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Abstract

Normal-distribution-based maximum likelihood (ML) and multiple imputation (MI) are the two

major procedures for missing data analysis. This article compares the two procedures with

respects to bias and efficiency of parameter estimates. It also compares formula-based standard

errors (SEs) for each procedure against the corresponding empirical SEs. The results indicate that

parameter estimates by MI tend to be less efficient than those by ML; and the estimates of

variance-covariance parameters by MI are also more biased. In particular, when the population for

the observed variables possesses heavy tails, estimates of variance-covariance parameters by MI

may contain severe bias even at relative large sample sizes. Although performing a lot better, ML

parameter estimates may also contain substantial bias at smaller sample sizes. The results also

indicate that, when the underlying population is close to normally distributed, SEs based on the

sandwich-type covariance matrix and those based on the observed information matrix are very

comparable to empirical SEs with either ML or MI. When the underlying distribution has heavier

tails, SEs based on the sandwich-type covariance matrix for ML estimates are more reliable than

those based on the observed information matrix. Both empirical results and analysis show that

neither SEs based on the observed information matrix nor those based on the sandwich-type

covariance matrix can provide consistent SEs in MI. Thus, ML is preferable to MI in practice,

although parameter estimates by MI might still be consistent.
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Introduction

Incomplete or missing data exist in almost all areas of empirical research. They are

especially common in longitudinal studies in social and behavioral sciences. Many statistical

procedures have been developed for analyzing missing data. Two notable ones are

maximum likelihood (ML) and multiple imputation (MI). Under the assumption of a

correctly specified parametric model and that data are missing at random, both procedures

generate consistent parameter estimates and consistent standard errors (e.g., Little & Rubin,

2002; Schafer, 1997). Recent developments indicate that the normal-distribution-based ML

can still generate consistent parameter estimates and consistent standard errors (SE) even

when the population distribution is unknown (Yuan, 2009). Although no analytical results

exist for MI to generate consistent parameter estimates when the parametric model is

misspecified, it has been stated in the literature that the normal-distribution-based MI

generates reasonable parameter estimates and SEs with distribution violations (e.g., Schafer,

1997, p. 136; Schafer & Graham, 2002; Schafer & Olsen, 1998). The purpose of this paper

is to compare the robustness of the two major missing data methods. Using Monte Carlo

simulation, we will study the biases in parameter estimates by ML and MI. We will also

compare the formula-based SEs by ML and MI against their respective empirical SEs.

Information on the relative efficiency of the two classes of estimators will also be obtained

by comparing their empirical SEs.

Missing data can occur for various reasons. The process by which data become incomplete

was called the missing data mechanism by Rubin (1976). Missing completely at random

(MCAR) is a process in whichmissingness of data is independent of both the observed and

the missing values; missing at random (MAR) is a process in which missingness is

independent of the missing values given the observed data. When missingness depends on

the missing values themselves given the observed data, the process is missing not at random

(MNAR). When all missing values are MCAR, most ad hoc procedures still generate

consistent parameter estimates. When ignoring the process for data that are MAR, including

MCAR, ML and MI can generate consistent and efficient parameter estimates under a

correctly specified parametric model. Thus, missing data with MCAR and MAR

mechanisms are sometimes referred to as ignorable non-responses. When missing values are

MNAR, one has to correctly model the missing data mechanism in order to get consistent

parameter estimates in general. In this paper, we mainly study the normal-distribution-based

ML and MI when missing values are MAR.

ML with missing data has a long history. After Rubin (1976) justified ML with MAR data,

ML procedures for missing data have been developed in almost every aspect of statistics

(Little & Rubin, 2002; Molenberghs & Kenward, 2007; Schafer, 1997). MI was proposed by

Rubin (1987), but its wide use is mainly due to various free and commercial programs (see

e.g., Harel & Zhou, 2007; Horton & Kleinman, 2007). Nice nontechnical introductions to

MI were given by Allison (2001) and Schafer and Olsen (1998). Nowdays, ML and MI are

the recommended procedures in essentially all areas of data analysis with missing values

(e.g., Allison, 2000, 2003; Buhi, Goodson & Neilands, 2008; Choi, Golder, Gilimore &

Morrison, 2005; Croy & Novins, 2005; Jamshidian & Bentler, 1999; Kenward & Carpenter,
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2007; King et al., 2001; Lee & Song, 2007; Olinsky, Chen & Harlow, 2003; Peng & Zhu,

2008; Peugh & Enders, 2004; Taylor & Zhou, 2009; Thomas, 2000).

Most developments for ML and MI with the MAR mechanism are based on correctly

specified distributions. With complete data, we can use existing procedures to check the

distributional properties of the sample before choosing a parametric model (e.g.,

D’Agostino, Belanger & D’Agostino, 1990). With missing data, especially when missing

values are MAR, the observed data can be skewed and possess excess kurtosis even when

the underlying population is normally distributed. Then most procedures for testing

univariate or multivariate normality are not applicable (see e.g., Yuan, Lambert & Fouladi,

2004). Thus, we have to rely on the robust properties of ML or MI in data analysis with

missing values. In the context of structural equation modeling (SEM) with distribution

violations, Arminger and Sobel (1990) proposed to use a sandwich-type covariance matrix

to estimate the SEs of the normal-distribution- based maximum likelihood estimates (MLE).

Yuan (2009) and Yuan and Bentler (2010) recently showed that, even when the underlying

population distribution is unknown, the normal-distribution-based MLEs are still consistent

under the MAR mechanism, and the covariance matrix of the MLEs is consistently

estimated by the sandwich-type covariance matrix proposed in Arminger and Sobel (1990).

