correlative imaging studies

may provide size information but unpublished results from our institution indicate that

approximately 50% of patients referred for renal scintigraphy lack prior imaging studies and

even when imaging reports are available, the report often fails to comment on renal size. To

be able to use renal size to assist in scan interpretation, we had to determine normal ranges.

Again, our study population consisted of 106 normal adults evaluated for kidney donation

who underwent 99mTc-MAG3 renal scintigraphy. Renal length, width and area were

determined from the maximum pixel length, pixel width and area of whole kidney ROIs and

correlated with patient gender, height, weight, body mass index and body surface area and

reference values generated using a quantile regression model (61, 62). Regression equations

defining the upper and lower limits of area and length are shown in Table 3.

Techniques to minimize processing errors and reduce intra- and interobserver variability

Processing errors can lead to mistakes in interpretation by both physicians and AI systems.

Moreover, there is a need to reduce intra- and interobserver variability to increase the

likelihood that the same quantitative data will be generated regardless of where a study is

performed or which technologist or physician processes the data.

Quality control software to monitor technologist input—We have developed

software to check the entire technologist input data used by RENEX (63). Checks are made

for logical inconsistency (negative and non-numeric values, impossible clock times, final

void time earlier than initial void time, dose counted larger than dose injected) and

demographic values outside the expected range. Additional checks flag potentially

unreliable results (height and weight outside an expected range, very low time-to-peak

kidney counts, infiltrated dose and starting the camera after tracer injection) as well as

factors that may lead to unreliable quantitative values. Prospective evaluation of this quality

control software demonstrated that QC issues are not uncommon and that they can be

identified and often corrected. Even if QC issues are recognized but cannot be corrected,

they can be flagged for the reviewing physician and certainty factor (see below) associated
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with the suspect parameter can be modified in the expert system so that the questionable

values have less effect on the final interpretation.

Automatic assignment of kidney ROIs—A robust image-processing algorithm

(AUTOROI) to automatically detect whole-kidney contours and generate renal regions of

interest (ROI) has been developed for the extraction of quantitative data thus providing an

objective and reproducible approach to ROI generation (64).

Detection and correction of errors due to patient motion—Patient motion during

the 20-30 min dynamic acquisition can partially shift the kidney outside the assigned ROI

causing errors in the calculated renal function parameters which can lead to errors in

interpretation. To address this problem, we developed an algorithm to detect and correct

patient motion and then simulated 10 types of vertical motion in 86 patient studies, resulting

in 860 image sets (65). The algorithm accurately detected motion as small as 0.25 pixel and

detected and corrected whole-pixel motion with a high degree of accuracy. Importantly, by

accurately identifying unshifted frames where no motion is simulated, the algorithm helps to

prevent the introduction of errors during motion correction (65).

The Architecture of iRENEX

The architecture of iRENEX is summarized in Fig 2 and discussed in greater detail below:

Certainty Factors—RENEX and iRENEX were inspired by two previously developed

expert systems (25, 26, 38). In these systems, each quantitative parameter must be converted

into a certainty factor to express the degree of confidence regarding the normality or

abnormality of that parameter. A certainty factor value of + 1.0 was assigned to indicate that

a parameter is “definitely abnormal” while a certainty factor value of - 1.0 is assigned to

indicate that a parameter is “definitely normal.” The certainty factor to indicate the boundary

between equivocal and abnormal is assigned a value of + 0.2, a truly equivocal value is

assigned a CF of 0 and the certainty factor value of -0.2 was assigned to indicate the

boundary between equivocal and normal. A certainty factor increasing from +0.2 to +1.0

indicates increasing confidence in that the parameter is abnormal with the value “+1.0”

representing 100% confidence.

To develop certainty factors for parameters extracted from the renogram, an expert in

radionuclide scintigraphy (domain expert) combined his experience and the normal limits

for the kidney parameters extracted from the Tc-99m MAG3 scans of 106 potential renal

donors (48) to estimate 5 boundary conditions for each parameter: (1) definitely abnormal,

(2) probably abnormal, (3) equivocal, (4) probably normal and (5) definitely normal. A

sigmoid-like fit constrained to these 5 boundary conditions was then generated to convert

the value of any individual quantitative parameter to a certainty factor (Fig 3) The collection

of these sigmoid curves for all the variables constitutes the parameter knowledge library

The Knowledge Base and Inference Engine—Sixty heuristic rules (If A, then B) were

initially extracted from the domain expert to generate the knowledge base for detecting

obstruction; 12 of these 60 rules were specifically applied to the baseline study to determine

the need for furosemide administration while the remainder were applied to the diuretic
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acquisition or to relationships between parameters of the baseline and diuretic acquisitions

to evaluate the presence or absence of obstruction.

