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 The full spectrum of lipid molecules in human plasma 
and their potential role in human health and disease are 
areas of intense interest ( 1–9 ). This interest owes substan-
tially to the sophisticated technologies that make it possible 
to accurately capture and quantify the human lipidome ( 8, 
10 ). Associative evidence gleaned from plasma lipidomic 
studies promises vital contributions to biomarker research—
an important mainstay of the continued efforts for chronic 
disease prevention. The plasma lipidomic profi le of humans 
exhibits a wide range of diversity ( 11, 12 ) and is associated 
with several conditions including obesity ( 13, 14 ), hyperten-
sion ( 14–16 ), disorders of glucose metabolism ( 13, 17 ), 
metabolic syndrome (MS) ( 10, 18 ), cardiovascular diseases 
( 19 ), cystic fi brosis ( 20 ), nicotine consumption ( 21 ), and 
response to antilipid treatment ( 22 ). 

 Lipidomic association studies conducted in the context 
of families have an important consideration that the con-
centrations of the plasma lipid species might be pheno-
typically as well as genetically correlated with each other 
( 23 ) especially in related individuals. In that case, it is 
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as a potentially important marker of chronic diseases, but 
the exact extent of its contribution to the interindividual 
phenotypic variability in family studies is unknown. Here, 
we used the rich data from the ongoing San Antonio Family 
Heart Study (SAFHS) and developed a novel statistical ap-
proach to quantify the independent and additive value of 
the plasma lipidome in explaining metabolic syndrome 
(MS) variability in Mexican American families recruited in 
the SAFHS. Our analytical approach included two prepro-
cessing steps: principal components analysis of the high-
resolution plasma lipidomics data and construction of a 
subject-subject lipidomic similarity matrix. We then used 
the Sequential Oligogenic Linkage Analysis Routines soft-
ware to model the complex family relationships, lipidomic 
similarities, and other important covariates in a variance 
components framework. Our results suggested that even af-
ter accounting for the shared genetic infl uences, indicators 
of lipemic status (total serum cholesterol, TGs, and HDL 
cholesterol), and obesity, the plasma lipidome indepen-
dently explained 22% of variability in the homeostatic model 
of assessment-insulin resistance trait and 16% to 22% vari-
ability in glucose, insulin, and waist circumference.   Our 
results demonstrate that plasma lipidomic studies can addi-
tively contribute to an understanding of the interindividual 
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more than 1,600 subjects from 42 large and extended families 
with a majority of these subjects having completed up to three 
additional follow-up visits spaced  � 5 years apart. For this study, 
we used the data and samples collected during the fi rst visit only. 
This study therefore only uses cross-sectional data from the 
SAFHS cohort. Complete lipidomic and other phenotypic data 
were available for 1,206 subjects (from 42 families). Informed 
consent was obtained from all participants before collection of 
samples. The Institutional Review Board of the University of 
Texas Health Sciences Center at San Antonio approved the 
study. 

 Lipidomic studies 
 We analyzed the plasma samples at the Metabolomics Labora-

tory, Baker IDI Heart and Diabetes Institute, Melbourne, Austra-
lia. The lipid extraction and LC/MS methods used in these 
analyses have recently been described in detail ( 23 ). We included 
a total of 319 lipid species representing 23 lipid classes. 

 Phenotypic traits 
 We used data on a total of 14 phenotypic traits related to vari-

ous components of MS. These included fasting and postglucose 
load plasma levels of glucose and insulin (assessed through 2 h 
oral glucose tolerance test); two homeostasis model of assess-
ment (HOMA) measures (i.e., HOMA-IR, representing insulin 
resistance, and HOMA- � , representing  � -cell function); three 
measures of obesity [i.e., BMI  , waist circumference, and waist-hip 
ratio (WHR)]; systolic blood pressure (SBP) and diastolic blood 
pressure (DBP); and three serum lipid measures (i.e., total cho-
lesterol, TGs, and HDL-C). The methods of assessment for these 
traits in the SAFHS participants have been extensively described 
previously ( 27, 30 ). 