However, the performance of the SEs based on the sandwich-type covariance matrix has

never been evaluated empirically with missing data. Enders (2001) evaluated biases in

MLEs in the context of SEM when missing values are MAR, it is not clear why in his Table

3 the bias decreases as the proportion of missing values increases for a population with

heavy tails. For the robustness of MI, Graham and Schafer (1999) performed a simulation

study by treating a real data set as the population. They found that the absolute values of the

biases are small while most of their population values of the regression parameters are also

small. Actually, several biases of their estimates are greater than the population values of the

regression parameters. It is not clear whether the small biases are due to the small values of

the population parameters. The simulation reported in section 6.4 of Schafer (1997) is also

based on a real data set. The study does not include a systematic evaluation of the effect of

population skewness and kurtosis on parameter estimates by MI. Demirtas, Freels and Yucel

(2008) recently conducted a more comprehensive simulation study on MI with two

variables, one is complete and one contains missing values. They found that estimates of

variance parameters by MI can suffer from serious bias when the proportion of missing data

is large and the sample size is small, especially when the population is nonnormally

distributed. None of the above literature compared MI against ML, and none systematically

studied the performance of formula-based SEs of ML and MI either.

Because data sets in social sciences are seldom normally distributed (Micceri, 1989), it is

important to know how ML and MI behave relative to each other under the condition of

distribution violations. Actually, the results of Yuan (2009) and Yuan and Bentler (2010) for

ML are all based on asymptotics. It is not clear whether MLEs are more biased than

parameter estimates by MI at finite sample sizes. It is also not clear how the SEs based on

the sandwich-type covariance matrix perform in practice. With real data, Schafer (1997,

section 6.4) reported some results on the formula-based SEs of MI, where the normal-

distribution-based information matrix is used to compute the covariance matrix of the

parameter estimates with the (imputed) complete data. It is very likely that MI together with
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a sandwich-type covariance matrix for complete data is more robust to distribution

violations. This has been suggested by Schafer and Graham (2002, p. 170) in the context of

SEM. However, it is not clear whether such a combination will generate consistent SEs or

whether it will generate more accurate SEs than those based on the observed information

matrix. There is also a need to compare this robust version of MI against the robust version

of ML. Since both MI and ML are available in various statistical programs, with typical

samples in social sciences coming from populations whose distributions are unknown,

answers to the above questions will give the needed information for applied researchers to

choose a more appropriate missing data procedure.

We will use Monte Carlo simulation to address the above questions. We will focus on

estimates of means and variances-covariances by ML and MI. This is because means and

variances-covariances serve as building blocks for almost all commonly used methods in

social and behavioral sciences (e.g., ANOVA, regression, correlations, factor analysis,

principal component analysis, SEM, growth curves, etc.). If a missing data method leads to

estimates of means and variances-covariances with little bias, then it will result in little bias

for parameter estimates that are continuous functions of means and variances-covariances. If

substantial bias exists in the estimates of means and variances-covariances, then we have to

be lucky enough to get a good estimate of a function of means and/or variances-covariances.

Since essentially all the commonly used parameter estimates are continuous functions of

means and covariance matrices, the obtained results will have wide practical implications.

We will study possible bias in the estimates of means and variances-covariances by normal-

distribution-based ML and MI. We will also compare empirical SEs and formula-based SEs

provided by ML and MI. We review the methods and design of the study in the next section.

The following section presents the Monte Carlo results. We conclude the paper with some

discussion and advice on proper use of the two methods.

Methods

To study the effect of sample size, missing data proportion and departure from normality on

the normal-distribution-based ML and MI, for simplicity and also for a thorough study with

a reasonable length, we will mainly consider the problem with two variables. Actually, two

variables already allow us to tell the pros and cons of the two methods. Following the

suggestion of a reviewer on an earlier version of the paper, we also include a model with

five variables.

Study design with two variables

Let z1 and z2 be two independent and standardized random variables, and

(1)

Then y = (y1, y2)′ follows a bivariate distribution with a mean vector µ = (µ1, µ2)′ and a

variance-covariance matrix
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where  and . Consider the sample

(2)

from the population y, where the first variable is observed on all N cases while the second

one is observed only on the first n cases. Suppose the missingness of yi2 is due to the value

of yi1 being greater than certain values. Because the value of yi1 is observed, all the missing

values are MAR. Actually, using model (1) to simulate missing values with the MAR

mechanism was suggested by Little and Rubin (2002, p. 90). The same model has been used

to generate bivariate complete data with desired population correlations (e.g., Lee &

Rodgers, 1998).

We choose µ1 = 1, µ2 = 2, σ1 = 1, σ2 = 1, and σ12 = ρ = .5 in the population. Three

distribution conditions on z1 and z2 are used: The standard normal distribution N(0, 1), the

standardized log-normal distribution1 LNs(0, 1/2), and the standardized uniform distribution

Us(0, 1). The combination of z1 and z2 results in nine distribution conditions for y2. The

population skewness and kurtosis of y2 for the nine conditions are given in Table 1, where

the skewness ranges from 0 to 2.276 and the kurtosis ranges from −.750 to 11.567. These are

well-within the range of the skewness and kurtosis of a real data set as reported in Table 2 of

Graham and Schafer (1999). The population skewness and kurtosis of y1 are (0, 0) when z1 ~

N(0, 1), (2.939, 18.507) when z1 ~ LNs(0, 1/2), and (0,−1.200) when z1 ~ Us(0, 1).

Although we used the same number of variables as in Demirtas et al. (2008), the designs are

different. In their study, except for the normally distributed population, they let the two

marginals be uncorrelated/independent. It is not easy to generate missing values with an

MAR mechanism2 when the two variables are uncorrelated. Demirtas et al. also let the two

marginals be identically distributed. Some of the substantial bias reported in their paper can

be due to either/both the nonnormality of the variable having missing values or/and the

nonnormality of the variable containing no missing values. The design in this paper, with

different marginal distributions, allows us to locate the causes of possible problems.