An inference engine is software that selects and executes the rules to reach a conclusion.

The RENEX inference engine approximates Bayes theorem to combine the certainty factors,

known as Bayesian combinatories, to reach a conclusion which is expressed by a combined

certainty factor (38). One of the rules, for example, states, “If the ratio of the post-void

kidney counts of the post-furosemide renogram to the counts in the baseline renogram

during the 1 to 2 minute interval is normal, then there is a very strong evidence (certainty

factor of -0.8) that the kidney is not obstructed.”

When the inference engine begins to analyze a study, the certainty factor that a kidney is

obstructed is 0 (unknown). As production rules are asserted (fired), the certainty factor that

the kidney is obstructed increases or decreases based on whether the rule is providing

positive or negative evidence that the kidney is obstructed. Thus, if the final certainty factor

that the kidney is obstructed is greater than +0.2, the conclusion is that the kidney is

obstructed; the larger the certainty factor (closer to the maximum value of 1.0), the greater

the confidence in the conclusion of obstruction. If the certainty factor is less than -0.2, the

kidney is not obstructed, and if it lies between -.2 and +.2, the kidney is equivocal for

obstruction. The initial 60 rules were modified as the system was trained with patient data

and additional rules were added.

The Justification Engine: Do RENEX and iRENEX get the right answer for the
right reason?—A software component called a justification engine was implemented to

record the sequence of each rule that was fired and the certainty factor value of all input and

output parameters at the time of instantiation in order to track and justify the logic of the

conclusions (66). The justification engine allows a user to query RENEX to determine the

rules and parameter values that “justify” or explain the software's conclusion regarding the

presence or absence of obstruction (66, 67).

Capturing and quantifying clinical information

Capturing clinical information—Our goal was to capture all the clinical information

that might be important to clinicians for the interpretation of the study such as the serum

creatinine, a clinical finding of left flank pain following furosemide administration or data

extracted from imaging reports (type of study, date and findings). FileMaker Pro was used to

develop a relational database that could (1) capture clinical information, (2) link this clinical

information to the patient file and the quantitative renal scan parameters, (3) export the data

to RENEX, and (4) export a summary report as a text file for physicians. This database was

chosen because of its widespread commercial use, flexible review layouts and the capacity

for scripting (the development of customized programs to enhance functionality). The

database contained 342 fields for each patient to accommodate the range of clinical

information that might potentially be available and included summaries of CT, US, MR,

IVP, prior MAG3 scans, surgeries, stents and serum creatinine values (68). The information

that the clinician considers to be relevant is extracted from the medical records and entered
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into the data base. This process mirrors the current retrieval of supplemental information by

the clinician; in the future, medical records may be amenable to data mining.

Conversion of non-quantitative variables (e.g, results of imaging studies) into
certainty factors—The inference engine for RENEX and iRENEX requires a certainty

factor (CF) for each quantitative and non-quantitative variable. The process of developing

CFs for non-quantitative variables is illustrated using hydronephrosis. An imaging report,

for example, might describe hydronephrosis as present or absent and, if present, might

further characterize the hydronephrosis as mild, moderate or severe. Each of these features

was initially assigned a certainty factor by the domain expert to express the certainty that the

abnormality was present. If hydronephrosis was described as present but not qualified by a

descriptive adjective, the assigned CF was 0.35; mild, moderate and severe hydronephrosis

were assigned CFs of 0.25, 0.45.or 0.8, respectively; if the image included the kidneys in the

field of view but the report had no comment regarding hydronephrosis, hydronephrosis was

assumed to be absent with a CF of - 0.4. These initial CFs were then modified by experience

and the IKLA algorithm described below to reach the same conclusion regarding the

presence or absence of obstruction as expert readers (69, 70)

What is the impact of clinical information on scan interpretation?

To facilitate incorporation of clinical information into the expert system and to help guide

clinicians, a study was conducted to determine the impact of clinical information on diuretic

renography scan interpretation. Baseline and furosemide MAG3 acquisitions of 92 patients

with suspected obstruction were randomly selected from an archived database and

independently interpreted by 3 experienced readers without clinical information and re-

interpreted with access to a File Maker Pro database. All studies included a camera-based

MAG3 clearance. Readers scored each kidney on a scale from +1.0 to -1.0; scores > 0.21

represented obstruction with higher scores indicating greater confidence in the diagnosis of

obstruction. Scores from +0.2 to -0.2 were equivocal and scores < -0.2 indicated non-

obstructed kidneys. There was a subsequent consensus reading without and then with

clinical information where the 3 readers were allowed to change their scores; the mean score

served as the final score.