 VC approach 
 In the VC approach, the total phenotypic variance ( � ) of a 

trait is analytically decomposed into components that refl ect dif-
ferent characteristics ( 33 ). The three VC models most relevant to 
the analyses of the lipidomics data are shown in   Table 1  .  The 
models are the polygenic (P), lipidomic (L), and polygenic-lipi-
domic (PL) models. In these models,  �  is represented as a sum 
of components, each of which is a product of a similarity matrix 
and its corresponding VC. In a polygenic model, the VCs are  �  2  G  
and  �  2  E , which represent the genetic and environmental com-
ponents, respectively. The corresponding similarity matrices 
(dimension n × n, where n represents the sample size) for these 
two components are   �   and  I  (i.e., the kinship and identity matrix, 
respectively). The elements of a kinship matrix (  �  ) indicate the 
genetic similarity (kinship coeffi cient) denoted by relationships 
between each pair of the study subjects. For example, the rou-
tinely used kinship coeffi cients for different relationships are as 
follows: identical twins, 1; parent-offspring or sibling, 0.5; and 
grandparent-grandchild, avuncular, half-siblings, or double fi rst 
cousins, 0.25. Further, the kinship coeffi cients for third-, fourth-, 
fi fth-, and sixth-degree relatives are 0.0078, 0.0020, 0.0005, and 

important to dissect out the genetic basis of the pheno-
typic traits and the potential contribution of the lipidome 
over and beyond the genetic basis. In this regard, although 
the diversity of the human lipidome is established ( 11, 12 ), 
the extent to which the lipidome can independently ex-
plain the interindividual variability in the phenotypic ex-
pression of disease states is currently unknown. In family 
studies, the contribution of polygenes to a trait is usually 
quantifi ed as heritability ( 24–26 ) and provides a reason-
able fi rst-pass estimate of the likelihood of fi nding genetic 
variants that may contribute to the trait in question. Simi-
larly, identifi cation and quantifi cation of a lipidomic vari-
ance component (VC) can provide a clue to the likelihood 
of unveiling potential lipidomic biomarkers without being 
confounded by the genetic basis of the trait. 

 In this study, our aim was to determine the proportion of 
variability of MS traits that is explained by the plasma lipi-
dome independently of the known confounders. For these 
analyses, we used data from the ongoing San Antonio Fam-
ily Heart Study (SAFHS) in Mexican Americans ( 27 ). These 
data and samples provide an appropriate opportunity for 
the aforementioned investigation for the following reasons: 
 i ) MS is very common in Mexican Americans ( 28 );  ii ) the 
SAFHS recruited 42 large and extended pedigrees that help 
delineate the potential contribution of genetics to MS ( 29, 
30 );  iii ) high-resolution plasma lipidomic studies have been 
conducted on a large number of SAFHS participants ( 15 ); 
and  iv ) using these data, we have previously demonstrated 
that specifi c lipid species are associated with hypertension 
( 15 ), central obesity ( 31 ), and type 2 diabetes ( 32 ). 

 Here, we used novel VC methods to measure the variabil-
ity in phenotypic traits related to MS that is explained by the 
plasma lipidome. Using these methods, we addressed the 
following three research questions: First, what is the degree 
of variability in MS-related traits that can be ascribed to the 
plasma lipidome in Mexican American families? Second, is 
this association independent of and additive to the known 
association of MS with clinically used measures of lipemic 
status like total serum cholesterol, serum TGs, and serum 
HDL chlolesterol (HDL-C)? Third, is the association of 
plasma lipidome with MS independent of obesity? 

 METHODS 

 Study subjects 
 Data for this study came from Mexican American families re-

cruited in the ongoing SAFHS. The recruitment and ascertain-
ment procedures used in the SAFHS have been described in 
details elsewhere ( 27, 29, 30 ). Briefl y, the study has now recruited 

 TABLE 1. Models used for estimating polygenic and lipidomic VCs     

No. Model Specifi cation Parameters Estimated

1 Polygenic (P)  �  = 2   �    �  2  G  +  I   �  2  R h 2  r  =  �  2  G / � , e 2  =  �  2  R / � 
2 Lipidomic (L)  �  =   �    �  2  L  +  I   �  2  R L 2  =  �  2  L / � , r 2  =  �  2  R / � 
3 Polygenic-lipidomic (PL)  �  = 2   �    �  2  G  +   �    �  2  L  +  I   �  2  R h 2  r  =  �  2  G / � , L 2  =  �  2  L / � , 

 e 2  =  �  2  R / � 

 � , total phenotypic variance;   �  , kinship coeffi cient matrix;   �  , lipidomic similarity matrix;  �  2  G , polygenic VC; 
 �  2  L , lipidomic VC;  �  2  R , residual VC; e 2 , residual environmental contribution; h 2  r , narrow-sense heritability;  I , 
identity matrix; L 2 , lipidomic contribution.
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signifi cant factors for each individual. Next, we estimated the Eu-
clidean distance between a pair of individuals  i  and  j  as follows: 

  

2

1

( )
f

ij ik jk
k

d l l
  

 where  l  indicates the score for the  k  th  of the  f  signifi cant factors. 
We then scaled this Euclidean distance, as shown in  Fig. 1 , for 
two reasons: fi rst, this distance conceptually refl ects the dissimi-
larity between two individuals, whereas the elements of   �   need to 
quantify the similarity; and second, the elements of the   �   matrix 
are expected to lie in the range (0, 1). 