For each distribution condition, we choose five sample sizes N = 30, 50, 100, 200, 500,

which are intended to cover sample sizes from small to large3. For each combination of

distribution and sample size, three missing data conditions are created by deleting the

corresponding yi2 when yi1 is greater than its 90th, 70th and 50th population quantiles,

1A random variable x following the log-normal distribution LN(µ, σ2) is obtained by x = exp(z) and z ~ N(µ, σ2). For a given random
variable x, its standardized version is obtained by xs= [x−E(x)]/{Var(x)}1/2.
2When two variables are independent and the missingness of the second variable depends on the value of the first variable, all the
observed values for each variable form a random sample from the corresponding marginal population. Thus, the MAR mechanism
automatically becomes MCAR.
3Small to large sample sizes depend on the problem considered. While N = 500 may be considered as a small sample size when there
are 50 variables, it is large enough for most practical purposes when only 2 variables are involved.
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respectively. Since yi1 is observed on all the cases, the proportions of missing values for the

whole sample are pm = .05, .15 and .25, respectively. Because proportions of complete cases

can range from 100% (no missing value) to less than 50% in practice (Daniels & Hogan,

2008), we will regard pm = .05 as a small or trivial proportion4 and pm= .25 as a large

proportion. In summary, a total of 9 × 5 × 3 = 135 conditions are studied.

With observations on y1 being complete, the estimate of γ = (µ1, σ11)′ by either ML or MI

is just γ̂ = (ȳ1, s11)′, where ȳ1 is the sample mean and s11 is the sample variance of y1.

Since ȳ1 is known to be unbiased and the bias in s11 (= −σ11/N) is well-known, we will not

further study γ̂. The MLE  of θ = (µ2, σ12, σ22)′ can be obtained by the analytical formula

of Anderson (1957). With 500 replications5 for each combination of the three conditions

(population distribution, missing data proportion, and sample size) the average θ̅ and the

sample standard deviation of θ̂ are obtained, where θ̂ is an element of . The empirical bias

of θ̂ is subsequently obtained using

The sample standard deviation of θ̂ is also its empirical SE (SEEP). Notice that it is unlikely

for an empirical bias to be zero due to sampling error. We will evaluate the significance of

each bias by referring

(3)

to the Student t-distribution with 499 degrees of freedom.

When the population distribution is correctly specified, consistent SEs of  can be obtained

from the inverse of the observed information matrix, which is just the matrix of the negative

second derivatives of the log likelihood function. When the population is misspecified,

consistent SEs of the MLEs are obtained from the sandwich-type covariance matrix

where A is the observed information matrix and B is the summation of the cross-products of

the first derivative of the log likelihood function. Thus, we have two formula-based SEs for

 in each replication, SEOI based on the observed information matrix and SESW based on the

sandwich-type covariance matrix. Corresponding to SEOI and SESW, two averages  of

the SEs of  are obtained across the 500 replications. We use the average of the absolute

difference (AAD) between the empirical SE and each  across the fifteen conditions of N

and pm to measure the performance of the two formula-based SEs. That is, for SEOI,

4According to Collins et al. (2001), with less than 10% of the cases containing missing values and the correlation between the two
variables are greater than .4, the bias in parameter estimate is negligible even under MNAR mechanism.
5We initially also tried 1000 replications for several combinations of conditions and found that the results are essentially the same as
with 500 replications. We decided to use 500 replications to save the time of simulation.
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A parallel AAD for SESW is also obtained to measure its performance.

For the normal-distribution-based MI, the so-called Jeffreys noninformative prior is used in

data augmentation (see e.g., Schafer, 1997, p. 154). We also need to determine the number

of cycles/iterations needed for the Markov chain to converge to its equilibrium distribution.

Following the suggestion of Schafer (1997) and Schafer and Olsen (1998), we first used the

EM-algorithm (Dempster, Laird, & Rubin, 1977) to estimate the MLE on one random

sample from each of the nine distribution conditions. Let the starting values of µ(0) and Σ(0)

be respectively the sample means and sample covariance matrix of the complete cases (after

performing listwise deletion), θ(j) be the parameter value of θ at the jth iteration, and the

convergence criterion be , we found that the EM-algorithm

converged in less than 50 iterations6 for all the samples. For example, for the sample from

the worst condition z1 ~ LNs(0, 1/2) & z2 ~ LNs(0, 1/2), N = 30, pm = .25, the EM-algorithm

converged in 7 iterations. To be conservative, we choose 100 iterations and use the MLE as

the starting value for each imputation. For the same sample (z1 ~ LNs(0, 1/2), z2 ~ LNs(0,

1/2), N = 30, pm = .25), we also calculated the autocorrelation of µ2 with lag= 100 using 200

independent draws from the posterior distribution, and found that it is not significant at the .

05 level when the standardized autocorrelation7 is referred to N(0, 1). We also replicated the

above process of calculating the autocorrelation of µ2 100 times and found that 4 of the auto-

correlations are significant at .05 level. Based on all the evidence, we decided to use 100

cycles/iterations to obtain one set of imputed values for all the simulation conditions, with

the MLEs γ̂ and  as the starting value of each Markov chain.

We also need to determine the number of imputations nI for each missing value. We tried nI

= 10, 30, and 50 for z1 ~ N(0, 1) and z2 following the three conditions in Table 1. We could

not notice any systematic difference on empirical biases and SEs corresponding to the three

nIs, we ended up choosing nI = 30. Schafer and Olsen (1998) and von Hippel (2007) noted

that nI = 10 is enough for most practical purposes while Graham, Olchowski and Gilreath

(2007) found that a greater nI may be needed to achieve a better power when the effect size

is small.