When the initial scan interpretation was non-obstructed, clinical history was essentially

irrelevant. Among the scans initially interpreted as obstructed or equivocal, clinical history

changed the diagnostic category in only 2-3% of kidneys. Moreover, the impact of clinical

history varied among readers with most important clinical factors affecting interpretation

being the presence of a ureteral stent and the presence or absence of hydronephrosis or

hydroureter (71). To provide a more objective basis for the use of clinical history elements

in scan interpretation, this study has been expanded and is the subject of a manuscript

recently submitted for publication. iRENEX has the advantage of providing an objective,

reproducible approach to evaluate and standardize implementation of clinical history into

scan interpretation and can help determine the utility of different clinical parameters.
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Further selection and weighting of variables for scan interpretation

Two additional approaches were used to supplement input from the domain expert and data

from clinical studies to determine the key variables, select the certainty factors and

appropriately weight the rules in the RENEX knowledge base.

Key variables based on a statistical predictive model—Logistic regression analysis

and proportional odds modeling were successfully utilized to develop a predictive system

for the interpretation of 99mTc-MAG3 diuretic scans and to independently identify key

interpretative variables impacting scan interpretation (72). Common variables included in

the analysis were the time to maximum counts, T½ and the 20 min/maximum count ratio for

both whole kidney and cortical regions of interest, relative uptake, pelvic T½ and the ratio of

post-void kidney counts to the 1-2 min and maximum kidney counts (72). The single most

important baseline variable for excluding obstruction on the baseline examination was the

ratio of post-void counts to maximum counts while the single most important variable in

evaluating obstruction following furosemide was the ratio of renal counts in the last minute

of the furosemide acquisition to the maximum counts on the baseline examination (the ratio

of the ratio post-furosemide post-void kidney counts to the maximum baseline kidney counts

would likely have had an even greater predictive power but post-furosemide post-void

kidney counts were not recorded in enough patients for us to perform this analysis). The

complete results have been described in detail (72).

Key variables based on an international panel of expert readers—A panel from

the International Scientific Committee of Radionuclides in Nephro-urology (ISCORN;

http://www.iscorn.org) developed a Guidance Document for quality assurance and

structured reporting of diuresis renography in adults (15). This document includes a listing

and discussion of elements that are considered to be essential or important for scan

interpretation and quality control. All elements recommend by the panelists (15) have been

incorporated into RENEX.

How can the thousands of possible combinations of rules and certainty factors be
optimized?

The continuing development of iRENEX has resulted in a major expansion of the RENEX

knowledge base requiring new rules to incorporate (1) advanced quantitative features, (2)

quality control data (3) clinical data, (4) knowledge mined through use of the justification

engine and (5) determination of the support and confidence of each rule in the knowledge

base. The vast combination of possible rules and certainty (weighting) factors per rule

exceeds the capacity of any individual to optimize diagnostic accuracy by tracking the effect

of multiple changes in rules and CFs on accuracy through an extensive patient data base. To

address this problem, we developed and validated a novel accuracy-guided iterative

knowledge-learning algorithm (IKLA) to optimize diagnostic accuracy (70).

This algorithm consists of implementing a) batch mode interpretation of patient studies, b)

batched iterations of different knowledge islands defined as follows: 1) MAG3 quantitative

rules for detecting obstruction, 2) quantitative rules for detecting the absence of obstruction,

3) renal clearance rules, 4) diuretic dose rules, 5) clinical rules, 6) QC rules, 7) rules/CFs
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that individually optimize left and right kidneys 8) rules/CFs obtained from support/

confidence analysis. IKLA iterated through the 256 (28) possible permutations of knowledge

islands on a pilot group of 100 kidneys and a prospective group of 110 kidneys and the

algorithm automatically determined the accuracy for each iteration. The accuracy of IKLA

in the pilot group predicted the accuracy in the prospective group. Moreover, the highest

accuracy was obtained for the entire set of rules/CFs demonstrating that each set contributed

to overall accuracy (70). This approach has the potential to assist in the optimization of other

complex decision support systems and has been submitted for publication.