 Statistical analyses 
 Principal components analyses were conducted using Stata 

12.0 (Stata Corp., College Station, TX) software package. Contri-
bution of the factors to the explanation of the between-subject 
variability was assessed by ANOVA. All regression models addi-
tionally included age, age 2 , sex, age × sex interaction, age 2  × sex 
interaction, and use of antidiabetic, antihypertensive, or antilipid 
drugs as additional covariates for adjustment. For running the 
polygenic, lipidomic, and PL models, we used the Sequential Oli-
gogenic Linkage Analysis Routines software package ( 35 ). In 
these models, the phenotypic traits were fi rst inverse-normalized 
before subjecting them to analyses. Statistical signifi cance of the 
estimated parameters (shown in  Table 1 ) was determined by 

0.0001, respectively. The elements of the identity matrix ( I ) are 1 
for diagonals and 0 for off-diagonals. 

 The fl exibility of the VC approach to analyses of complex pedi-
grees permits additional and independent VCs by designing and 
defi ning similarity matrices based on various other measures of 
interest. We exploited this feature of VCs by including a term 
based on the plasma lipidomic similarity between pairs of indi-
viduals and the corresponding lipidomic VC. The inclusion of 
this term alone or in addition to the polygenic component de-
scribed previously was referred to as the L or the PL model ( Table 1 ). 
Detailed subsequently are the methods used to generate the lipi-
domic similarity matrix essential for these analyses. 

 Lipidomic similarity matrix ( � ) 
 Our goal was to express the similarity between a pair of indi-

viduals based on the concentrations of 319 plasma lipid species 
(  Fig. 1  ).  To reduce the dimensionality of the plasma lipidomic 
data and to ensure that the reduced dimensions are orthogonal 
to each other, we conducted principal components analyses and 
extracted all the factors with an eigenvalue exceeding unity (de-
scribed hereafter as signifi cant factors). This cutoff was chosen 
because, in the context of principal components analyses, eigen-
values below 1 tend to indicate variables that are noncontribu-
tory to the variance of the principal components [also known as 
Kaiser’s criterion ( 34 )]. We then rotated this factor solution 
using a varimax rotation and obtained factor scores for all the 

  Fig.   1.  Analytical approach. For details, see text.   
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refl ected novel correlations among the lipid species that 
are not likely to be captured by the lipid classes. 

 Contribution of polygenes and plasma lipidomics to 
variability in MS traits 

 We studied the interindividual variability in 14 traits re-
lated to MS (  Table 3  )  and quantifi ed the proportion of 
variability explained by the polygenic and lipidomic com-
ponents. Our results indicated that traits related to glyce-
mia, lipemia, anthropometry, and blood pressure were all 
signifi cantly associated with the polygenic as well as lipi-
domic VCs. For the continuous traits, the polygenic contri-
bution ranged from a minimum of 13.88% (for WHR) to 
a maximum of 35.26% (for SBP). In contrast, the contri-
bution of the lipidomic component was minimum (9.06%) 
for SBP and maximum (30.92%) for total serum choles-
terol. Not surprisingly, the strongest evidence and strength 
of the contribution of lipidomic VC was found for the 
three traits related with lipemic status: total serum choles-
terol, serum TGs, and serum HDL-C levels. Interestingly, 
statistical signifi cance (H 0 : L 2  = 0; H a : L 2  > 0) at an  �  of 
0.0036 (corrected for 14 tests using Bonferroni method) 
was obtained for all the traits except SBP. 

