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Abstract

Understanding the environmental conditions of disease transmission is important in the study of vector-borne diseases.
Low- and middle-income countries bear a significant portion of the disease burden; but data about weather conditions in
those countries can be sparse and difficult to reconstruct. Here, we describe methods to assemble high-resolution gridded
time series data sets of air temperature, relative humidity, land temperature, and rainfall for such areas; and we test these
methods on the island of Madagascar. Air temperature and relative humidity were constructed using statistical interpolation
of weather station measurements; the resulting median 95th percentile absolute errors were 2.75uC and 16.6%. Missing
pixels from the MODIS11 remote sensing land temperature product were estimated using Fourier decomposition and time-
series analysis; thus providing an alternative to the 8-day and 30-day aggregated products. The RFE 2.0 remote sensing
rainfall estimator was characterized by comparing it with multiple interpolated rainfall products, and we observed
significant differences in temporal and spatial heterogeneity relevant to vector-borne disease modeling.
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Introduction

Environmental conditions affect the transmission of vector

diseases. The population of a vector depends on the local ecology,

and the lifecycle of the disease agent can be modulated by weather

variability. Mechanistic factors of disease transmission can appear

as correlations between environmental variables and disease

incidence; these correlations can in turn be used to describe the

geographic distribution of disease risk [1–12], early-warning

systems [13–16], or build mechanistic models of vector population

[17–21] and disease transmission [22–28]. For the purpose of

disease modeling and epidemiology, a minimal environmental

data set is likely to be composed of air temperature, rainfall,

relative humidity, and land temperature.

Air temperature correlates with malaria transmission [29]: when

temperature increases, the vector larval development time, the

feeding cycle duration, and the parasite maturation time all

decrease [26,30,31]. Larval mortality also depends on temperature

[30,32]. Air temperature correlates with dengue transmission

[33,34], even though habitat heterogeneity appears to be a

confounding factor, and large daily air temperature variations

reduce dengue vector survival [32]. Air temperature has also been

shown to correlate with the abundance of tsetse flies [5] and with

cutaneous leishmaniasis [35].

Rainfall is a well-established correlate of vector abundance for

malaria [29,36]. Anopheles gambiae are found mostly in small,

temporary habitats [37], while Anopheles funestus are found in

permanent and semi-permanent rain fed habitats [38]. The

survival of Anopheles gambiae over the dry season also depends on the

level of desiccation reached [18]. In fact, soil moisture calculated

from rainfall, land cover, and soil features is a better predictor of

biting rates than rainfall alone [39]. An early warning system can

be created based on rainfall predictions, either in the short term

[16] or in the context of year-to-year oscillations like El Nino/La

Nina [40], but extreme rainfall is also linked to larval mortality

[41]. Furthermore, rainfall correlates with Aedes aegyptii abundance

for dengue disease [33,34], tsetse fly abundance for sleeping

sickness [5], and visceral Leishmaniasis [42].

Relative humidity is a determining factor in calculating the rate

at which surface water evaporates, and can be used in mechanistic

vector habitat models [20,39]. Relative humidity also affects the

survival of vectors differently depending on their species [43,44].

Overall, using relative humidity as a correlate of vector-borne

disease incidence is less common than air temperature or rainfall,

but this could change as the complexity of disease and vector

models increases.

Land surface temperature has been used as a proxy for air

temperature in epidemiological studies of vector-borne diseases
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[2,45–47]. However, land temperature markedly differs from air

temperature during the day and in areas with low vegetation

densities [46]. Land surface temperature measurements could also

be used to model evapotranspiration [48–50] within a mechanistic

vector habitat model.

Vector-borne disease dynamics can be extremely heterogeneous

in space and time. Environmental data sets with high spatial and

temporal resolution are thus needed to accurately model and

analyze their relationship with vector-borne diseases. For example,

rainfall with daily resolution is probably necessary as aquatic larval

stages have a 7–20 day time constant. In space, kilometer

resolution enables the capture of rapid changes in land cover,

altitude, and it approximately matches the typical mosquito flight

distance [51–53]. However, it will not be sufficient to accurately

represent the small ponds or other habitat features where

mosquitoes and flies can multiply [20].

The environment data must also span multiple years: it must be

sufficiently long to match the duration of disease incidence

measurements [2], to represent the relevant environmental

variations, e.g., multi-year oscillations [33,40], and to span the

time scale of interventions, e.g., how long it would take to

implement a vaccine or a drug therapy campaign. Furthermore,

even mostly constant environmental data layers can be altered in

important ways by rapid urbanization, e.g. in Africa, when a

multiple-year span is considered [54,55]; changes in irrigation can

create standing water and deforestation can destroy mosquito

habitat [56].