According to equation (4.21) of Schafer (1997, p. 109) or equation (5.17) of Little and

Rubin (2002, p. 86), θ̃, the MI parameter estimates for each replication are obtained by the

average of the MLEs8 across the nI = 30 completed (with the imputed values) samples.

Parallel to those for MLE, the average of the θ̃ as well as the sample standard deviation

(denoted as SEEP) for each element of θ̃ across the 500 replications are obtained. Empirical

biases for parameter estimates by MI are subsequently evaluated as well as the

6The number of iterations depends on a defined convergence criterion. The convergence criterion, 10−4, is from the consideration that
we only report each parameter estimate to the 3rd decimal place.
7The standard error of the autocorrelation was calculated using the formula provided in equation (4.50) of Schafer (1997).
8With complete data, the MLEs are just the sample means and sample variances-covariance.
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corresponding t-statistic parallel to (3). The formula for calculating the covariance matrix of

θ̃ is given by (see eq. 5.1 of Allison, 2001; eq. 4.22 to 4.24 of Schafer, 1997; eq. 5.18 to 5.20

of Little & Rubin, 2002)

, where Vc represents the formula-based estimate of the covariance matrix of the ML

estimates of θ for each sample with imputed values, V̄
c is the average of Vc across the nI

imputations, and Vs is the sample covariance matrix of the ML estimates across the nI

completed samples. Parallel to that in ML, we have two Vcs for each completed sample, one

is the inverse of the observed information matrix and the other is the sandwich-type

covariance matrix. Thus, we also have two formula-based SEs for each θ̃, SEOI and SESW.

The average of each of the two SEs across 500 replications is obtained. Each of them is

compared against SEEP using the average of their absolute difference (AAD) across the

fifteen conditions of N and pm to measure the performance of the two formula-based SEs in

MI.

For each distribution condition, the average of the SEEPs across the fifteen conditions of N

and pm is also calculated for each element of  and θ̃, respectively. These averages are used

to compare the relative efficiency of  and θ̃.

Study design with five variables

Parallel to the population model in (1), the population of the five variables is formulated by

where µ = (1, 2, 3, 4, 5)′; A is a lower-triangular matrix such that Σ = AA′ = (σij) with σii =

1 and σij = .5 when i ≠ j; and z = (z1, z2, z3, z4, z5)′ with zjs being standardized independent

random variables. Four distribution conditions are chosen on z: (I) zj ~ N(0, 1), j = 1, 2, 3, 4,

5; (II) z1, z2 ~ N(0, 1) & z3, z4, z5 ~ LNs(0, 1/2); (III) z1, z2 ~ LNs(0, 1/2) & z3, z4, z5 ~ N(0,

1); (IV) zj ~ LNs(0, 1/2), j = 1, 2, 3, 4, 5. The skewenesses and kurtoses of y3, y4 and y5 for

the four conditions are within the range of those reported in Table 1, and are not reported

here to save space. For each distribution condition, the missing data schemes are created by

removing (y3, y4, y5) when y1 + y2 is greater than its 90th, 70th and 50th population

quantiles, respectively. Because y1 and y2 are both completely observed, the missing data are

MAR and their proportions are pm =6%, 18% and 30%, respectively. Same as for the two-

variable design, the sample sizes are 30, 50, 100, 200 and 500; and the number of

replications is 500. The number of imputations as well as the number of iterations to obtain

an imputation are also the same as for the two-variable design.

The vector of parameters associated with the complete data is γ = (µ1, µ2, σ11, σ12, σ22)′
and that associated with missing data is
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Parallel to the two-variable design, for each parameter in θ we will evaluate the empirical

bias in its estimates by ML and MI as well as the corresponding SEEP, SEOI and SESW.

A note on imputed values

To better understand the results of MI in the next section, we would like to note that, for the

sample in (2), each imputed value of y2 is obtained by the regression equation

(4)

where e ~ N(0, σ2), a, b and σ2 are determined by y = (y1, y2)′ ~ N(µ,Σ) and the Jeffreys

prior. While the parameters µ and Σ are obtained by sampling from the posterior

distribution, conditional on µ and Σ, e and y1 are independent. When substituting z1 in

equation (1) by (y1 − µ1)/σ1, we may rewrite the y2 in (1) as

(5)

Notice that the last term in (5), call it the error term, has a mean zero and variance

σ22(1−ρ2). Obviously, equations (4) and (5) are parallel. Actually, for a given µ and Σ,

which are identical to the intercept, slope and error variance in (5). Regardless of the

distribution of z2 in (5), MI substitutes each missing y2 by (4) with a normally distributed e.

When z2 has heavier or lighter tails than that of a normal distribution, neither Vc nor Vs is

consistent with that corresponding to (1) or (5). Thus, we would expect the normal-

distribution- based MI not to work well when z2 or the conditional distribution of the

missing variables given the observed ones is substantially different from normal. Also notice

that the covariance of y1 and y2 stems from y1 being on the right side of equation (4), not

related to e. We would expect that the estimates of σ12 and their SEs to be less related to the

distribution of e or z2.

Results

We will first present the results for the two-variable design before turning to the results for

the five-variable design. Since our main interest is in the performance of ML and MI when

the population distribution varies, we arrange the results according to the 9 distribution

conditions as reported in Table 1. Due to space limitation, for each population distribution of

the two-variable design, we will only include in the paper the empirical bias of individual

parameter estimates at each studied condition. Results of SEs for individual parameter

estimates at each missing data proportion and sample size are put on the web at

www.nd.edu/~kyuan/ML-MI/ and will be referred to in the discussion. Instead, we will
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include in the paper the average of the empirical SEs (SEEP), and the average of the absolute

difference (AAD) between SEEP and the formula-based SEs (SEOI or SESW) across the 15

combinations of sample size and missing data proportion. Tables for all the results of the

five-variable design are put on the same web address, and will be referred to when

discussing the results in the paper.