 Independent contribution of the lipidomic component to 
MS traits 

 We examined the independence of the observed asso-
ciation in two steps. First, because the strongest association 
of the lipidomic component was with the routinely used 
indicators of lipemic status (total serum cholesterol, TGs, 
and HDL-C), we reasoned that the statistical association 
between MS traits and the plasma lipidome may have lim-
ited clinical use. To explore this, we conducted additional 
analyses in which we included total serum cholesterol, serum 
TGs, and HDL-C as additional covariates in the PL model 
and reran the analyses shown in  Table 3 . The results of 

constraining the parameter of interest to 0 and then estimating 
Chi-square (1 degree of freedom) as  � 2(LL unconstrained model  – LL -
constrained model ), where LL represents the log-likelihood. Correction 
for multiple tests was done using Bonferroni’s method. 

 RESULTS 

 Study participants 
 The mean age of the study participants was  � 40 years, 

and the study sample was 60% female. The clinical charac-
teristics of the study subjects are detailed in   Table 2  .  Our 
study subjects had a high prevalence of type 2 diabetes 
( � 15%), central obesity ( � 48%), and hypertriglyceri-
demia ( � 41%). The prevalence of hypertension (SBP > 
140 mm Hg or DBP > 90 mm Hg or history of antihyper-
tensive treatment) was only 13.44%. More than 40% of the 
study participants had MS, indicating that the families of 
Mexican Americans included in this study represented a 
high-risk population for MS in the United States. 

 Principal components analysis of the plasma lipidome 
 The results of principal components analysis of the 319 

lipid species are shown in   Fig. 2  .  Using the criterion of a 
minimum eigenvalue of unity, we retained 35 orthogonal 
factors that were further optimized using a varimax rota-
tion. Together, these 35 factors explained 92.05% variabil-
ity in the plasma lipidome of study participants. We next 
considered the possibility that the retained factors may be 
representative of the lipid classes. For this, we estimated the 
mean factor score for each factor-lipid class combination 
and then tested the signifi cance of this potential association 
using ANOVA. Our results showed (  Fig. 3  )  that for most of 
the factor-lipid class combinations, the mean factor score 
was near 0. This was supported by the results of ANOVA 
(F = 0.46,  P  = 0.9853), indicating that the retained factors 

 TABLE 2. Clinical characteristics of study participants   

Characteristic Value

Age [mean (SD)], years 39.55 (16.93)
Females [n (%)] 729 (60.45)
Fasting glucose [mean (SD)], mM 5.58 (2.48)
Two-hour postglucose load glucose [mean (SD)], mM 7.31 (5.03)
Fasting insulin [mean (SD)],  	 U/ml 16.21 (20.22)
Two-hour postglucose load insulin [mean (SD)],  	 U/ml 76.37 (73.35)
HOMA-IR [mean (SD)] 4.44 (7.49)
HOMA- �  [mean (SD)] 17.19 (56.67)
Waist circumference [mean (SD)], cm 95.08 (17.31)
BMI [mean (SD)], kg/m 2 29.27 (6.63)
WHR [mean (SD)] 0.90 (0.10)
SBP [mean (SD)], mm Hg 120.57 (18.79)
DBP [mean (SD)], mm Hg 70.67 (10.21)
Total serum cholesterol [mean (SD)], mg/dl 189.63 (38.93)
Serum TGs [mean (SD)], mg/dl 145.62 (103.09)
HDL-C [mean (SD)], mg/dl 50.08 (12.89)
Subjects with type 2 diabetes [n (%)] 180 (14.92)
Subjects with central obesity [n (%)] 577 (47.84)
Subjects with raised serum TGs [n (%)] 495 (41.04)
Subjects with low serum HDL-C [n (%)] 260 (21.56)
Subjects with high blood pressure [n (%)] 988 (81.92)
Subjects with MS [n (%)] 490 (40.63)
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that obesity is a major component of MS, we repeated 
these analyses by additionally accounting for BMI. Our re-
sults ( Table 4 , column titled “After Adjusting for BMI”) 
showed that even after accounting for clinical covariates 
(age, sex, and their linear and nonlinear interactions), in-
dicators of lipemic status (total serum cholesterol, serum 
TGs, and HDL-C), and obesity (BMI), the lipidomic VC 
continued to be an independent predictor of other MS-
related traits (Bonferroni corrected  P  < 0.0036). 

 DISCUSSION 

 Using a novel modifi cation of the VC approach to analy-
sis of complex pedigrees and the rich data from a high-risk 
sample of Mexican American families recruited in the 
SAFHS, we found that phenotypic traits refl ecting glyce-
mia, insulin resistance, central obesity, and general obesity 
were substantially and signifi cantly determined by the 
plasma lipidomic profi le (results shown in  Table 4 ). This 
contribution of the plasma lipidome was independent of 
both the polygenic contribution, routinely used measures 
of lipemic status, and general obesity. Our results there-
fore underscore the additive value of the plasma lipidomic 
profi le in MS. 