Such high-resolution environment data gridded time-series are

rare, particularly in developing countries where much of the vector

disease burden takes place. Environmental data is most commonly

found in the form of monthly climate maps; by comparison, time-

series (weather) data over extended regions are rare (IRI/LDEO

database [57]). Few products are available ‘‘out-of-the-box’’,

instead requiring significant reformatting or needing to be created

through interpolation techniques or patched up to complete

missing measurement issues. The availability of data decreases

further if spatial resolution must be better than 0.5 degrees of

latitude or longitude, and if the temporal resolution must be better

than monthly [57]. Specifically for Africa, no gridded time series of

air temperature, rainfall, or relative humidity are available at the

30 arc second or 2.5 arc minute resolutions necessary. On the

IRI/LDEO database, looking only at products covering the entire

African continent, we find the FEWS project [58] which offers

daily rainfall with less than 1o grid resolution (0.1o), the Aqua

satellite MODIS 8-day land surface temperature at 1 km

resolution, no gridded daily temperature or daily relative humidity

data sets with spatial resolution better than 1o.

Assembling a complete environmental data set is a difficult task

in Africa and in many areas of the developing world, in part

because of the limited availability of ground-based environmental

measurements [45]. In these areas of the world, weather stations

are few and far between, their locations are biased towards areas of

high population density, and many stations have a low reporting

frequency. In areas of low weather station density, important

inaccuracies can be introduced when air temperature, dew point,

or rainfall measurements are interpolated over long distances to

the remote areas where much of the vector-borne transmission can

take place. Furthermore, other variables like land cover type or

vegetation index are not measured by weather stations.

Incorporating remote sensing measurements in the data set can

alleviate some of these issues [45]. In the last decades, the spatial,

temporal, and spectral resolution of earth-observing satellite

instruments have seen large improvements, and the availability

and accessibility of remote sensing data sets has also been

improving [4,59–61]. However, remote sensing products for

near-surface quantities can be acutely limited by line of sight

obstructions. For example, near-IR probes, e.g., MODIS, cannot

peer through clouds or dense particulates, and microwave probes

which can see through clouds can still be affected by rainfall. The

orbit of the satellite can also limit the frequency of measurements

in a specific location; polar-orbiting satellites cover certain areas

around the equator less than twice per day due to the bulging of

the earth, and high-resolution satellites can take multiple days to

return above a fixed location. The accuracy of remote sensing

products can also be limited by the algorithms used to reconstruct

the quantity of interest, e.g., air temperature from spectroscopic

measurements, or by aspects of the quantity to estimate which are

not measured, e.g., orographic precipitation in rainfall estimators.

The reliability of a model or disease map depends on the quality

of the underlying data, and on the quality of the model or fit. Input

data (on the environment, the vector, or the disease agent) are

inherently uncertainty either due to measurement error, aggrega-

tion, substitution, or interpolation; even when field validation is

extensive [20]. The reliability of a model or disease map can be

represented by confidence intervals or assessed through a

sensitivity analysis or a validation effort. Most studies only report

on their translation of the data or their best fit, without quantifying

the limits of their results [1,3,4,11,18,62]. Some go further and

quantify the confidence intervals from the fitting step, but do not

quantify the impact of input data uncertainty [2,10,12,19,21,28].

Only a few studies quantify the dependence of their results to input

data, through sensitivity analysis or validation [5,17,25,63].

The error of interpolated or aggregated data sets is typically

quantified by cross-validation [64,65], while error on remote

sensing estimates is calculated from distributed point measure-

ments, and comparison with other remote sensing products [66–

71]. Both techniques produce location-independent error distri-

bution assessments. However, the accuracy of such data sets can

change significantly in space and time [72,73]. Accurately

quantifying the error in the input data is thus a key component

of a sensitivity analysis or of a validation exercise [72,74].

First, we present the input data and the methods used to

construct the air temperature, relative humidity, land surface

temperature, and rainfall data sets. Then, we describe the

accuracy, the range of validity, and some characteristics of the

constructed data sets. Last, we compare our constructed data sets

with similar remote sensing products or interpolated products.