Bias and SE of θ̂ and θ̃ with the two-variable design

We will first report the empirical bias. In each of the tables of empirical bias, significant

ones at .05 level are put in boldface, and the number of significance ns for each estimate is

also reported at the end of each table. Notice that a significant bias can be the effect of type I

error, and we will summarize the findings for each estimate after presenting the results for

all the conditions.

Table 2 contains the empirical biases for the estimates of θ = (µ2, σ12, σ22)′ by ML and MI

when z1 ~ N(0, 1) and z2 ~ N(0, 1). None of the biases for the estimates for µ2 is statistically

significant while 7 of the 15 biases corresponding to σ̃
22 are significant; 2 of the 15 biases

for each of σ̂
12, σ̂

22 and σ̃12 are also significant. At pm = .25, N = 30, and 50, the empirical

bias in σ2̃2 by MI is about 30% and 15% of the value of σ22 = 1, respectively. All the others

in Table 2 are less than 10% of the parameter value, estimates with relatively large bias are

σ̃22 at pm = .15 and N = 30, 50 and σ̂
22 at pm = .25 and N = 30. Comparing the numbers

under σ̃
22 at pm = .25 against those at pm = .05 in Table 2, we may notice that the empirical

biases at pm = .25 and N = 100, 200 are greater than those at pm = .05 and N = 30, 50,

although more data are available at pm = .25 and N = 100, 200. Thus, when the sample size

is not large enough, a large proportion of missing values can bring substantial bias to the

variance parameter estimates by MI even when the population is normally distributed.

Empirical biases of  and θ̃ when z1 ~ N(0, 1) and z2 ~ logNs(0, 1/2) are presented in Table

3. Although the distribution condition is not what MI or ML is designed for, the biases in

Table 3 are only slightly larger than those in Table 2, with only 5 of the 15 biases

corresponding to σ2̃2 being statistically significant at .05 level. Similar to those in Table 2,

the largest biases are with σ̃22 at pm = .25 and N = 30, 50 and at pm = .15 and N = 30.

Table 4 contains the empirical biases when z1 ~ N(0, 1) and z2 ~ Us(0, 1). Again, the values

in Table 4 are very comparable to those in Table 2, and relatively larger ones are associated

with σ̃
22 at pm = .25, N = 30, 50, and pm = .15, N = 30.

Table 5 contains the empirical biases when z1 ~ log Ns(0, 1/2) and zs2 ~ N(0, 1), where none

of the entries under µ̂2 or µ̃2 is statistically significant at .05 level. However, the biases for

both σ2̃2 and σ̃
22 in Table 5 are obviously a lot worse than in any of the previous conditions.

That for MI at pm = .25 and N = 30 is about 2.5 times of the value of the parameter itself.

Although smaller compare to MI, the MLE σ2̃2 also contains substantial bias with smaller N

at pm = .25 and .15. Actually, the nonnormality of y2 is solely due to z1, whose information

is observed through y1. So it is the nonnormality of the observed variable that creates

substantial biases. As N increases, the biases in both σ2̃2 and σ̃
22 decrease. In particular, at N

= 500, the bias in σ̃22 becomes .044, due to the consistency of the MLE. The bias in σ̃
22 also

decreases quite faster.
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Table 6 contains the empirical biases of  and θ̃ when z1 ~ logNs(0, 1/2) and z2 ~ logNs(0,

1/2), a condition departs most from normality among those in Table 1. The biases in Table 6

are comparable to those in Table 5, implying that it is mainly the interaction of nonnormality

of y1 and missing data in y2 that caused the biases. Although the entries under µ̂2, σ̂
12, µ̃2

and σ̃
12 in Table 6 are on average larger than those in Table 2, none of them in Table 6 is

statistically significant. This is because the distribution of y1 as well as the covariance

between y1 and y2 are determined by the distribution of z1 in the population. When z1 has

heavy tails, the corresponding SEs of µ̂2, σ̂
12, µ̃2 and σ̃

12 are also greater (see Table A5(a)

and (b)), and their relatively larger values are mostly due to sampling errors.

Table 7 contains the empirical bias when z1 ~ logNs(0, 1/2) and z2 ~ Us(0, 1). As in the

previous tables with z1 ~ logNs(0, 1/2), σ̃
22 contains large bias at pm = .25 and smaller Ns.

The bias is still more than 10% even when N = 500. The MLE σ̂
22 also contains substantial

bias at smaller Ns. The biases in both σ̂
22 and σ̃

22 drop quickly as N increases. Once again,

the results imply that the bias is caused mainly by the interaction of the nonnormal

distribution of the observed variable and missing data, not the distribution of the random

component z2 that solely belongs to the variable with missing values (see equation 1).

Empirical biases of  and θ̃ when z1 ~ Us(0, 1) and z2 ~ N(0, 1) are reported in Table 8.

Obviously, the biases are much smaller when compared to those under the condition with z1

~ logNs(0, 1/2). But the empirical biases in σ2̂2 and σ̃
22 are still greater than those in Table

2, especially when pm = .25.

Table 9 contains the empirical bias when z1 ~ Us(0, 1) and z2 ~ logNs(0, 1/2). With σ2̃2

having a relative bias of 34% at pm = .25 and N = 30, the results in Table 9 imply once again

that the magnitude of the bias associated with MI is closely related to the distribution of y1,

not y2. Actually, the y2 for the condition in this table departs from the normal distribution

much more than that in Table 8 while the empirical bias in this table is smaller on average.