 Novelty 
 An important novelty of this study is the method of anal-

ysis. We used the VC approach to quantify the explained 
variability due to plasma lipidome (detailed in Ref.  36 ), 
but to successfully capture the variability in the plasma 

  Fig.   2.  Results of principal components analyses. The red curve 
associates with the left ordinate (eigenvalues), whereas the green 
curve associates with the right ordinate (explained variability). The 
abscissa represents the top 50 most signifi cant factors in order of 
their ability to explain variability. All factors (n = 35) with an eigen-
value exceeding unity were retained.   

  Fig.   3.  Heat map representing the mean factor score for each retained factor and the lipid class. The mean factor score is represented as 
shown in the color index at the bottom. ANOVA  P , statistical signifi cance tested using ANOVA.   

these analyses are shown in   Table 4  .  We observed (column 
titled “Before Adjusting for BMI”) that except for the 
blood pressure traits, the variability in all other traits was 
signifi cantly and substantially explained by the lipidomic 
VC. Again, the lipidomic component signifi cantly ex-
plained variability in the HOMA-IR and HOMA- �  traits, 
but its most signifi cant contribution was to the anthropomet-
ric traits capturing obesity and central obesity. Considering 
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 TABLE 3. Estimated polygenic and lipidomic VCs for various traits related to MS        

Trait h 2  r SE  P  a  L 2 SE  P  a  

Fasting glucose 0.2542 0.0417 8.44 × 10  � 18 0.2005 0.0263 3.65 × 10  � 10 
Two-hour glucose 0.2670 0.0449 4.18 × 10  � 17 0.1814 0.0255 5.06 × 10  � 10 
Fasting insulin 0.2434 0.0408 3.50 × 10  � 16 0.2625 0.0179 4.30 × 10  � 32 
Two-hour insulin 0.2027 0.0406 2.65 × 10  � 12 0.2428 0.0211 1.84 × 10  � 20 
HOMA-IR 0.2409 0.0399 9.29 × 10  � 17 0.2666 0.0173 8.18 × 10  � 34 
HOMA- � 0.1709 0.0416 2.35 × 10  � 8 0.1765 0.0324 5.40 × 10  � 6 
Waist circumference 0.3007 0.0409 8.27 × 10  � 25 0.2647 0.0162 1.17 × 10  � 40 
BMI 0.3575 0.0439 1.16 × 10  � 30 0.2495 0.0158 3.85 × 10  � 41 
WHR 0.1388 0.0358 8.38 × 10  � 8 0.2467 0.0252 2.11 × 10  � 15 
SBP 0.3526 0.0538 2.38 × 10  � 19 0.0906 0.0369 0.0315
DBP 0.3037 0.0498 5.38 × 10  � 17 0.1537 0.0357 0.0002
Serum cholesterol 0.2049 0.0347 2.69 × 10  � 17 0.3092 0.0113 1.21 × 10  � 99 
Serum TGs 0.2303 0.0383 3.16 × 10  � 17 0.2875 0.0121 6.99 × 10  � 82 
HDL-C 0.3212 0.0429 3.27 × 10  � 26 0.2587 0.0151 7.92 × 10  � 49 

All models are adjusted for age, age 2 , sex, age × sex interaction, age 2  × sex interaction, and use of antidiabetic, 
antilipid, and antihypertensive drugs.

  a   Signifi cance using likelihood ratio test.

 TABLE 4. Independent contribution of the lipidomic VC to variability in traits related to type 2 diabetes, blood 
pressure, and obesity        

Trait

Before Adjusting for BMI After Adjusting for BMI

L 2 SE  P a  L 2 SE  P  a  

Fasting glucose 0.1846 0.0298 3.1 × 10  � 7 0.1550 0.0353 0.0003
Two-hour glucose 0.1404 0.0255 8.5 × 10  � 5 0.1186 0.0356 0.0023
Fasting insulin 0.2521 0.0204 6.2 × 10  � 23 0.2181 0.0279 1.0 × 10  � 9 
Two-hour insulin 0.2280 0.0243 1.7 × 10  � 14 0.1869 0.0311 1.1 × 10  � 6 
HOMA-IR 0.2509 0.0203 9.0 × 10  � 23 0.2215 0.0270 1.3 × 10  � 10 
HOMA- � 0.1518 0.0389 0.0012 0.1330 0.0448 0.0199
Waist circumference 0.2608 0.0174 1.0 × 10  � 34 0.1984 0.0390 3.66 × 10  � 6 
BMI 0.2438 0.0169 3.8 × 10  � 35 — — —
WHR 0.2233 0.0309 1.2 × 10  � 9 0.1724 0.0438 0.0002
SBP 0.0000 0.0000 — 0.0000 0.0000 —
DBP 0.0931 0.0466 0.0726 0.0000 0.0000 —