Methods

Air temperature
We interpolated weather station measurements of air temper-

ature and dew point taken from the Global Summary Of the Day

(GSOD) database [75] using simple Kriging [76]. The GSOD

database compiles daily surface weather data from more than

9000 stations, dating in some cases back to 1929. It is available free

of charge for non-commercial use. We used simple Kriging to

interpolate temperature anomalies from weather station measure-

ments within the region surrounding them. Simple Kriging was

used because the mean value of the temperature anomaly is zero,

and the form of the distance-dependence in the covariance can be

determined from the ensemble of weather stations used. This

technique, as opposed to more common distance-based methods

[77], can compensate for strongly inhomogeneous weather station

distributions and also provides an estimate of interpolation error.

We present an example of the entire procedure in Figure 1.

We used the following criteria to effectively reject weathers

stations with poor reporting while ensuring that seasonal variations

Environmental Data Set for Vector-Borne Diseases
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can be extracted: a weather station had to report at least 61 valid

measurements within one 365-day window at any point during the

station’s lifetime, and then, within a histogram of the station’s

reporting frequency by day-of-the-year (DOY) (e.g., March 2nd

2001 and March 2nd 1937 are both day of year 61), no more than

30 consecutive days could have zero frequency (wrapping around

at year end). The longest window of measurements missing from

all the years in the data set had to be no longer than 30 days.

We constructed air temperature by adding a climate layer to

spatially interpolated day-to-day temperature anomalies (the

weather). We created daily-resolution climate normal maps by

temporally interpolating the monthly high-resolution WorldClim

data set [64] using the 0-, 1-, 2-, and 3-fold yearly oscillation

components of a Fourier decomposition. The WorldClim is a set

of global climate layers (climate grids) with a spatial resolution of

about 1 square kilometer. It is based on significantly more weather

stations than are publicly available, and thus should capture more

accurately the systematic effects of geography, e.g., the variations

in environmental lapse rate. The published average difference

between the spline interpolated surface of this climate data set and

weather station measurements (the climate layer error) is less than

1uC [64]. In Figure 2a, we illustrate this difference in Madagascar;

the WorldClim data set includes all the weather stations shown in

red and blue while the GSOD database includes only a subset of

the red (synoptic) weather stations. We present an example climate

normal map in Figure 2b.

We calculated the air temperature day-to-day variability across

a region using weather stations point measurements and simple

Kriging to interpolate between them. For each weather station, we

separated the periodic seasonal component from the temperature

anomalies by Fourier subtraction of the constant, once-, twice-,

and thrice-yearly Fourier components. Since the time series

contains many missing or erroneous data, we orthogonalized the

Fourier harmonics over the valid measurements in the time series.

We present the specifics of the orthogonalization algorithm in File

S1. We note that the seasonal signal extracted by this method may

be different from the WorldClim climate layer.

Kriging uses a distance kernel, the semi-variogram, to assign

interpolation weights to different weather station measurements

[76]. Since the variability and half-correlation distance changes

with the time of year, we fit these semi-variograms parameters

independently for each day-of-year using

Figure 1. Kriging air temperature from Madagascar weather stations. (A) Extracted air temperature anomalies on January 1st, 2010. The
periodic seasonal components are removed using Fourier transforms. (B) Kriged anomalies across the island and the resulting error estimate (C). The
Kriging error increases away from reporting weather stations at the half-correlation distance speed up to the square root of the sill. (D) Combining the
WorldClim-derived average temperature surface for that day and the Kriged temperature anomaly, we obtain a prediction of the air temperature
throughout the island. In this last image and throughout the data set, the systematical effects of altitude dominate the day-to-day variations due to
weather.
doi:10.1371/journal.pone.0094741.g001
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c(d)~c(?) 1{
1

1{ d=lð Þ2

 !
ðM1Þ

where c(‘) is the sill, l is the half-correlation distance, and d is the

distance. In our fit, we included all the compiled (distance,

anomaly-difference squared) pairs for a specific day-of-year in the

30 years of weather station data considered. In Figure 3, we

present an example semi-variogram for January 1st using

Madagascar weather stations.

We smoothed the resulting fit parameters using two filtering

passes, first by taking the median in a 31-day sliding window, and

second by taking its average also in a 31-day sliding window,

before assigning the resulting value to the middle of the window

(see Figure 4a and 4b). All elements were set to have the same

weight within the averaging window.