Table 10 contains the empirical bias when both z1 and z2 follow Us(0, 1). Both y1 and y2

have zero skewness and tails lighter than that of the normal distribution. Again, σ̃
22 has

substantial empirical bias at pm = .25 and smaller Ns; σ̂
22 also has a bias of 14% of the

parameter value at pm = .25 and N = 30. The biases in both σ̂
22 and σ̃

22 drop quickly as N

increases. The empirical biases for other estimates are comparable to those for normally

distributed data in Table 2.

As pointed out earlier, a significant bias can be due to sampling errors. Each parameter

estimate is evaluated at 135 conditions in Tables 2 to 10, and the percentage of significant

empirical biases across the 9 tables are respectively

ML MI

μ̂2 σ̂
12 σ̂

22 μ̃2 σ̃
12 σ̃22

6.6% 14.1% 37.0% 5.2% 13.3% 62.2%

Thus, the estimates of µ2 by ML and MI contain essentially no bias while σ̃22 is most biased.
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Table 11 contains the average of the SEEPs of  and θ̃ across the 15 combined conditions of

pm and N, which imply that the MI estimates are not as efficient as the MLEs in general. The

lack of efficiency in θ̃ can also be observed from individual SEEPs reported at www.nd.edu/

~kyuan/ML-MI/TableA1-A9.pdf, where SEEPs of individual MLEs are in Tables A1(a) to

A9(a) and those of individual MI estimates are in Tables A1(b) to A9(b).

Table 12 contains the AADs between the empirical SEs and the averaged SEOI and SESW for

the MLE . We may notice that SEOI predicts SEEP slightly better than SESW for normally

distributed data; SEOI also predicts the SEEP of µ̂2 better for other distribution conditions.

However, SESW predicts the SEEP of σ̃12 better when z1 ~ LNs(0, 1/2) and predicts the SEEP

of σ2̃2 better when z1 ~ N(0, 1) & z2 ~ LNs(0, 1/2), z1 ~ N(0, 1) & z2 ~ Us(0, 1), z1 ~ LNs(0,

1/2) & z2 ~ N(0, 1), z1 ~ LNs(0, 1/2) & z2 ~ LNs(0, 1/2), z1 ~ Us(0, 1) & z2 ~ LNs(0, 1/2), and

z1 ~ Us(0, 1) & z2 ~ Us(0, 1). In particular, for a given pm, SESW and SEEP are closer in

general as N increases. This clearly does not hold for SEOI. For example, even at N = 500,

SEOI remains to be substantially below SEEP in Tables A2(a), A5(a) and A8(a), and

substantially above SEEP in Tables A3(a) and A9(a). Results in Tables A1(a) to A9(a) imply

that SESW tends to under-predict SEEP when the population has heavier tails, and the under-

prediction is especially obvious when N is small. Comparing the results at pm = .05 against

those at pm = .25 in Tables A1(a) to A9(a) implies that the under-prediction of SEEP by

SESW is mostly due to smaller sample sizes as well as the nature of the underlying

population distribution, and it has little to do with the percentage of missing data. When the

population distribution is only slightly heavier than that of the normal distribution (e.g., z1 ~

LNs(0, 1/2) & z2 ~ Us(0, 1)), SEOI may perform slightly better than SESW due to the under-

prediction of SEEP by SESW for the variance of σ̃
22.

Parallel to Table 12, the AADs corresponding to the MI estimate θ̃ are given in Table 13.

Notice that the numbers under SEOI and SESW for µ ̃2 are identical, which is because the

covariance matrix of ȳ is estimated by S/N when evaluating both SESW and SEOI, where S is

the sample covariance matrix of the completed sample by imputation. Most AADs for the

estimates σ̃12 and σ̃
22 under SESW are smaller. The results in Tables A1(b), A4(b) and A7(b)

indicate that SESW is very close to SEEP when z2 ~ N(0, 1) and N is large. However, a large

N does not make SESW and SEEP closer when z2 ~ LNs(0, 1/2), as indicated in Tables A2(b),

A5(b) and A8(b). In particular, SESW tends to under-predict the corresponding SEEP when z2

~ LNs(0, 1/2), which is because a heavy-tailed random component is replaced by a normally

distributed one in the imputation process. In parallel, SESW tends to over-predict SEEP when

z2 ~ Us(0, 1), and a large N does not alleviate the over-prediction as long as pm remains to be

a constant. An apparently odd phenomenon in Table A2(b) is that SESWs for σ̃
22 at pm = .15,

N = 200 and 500 are smaller than the corresponding ones at pm = .05. This is because at pm

= .15 more heavy-tailed y2s are replaced by normally distributed y2s in the completed

samples by imputation. The empirical results, together with the note at the end of the

previous section, may imply that SESW for MI cannot be consistent unless y2 is conditionally

normally distributed given y1.

For the two-variable design, we have also studied conditions with different correlations and

when both variables contain missing values as well as when z1 and z2 each follows a
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standardized gamma distribution. Except that the MLEs and parameter estimates by MI

associated with the missing values are less biased when the correlation of y1 and y2

increases, the patterns are the same as those in Tables 2 to 13 and A1 to A9. That is, MI

estimates remain to be less efficient and more biased for the variance parameter than the

corresponding MLEs. For example, with y2 missing and pm = .25 for normally distributed z1

and z2, corresponding to N = 30 and 50 the empirical biases in σ̃
22 are .173 and .113 at ρ = .

70, and .343 and .223 at ρ = .30, respectively; while all the empirical biases in σ2̃2 are in the

2nd decimal place or smaller.