All models are adjusted for age, age 2 , sex, age × sex interaction, age 2  × sex interaction, total serum cholesterol, 
serum TGs, serum HDL-C, and use of antidiabetic, antilipid, and antihypertensive drugs.

  a   Signifi cance using likelihood ratio test.

lipidome, we resorted to two preprocessing steps: princi-
pal components analysis and construction of the lipidomic 
similarity matrix. This approach had three advantages. 
First, the validity of using principal components was indi-
rectly indicated by the observation that 92.05% of variabil-
ity in the plasma lipidome was explained by the retained 
factors and that these factors were characteristically differ-
ent from the lipid classes. The other advantage of using 
principal components was that the solution is, by design, 
orthogonal and therefore yields to estimation of Euclid-
ean distances in an n-dimensional hyperspace. Second, 
the scaling and representation of the pair-wise Euclidean 
distances were useful in the construction of the   �   matrix. 
This matrix was then readily used in the VC framework. 
Methodological variations in this approach that are based 
on weighting of factors and preminimization of correla-
tions is also possible but would not lead to a meaningful 
improvement because the factor solution used in these 
analyses already explains most of the variability. Third, the 
Sequential Oligogenic Linkage Analysis Routines software 
is a fl exible modeling environment that permits custom 
representation of improvised models such as the one used 

here, thereby facilitating the estimation of all related pa-
rameters and their statistical signifi cance ( 35, 36 ). 

 Limitations 
 There are three limitations to the use of our analytical 

approach. First, VC approaches used in a cross-sectional 
study setting can only provide an associative estimate of 
the explained variability. The interpretations cannot be 
viewed as causal. In this vein, it should also be noted that 
the phrase “explained variability” as used in this paper 
does not connote causality but only refers to the estimated 
statistical contributions of one variable to the other. With 
regard to the potential contribution of plasma lipidomics 
to MS, there exists a tautological complexity such that 
plasma lipid species may be proximal, concomitant, or dis-
tal to the initiation of the disease ( 37–39 ). Also, because 
obesity is a major component of MS, it can be argued that 
our observations demonstrate the changes in lipidome 
consequent to, rather than leading to, obesity. However, 
the observed associations continued to hold even after ad-
justing for obesity. Therefore, while a confounding effect 
of obesity on the lipidome-MS nexus cannot be ignored, 
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insights into future trajectories of anthropometric and 
other indices related to MS. 

 Second, we showed that the signifi cant principal com-
ponents derived from the plasma lipidome were indepen-
dent of the chemically defi ned lipid classes ( Fig. 3 ). This 
result indicates that the prevalent concentrations of lipid 
species in human plasma are likely a result of complex bio-
logical pathways that need to be considered rather than 
the more limited vision restricted to lipid classes. Indeed, 
future studies need to consider if biologically meaningful 
information can be gleaned from the correlations among 
all the plasma lipid species. It is interesting in this respect 
that only 35 principal components accounted for 92% of 
overall variability of the plasma lipidome, indicating that it 
may be possible to reduce the redundancy of the lipidome 
in order to better delineate the biological pathways in-
volved in health and disease ( 45 ). 

 CONCLUSIONS 

 Using a novel analytical approach and rich data from 
Mexican American families recruited in the SAFHS, we 
have demonstrated that high-resolution plasma lipidomic 
studies can provide substantial and signifi cant improve-
ment in our understanding of interindividual variability 
associated with MS. Specifi cally, the plasma lipidome con-
tributed to 22% variability in HOMA-IR and 16% to 22% 
variability in glucose, insulin, and waist circumference in-
dependent of obesity and measures of lipemic status. Fu-
ture studies need to evaluate the potential role of the 
plasma lipidome as a biomarker of MS.  

 The authors are grateful to the participants of the SAFHS for 
their continued involvement. 
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