RENEX agrees with expert interpretations

A pilot study demonstrated that RENEX could be optimized to perform comparably to

experts (35). Following the pilot study, RENEX was prospectively evaluated in 95 randomly

selected furosemide augmented patient studies (185 kidneys) obtained for suspected

obstruction (36). Three experts, blinded to clinical information, independently graded each

kidney as obstructed/probably obstructed, equivocal, and probably non-obstructed/non-

obstructed; experts resolved differences by a consensus reading. These 3 expert categories

were compared to the obstructed, equivocal and non-obstructed interpretations provided by

RENEX. Agreement was assessed using weighted kappa and the predictive accuracy of

RENEX compared to expert readers was assessed by the area under receiver operating

curves (ROC).

RENEX showed good agreement with expert interpretations; specifically, RENEX agreed

with the consensus reading in 84% (101/120) of non-obstructed kidneys, in 92% (33/36) of

obstructed kidneys and 45% (13/29) of equivocal kidneys (36). The weighted kappa between

RENEX and the consensus reading was 0.72 and was comparable to the weighted kappa

between experts. There was no significant difference in the areas under the ROC curves

when RENEX was compared to each expert using the other two experts as the gold standard

(36).

The performance of RENEX is equivalent to an expert

Common statistical approaches to evaluate accuracy include ROC and kappa analysis but

both methods have significant limitations and cannot answer the question of equivalence.

Using log-linear modeling to analyze the 95 randomly selected furosemide augmented

patient studies described above, RENEX was demonstrated to be equivalent to any expert;

this equivalence was particularly strong in the obstructed and non-obstructed categories

(73).

iRENEX: Incorporation of Clinical Information

Fifty-six new clinical rules regarding the presence or absence of obstruction were extracted

from the domain experts and added to the 60 rules for RENEX. All the clinical rules were

implemented after iRENEX reached a conclusion regarding obstruction based on the

quantitative 99mTc- MAG3 parameters. The entire system was fine tuned and tested using a

pilot group of 51 patients deemed by an expert panel to have 61 unobstructed kidneys and

38 obstructed findings (69). Processing time per patient was practically instantaneous using

a 3.0 GHz PC programmed using IDL. When iRENEX and the experts used only
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quantitative 99mTc-MAG3 data, RENEX agreed with the expert panel in 87% (34/39) of the

obstructed kidneys and in 90% (55/61) of the unobstructed kidneys. Using a clinical

database developed from patient histories and imaging reports, iRENEX agreed with the

expert panel in 95% (37/39) of obstructed and 92% (56/61) non-obstructed kidneys. The

clinical information significantly (p<0.001) increased iRENEX certainty in detecting

obstruction over using the quantitative data alone. In addition, there was a high correlation

(R = 0.92) between the certainty factors (CF) of iRENEX and the median CF of the three

experts regarding the presence or absence of obstruction demonstrating that iRENEX

exhibited the same confidence level as experts in regard to the presence or absence of

obstruction (Fig 4). These encouraging results warrant a prospective study in a large

population of patients with and without renal obstruction to establish the diagnostic

performance of iRENEX.

Performance of iRENEX Compared to Nuclear Medicine Residents

Three expert readers, iRENEX and 3 nuclear medicine residents with 10-12 months of

training independently interpreted 41 randomly selected diuretic renography studies without

clinical information, then reinterpreted the studies with clinical information provided in text

file format from the relational database (74). Interpretations were scored on a continuous

scale and ranged from +1.0 (definitely obstructed) to -1.0 (definitely not obstructed); the

range from +0.2 to -0.2 was indeterminate. Without clinical information, the overall

concordance correlation coefficient (CCC) between iRENEX and the experts was 0.890,

significantly higher than the overall CCC between the residents and the experts, 0.688, p <

0.05 (Fig 5). With clinical information, the overall CCC between iRENEX and the experts

was 0.876, also significantly higher than the overall concordance between the residents and

the experts, 0.673, p < 0.05 (Fig 5). iRENEX agreed with the experts better than the

residents and thus has the potential to serve as a teaching tool to help residents learn to

interpret studies at the level of experts. To gain additional data, the comparisons between

residents, experts and iRENEX have been substantially expanded and are the subject of a

manuscript recently submitted for publication.

Acceptance of Computer aided diagnosis (CAD) in medicine and imaging

The application AI to nuclear medicine, radiology and other areas of medicine sometimes

leads to a certain uneasiness of the part of the clinician. As an expression of this uneasiness,

an anonymous reviewer of one of our papers wrote, “I would rather have a good

technologist than a good computer program (as if the two were incompatible),” while

another asked, “If the computer interprets the study, how is the radiologist going to get

paid?” Underlying these questions is the fear that the imager may eventually follow in the

footsteps of the fireman on a coal powered locomotive, no longer needed when the engine

switches to diesel.