Biases and SEs of θ̂ and θ̃ with the five-variable design

Results for the five-variable design provide essentially the same information as that for the

two-variable design. Tables containing the empirical biases and SEs of  and θ̃ are in Tables

A10 to A13 at www.nd.edu/~kyuan/ML-MI/TableA10-A13.pdf, where Table A10 contains

the empirical biases and SEs when z1, z2, z3, z4, z5 ~ N(0, 1), Table A11 contains the results

when z1, z2 ~ N(0, 1) & z3, z4, z5 ~ LNs(0, 1/2); Table A12 contains those when z1, z2 ~

LNs(0, 1/2) & z3, z4, z5 ~ N(0, 1), and Table A13 contains those when z1, z2, z3, z4, z5 ~

LNs(0, 1/2). In the two-variable design, we did not notice much bias on σ̃12 because y1 is

solely responsible for the covariance and is fully observed. The biases in σ̃
43, σ̃

53 and σ̃54 in

Tables A12(a) and A13(a) are about the size of their population values of .5. Like for the

two-variable design, the number of significant empirical biases in Tables A10(a) to A13(a)

for variance parameters tend to be more than that for the covariance parameters, and that for

mean parameters is the smallest. By averaging across the four tables for each kind of

parameters, the percentages of significant entries of empirical bias are respectively

ML MI

means covariances variances means covariances variances

5.0% 15.2% 34.4% 4.4% 23.7% 68.9%

Again, the estimates of mean parameters by ML and MI are essentially not biased, while the

estimates of variance parameters by MI are most biased.

In summary, the Monte Carlo results imply that estimates of mean parameters by both ML

and MI contain little bias even with distribution violations. For variance-covariance

parameters, when the population distribution of the observed variables is normally

distributed, MLEs contain little bias regardless of the population distribution of the missing

variables. If the distribution of the observed variables is nonnormal, especially with heavier

tails, MLEs of variance-covariance parameters can contain substantial bias at smaller N

together with a nontrivial proportion of missing values. On the other hand, the variance-

covariance estimates by MI can contain substantial bias when sample size is small and the

proportion of missing values is not trivial even when the population is normally distributed.

When the distribution of the observed variables has heavier tails than those of a normal

distribution, the empirical biases in variance estimates by MI can be more than twice of the

parameter values. In particular, the empirical bias in θ̃ is about 2 to 4 times of that in  on

average.
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When data are normally distributed, SEOIs and SESWs predict the empirical SEs of θ̃ about

equally well; they also perform well for the SEs of  while SEOIs perform slightly better.

When the population is not normally distributed, the formula-based SEs do not perform as

well as with a normally distributed population in general, especially when the population

distribution has heavy tails and sample size N is small. Under the MAR mechanism, the

distribution of the observed variables mainly affects the SEs of estimates of covariances

between the observed and missing variables; the population distribution of the missing

variables mainly affects the SEs of variance-covariance estimates among the missing

variables. When the observed variables are normally distributed or close to being normally

distributed, SEOIs and SESWs are very close for the covariance estimates between the

observed variables and missing variables. When either the observed or missing variables are

nonnormally distributed, SESWs for estimates of variance parameters can predict SEEP s a

lot better than SEOIs with a medium or large N. Comparing ML with MI, the SEEPs of θ̃ are

slightly better predicted by SESWs than those of  when the conditional distribution of the

missing values given the observed variables is close to normally distributed or when the

sample size is small. When the conditional distribution of the missing variables given the

observed variables is nonnormal, SESWs of variance-covariance estimates in θ̃ work poorly;

and a large sample size does not help. Although the SESWs for  are consistent, they tend to

under-predict the empirical SEs, especially when sample size is small and the population has

heavier tails.

Conclusion and Discussion

Because it is nearly impossible to check the underlying population distribution behind a

sample with missing values, a desirable missing data method needs to be robust to

distribution violations. Although our studies on the normal-distribution-based ML and MI

are limited, the results show a clear picture of pros and cons of the two most promising

missing data procedures. Estimates of variance parameters by MI tend to contain substantial

bias when the percentage of missing data is not trivial and the sample size is small, which

replicates what Demirtas et al. (2008) have found. Our results further indicate that non-

normal distribution of the observed variables is mainly responsible for bias in MI estimates.

MLEs of variance parameters can also have substantial bias when the population distribution

of the observed variables is nonnormal, but the bias is a lot smaller compared to that in

estimates by MI. In addition to having smaller bias, MLEs are also more efficient than

parameter estimates by MI. Thus, ML is generally preferred in practice, especially at smaller

sample sizes. With respect to standard errors, SESWs are recommended although they tend to

under-estimate the true SEs at smaller Ns.

Comparing the results at pm = .05 against those at pm = .25 in Tables 2 to 10 or Table A10(a)

to A13(a) suggests that bias in estimates of variance parameters is mainly caused by the

percentage of missing values. Comparing the results at pm = .05 against those at pm = .25 in

Tables A1 to A13 suggests that biases in SEOIs are mainly caused by departure of the

underlying distribution from normality, and those in SESWs are mostly due to smaller sample

sizes.
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As we pointed out earlier, the results obtained have direct consequences on many statistical

models that are commonly used in social science research. For example, the estimate of the

regression coefficient in (4) is  by ML or the average of s21/s11 by MI, where s11

and s21 are the sample variance-covariance of the complete data after imputation. The results

in the previous section suggest that σ11 can be severely over-estimated by MI when y1

contains a substantial proportion of missing values and y2 has heavy tails. Then b will be

severely under-estimated. When all the variables have heavier tails than that of the normal

distribution, as for the condition with z1 ~ LNs(0, 1/2) & z2 ~ LNs(0, 1/2) in the two-variable

design, the SE of the regression coefficient b̃ or  will be substantially under-estimated by

SEOI since both the SEs of σ̂
21 and σ1̂1 or σ̃

21 and σ̃
11 are substantially under-estimated. A

biased parameter estimate plus an under-estimated SE will lead a researcher to believe that

the predictor has a much smaller covariate value than really is the case. Similarly, when

variance parameters are severely over-estimated, one would have little power in testing an

existing mean difference. While the implications of the finding on other models can also be

deduced similarly, the actual results in a given analysis depend on the particular distribution

of the population, the sample size, how the MAR values are created as well as the proportion

of missing values.

Although estimates of variances-covariances by MI can have substantial bias at a smaller N,

all the biases decrease as N increases. Since we are not aware of any consistency results of

MI with distribution violations, we would like to offer some rationale towards its existence.

We have observed in equation (4) that, during the iterations of Markov chain, y2 is obtained

by an independent draw of e ~ N(0, σ2) conditional on a, b, σ2. Once y2 is obtained, a, b and

σ2 are obtained by a random draw from the posterior distribution of (µ, Σ) conditional on (2)

together with the y2s obtained from (4) (see Schafer, 1997). Thus, conditional on a, b and

σ2, regardless of the true distribution of y = (y1, y2)′, we have

For the normal distribution based MI with Jeffreys prior, the posterior distribution of (µ, Σ)

only involves the first- and second-order moments of the complete data (with imputation).

This suggests that, except for sampling errors, parameter estimates by the normal-

distribution- based MI will not depend on the underlying population distribution. If the

parameter estimates by MI are consistent when y ~ N(µ,Σ), they will still be consistent when

the underlying population is nonnormally distributed. Of course, consistency alone does not

tell much whether the method is preferred at a given sample size. Because SEs of µ̃ only

involves the second-order moments, we expected SEs of a mean parameter by MI to be

consistent. However, the variance of σ̃
22 by MI involves the fourth-order moments of the

simulated e in (4). Unless the distribution of e matches that of y2 given y1 in the population,

it is unlikely for MI to generate consistent SEs for an estimator of a variance parameter.

Actually, empirical results in Tables A2(b) and A8(b) suggest that SESWs cannot be

consistent for the SEs of parameter estimates by MI.
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With the results reported in this paper, we may doubt the value of MI or even ML when the

population distribution is unknown, pm is not trivial and N is not large. Remember that the

missing values in this paper are created by removing the y2 corresponding to the largest y1.

In practice, missing values may occur corresponding to all ranges of values of the observed

variables. Then the biases associated with estimates of variances-covariances by either ML

or MI should not be as severe as reported in this paper. While being cautious with the use of

ML and MI with violation of conditions, these are still the most promising methods before

we know the underlying population distribution. If known, ML or MI based on the true

underlying population is always preferred. In particular, MI allows a researcher to choose

informative priors. With small samples, if prior information is available and properly

included, then MI may outperform ML.

A reviewer noted that the distributions of log-transformed variance estimates will be better

approximated by normal distributions. This is true when data are normally distributed

without any missing values, because the log-transformation stabilizes the variance of the

transformed statistic. With either nonnormally distributed data or missing values, the log

transformation does not stabilize the variance of σ̂jj or σ̃
jj anymore. Actually, the results

reported in this paper are biases and SEs of the normal-distribution-based MLEs and MI

estimates, not their confidence intervals or distributions. Let β = g(θ) be the transformed

parameters. Because the MLEs of β are given by , we would get the same biases and

SEs for the variance estimates when transforming  back to . The same is true if we apply

the log transformation to θ̃. Biases and SEs for variance parameter estimates by MI might be

different if one reparameterizes the likelihood function and the prior distributions using βj =

log σjj . But the resulting posterior distributions involving βj will be different from the

popular normal-distribution-based MI. For example, the posterior distribution of the

covariance matrix involving βj will not be the same as those given in Little and Rubin (2002,

p. 228) or Schafer (1997, p. 184). Further study is needed in this direction.

We hope we have made it clear that the purpose of the paper is to compare ML with the MI

methodology, as presented in Rubin (19878), Schafer (1997) and Little and Rubin (2002).

Since, to our knowledge, no MI package generates SESW automatically, we had to write our

own codes for the Monte Carlo study9. Although we have no doubt with our codes in

correctly implementing the MI methodology, we are interested in whether standard software

generates similar results. Tables A14 to A15 at www.nd.edu/~kyuan/ML-MI/TableA14-

A15.pdf contain the empirical biases and SEs for our two-variable design with z1 ~ N(0, 1)

& z2 ~ N(0, 1) and z1 ~ LNs(0, 1) & z2 ~ N(0, 1), obtained using SAS Proc MI and SAS

Macro language. Since Proc MI does not yield standard errors based on the sandwich-type

covariance matrix, SESW is not included in the two tables. We would like to note that 27

replications out of 500 do not contain any missing cases at pm = .05 and N = 30; and 3

replications do not contain any missing cases at pm = .05 and N = 50. These cases are

discarded automatically by Proc MI. Clearly, results in Table A14 are comparable to those

in Table 2 and Table A1, and those in Table A15 are comparable to those in Table 5 and

9Results in Tables 2 to 9 and A1 to A13 were obtained using SAS IML. Readers interested in replicating the results are welcome to
obtain the codes from the first author of the paper.
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Table A4. A reviewer noted that Proc MI and the program Amelia II (Honaker, King &

Blackwell, 2009) generate different results. Since MI is a simulation-based methodology,

certain differences caused by sampling errors are expected. Actually, different results from

two MI programs can be due to different seeds to start the random process, different random

number generators or algorithms, different numbers of burning cycles/iterations in

performing the Markov chains, and/or different numbers of imputations for each missing

value. These factors also make the results in Tables 2 & A1 and 5 & A4 different from those

in Tables A14 and A15 even after averaging over 500 replications. However, the same

systematic results or patterns are observed between Tables 2 & A1 and A14, and between

Tables 5 & A4 and A15. For example, at pm = .25 and N = 30, the empirical bias in σ̃
22 in

Table A15 is 2.758, more than twice of the population value σ22 = 1.0.
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