This fear is misplaced. The goal of artificial intelligence, expert systems, decision support

systems and computer assisted diagnosis in imaging is the development and implementation

of software to assist in the detection and evaluation of abnormalities, to alert the physician to

cognitive biases, to reduce intra and interobserver variability and to allow physicians to

interpret studies at a faster rate and with a higher level of accuracy. In support of these goals,
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the Second Annual American College of Radiology Forum has encouraged the adoption of

innovative solutions such as computer aided detection and diagnosis of disease (75). This

has been our focus. Although our immediate goal has been the analysis and interpretation of

diruretic renograms, components of our approach apply broadly to image analysis and

include: (1) Extraction of quantitative parameters from diagnostic images related to a

disease process; (2) Conversion of these quantitative parameters to certainty factors; (3)

Conversion of descriptive parameters extracted from patient demographics and other test

results to certainty factors; (4) Use of these quantitative and demographic parameters as

input to rules in a knowledge base (production rules) extracted from domain experts; (5) Use

of Bayesian combinatories to infer conclusions, i.e. diagnostic findings; (6) Tracking the

rules used to reach a conclusion and to justify that conclusion; (7) Translation of the

conclusions to a structured textual report: and (8) Propagation of the parameters and

conclusions to create a patient database which may be queried. These generic components

can be adapted to facilitate the development of other targeted decision support systems in

medicine and radiology. In summary, CAD has the potential to reduce the burdens of illness

and disability by lowering costs, improving quality and increasing diagnostic accuracy.
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Fig 1.
A four layer feed forward (left to right) artificial neural network showing the input nodes as rectangles, the hidden nodes as

circles, the output node as a triangle and connecting weights as lines.
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Fig 2.
Flow diagram for iRENEX. This diagram shows the flow depicting how a renal scan is acquired, processed, and quantified to

extract parameters of renal function and how these parameters are converted to certainty factors that are then input to the expert

system. iRENEX contains a library to translate parameter values to certainty factors, a knowledge base with 116 heuristic

interpretation rules, a forward chaining inference engine to determine obstruction and a justification engine which records the

sequence of each rule that is fired and the current certanity factor value of all input and output parameters at the time of

instantiation in order to track and justify the logic of the conclusions. The trapezoidal blocks indicate domain expert; the

rectangular blocks indicate software algorithms.
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Fig 3.
Graphical representation of the transformation of 3 input quantitative parameters to certainty factor values. The 3 parameters are

illustrated as follows. A: Lasix pre-void to baseline max (the ratio of the counts in the kidney ROI during the last frame of the

post-furosemide renogram to the maximum counts in the kidney ROI from the pre-furosemide baseline renogram). B: Lasix

pelvis time to half peak (the time that it takes for the renogram curve extracted from a kidney's pelvic ROI to decrease from its

maximum value to half that value). C: The MAG3 clearance curve shows the camera-based MAG3 clearance for the left kidney.

Notice that the curves have a general sigmoid shape but do not have a smooth, exact Sigmoid fit (40 reproduced by permission).
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Fig 4.
Correlation between iRENEX certainty factors and the median certainty factors of the three human experts regarding obstruction

of the left kidney; comparable results (not shown) were obtained for the right kidney. The red lines mark the equivocal

boundaries for certainty factors between −0.2 and +0.2. Note the excellent degree of correlation confirming that the conclusions

reached by iRENEX have a degree of certainty comparable to those reached by experts (68, reproduced by permission).
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Fig 5.
Agreement (concordant correlation coefficient) between iRENEX and experts and residents and experts regarding the presence

or absence of obstruction:

5A. CCC* among experts and iRENEX and experts and residents using the 99mTc-MAG3 scans and renogram data without

clinical information

* Concordance correlation coefficient, p < 0.05

5B. CCC* among experts and iRENEX and experts and residents using the 99mTc-MAG3 scans and renogram data with

clinical data

* Concordant correlation coefficient, p < 0.05
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Table 3
Regression equations defining normal limits for the left and right renal area and length*

5th Percentile 95th Percentile

Left Kidney Area (cm2) 32.5 + 9.6*BSA 12.6 + 31.7*BSA

Right Kidney Area (cm2) 16.1 + 18.5*BSA 32.6 + 22.2*BSA

Left Kidney Axis (cm) 8.2 + 1.3*BSA 9.1 + 2.3*BSA

Right Kidney Axis (cm) 8.8 + 1.0*BSA 11.1 + 1.4*BSA
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