While not shown in the formula M1, a nugget effect can be

included if it is found that neighboring weather stations are

reporting incongruent air temperature values on the same day or if

measurement error is believed to be an issue. A nugget effect is a

non-zero intercept in the semi-variogram which allows short-range

variability in the measured quantity. In the present case,

measurement error or local heating effects could create such

short-range variability in reported air temperature. When the

semi-variogram does not reflect the presence of such short range

variability, the Kriging algorithm can become numerically

unstable and sometimes produce interpolated values significantly

under or over-shooting all measured values.

Relative humidity
We calculated local relative humidity (RH) by combining maps

of air temperature (T) and dew point (Td) using the following

formula:

RH~ exp
{ab T{Tdð Þ
bzTdð Þ bzTð Þ

� �
ðM2Þ

where a = 17.271, and b = 237.7uC. This formula is based on the

August-Roche-Magnus approximation for the saturation vapor

pressure of water in air. We constructed maps of air temperature

using the algorithm presented in the previous section. We

constructed maps of dew point using a modification of the above

algorithm, as explained below. In Figure 5, we present the steps in

our algorithm to calculate relative humidity using Madagascar as a

test case.

Without a high-resolution climate layer on which to base our

dew point interpolation, we calculated an approximate climate

layer by deriving a region-specific lapse rate for dew point, as a

function of day-of-year, using 30-years’ worth of (altitude, dew

point) pairs (see Figure 6). We smoothed the day-of-year

dependence of the lapse rate using two filtering passes: first by

taking the median in a 31-day periodic window, and second by

taking the average of the result also in a 31-day periodic window.

In the present case, the region is the island of Madagascar; a

region will be of appropriate size if it contains a sufficient number

of weather stations without being so large as to encompass very

different climates.

Using this lapse rate, we corrected for (subtracted) the effect of

altitude in dew point measurements (Figure 5a) to obtain their

zero-altitude equivalent. We then Kriged [76] these zero-altitude

dew-point equivalents in order to obtain a zero-altitude dew point

map of the region (Figure 5b). We derived the dew point semi-

variogram needed for Kriging as was described in the air

temperature section (Figures 7a–7b). Finally, we re-introduced

(added) the effect of altitude using the region-wide lapse rate using

an altitude map for the region (Figure 5c). The result is the

completed map of dew point needed to calculate relative humidity

(Figure 5d).

Throughout Africa (including the island of Madagascar), 923

out of a total of 1403 weather stations met our quality criteria (as

described in the air temperature method section) for air

temperature in the 1981–2011 period [75]. For dew point

measurements, 914 out of 1403 met these criteria. Since the

reliable weather stations reporting dew point are essentially the

same as those reporting air temperature, their spatial distributions

are equivalent (see Figure 8). As a result, the accuracy of air

temperature and the accuracy of relative humidity will be strongly

correlated.

Figure 2. Madagascar climate layer. (A) Weather stations described
by Oldeman et al. [108]. The larger red dots are synoptic stations, while
the blue dots are simpler field stations. (B) The WorldClim monthly
average temperature for January, interpolated from these weather
stations [64].
doi:10.1371/journal.pone.0094741.g002

Figure 3. Example variogram. Semi-variance of weather station air
temperature measurements over Madagascar (1981–2010), for a given
day-of-year. The blue curve is the resulting fit of the functional form
presented in the Methods section.
doi:10.1371/journal.pone.0094741.g003
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Land temperature
Land temperature was derived from spectral radiance mea-

surement of the MODIS instrument aboard the AQUA satellite.

Twice a day this satellite passes over a point on the earth’s surface

at approximately 1:30am and 1:30pm local solar time. However,

measurement of the ground temperature is not always valid as, for

Figure 4. Variogram parameters. Air temperature variogram parameters for Madagascar, from 1981–2010: sill (A) and half correlation distance (B).
The blue circles result from fitting the variogram for each day-of-year; the red curve is the smoothed output of the median-mean window filter
described in the Methods section and used in our Kriging algorithm.
doi:10.1371/journal.pone.0094741.g004

Figure 5. Calculating relative humidity across Madagascar. (A) Weather station dew point measurements on January 1st 2010 (before
correcting for altitude). Data from GSOD database [75].(B) Kriged zero-altitude-equivalent dew point values across the island. (C) Altitude-adjusted
Kriged dew point. (D) Combining the Kriged air temperature surface with the dew point surface, to obtain the relative humidity throughout the
island.
doi:10.1371/journal.pone.0094741.g005
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example, the satellite view angle can be obscured by clouds or

heavy aerosol. We here describe an algorithm to estimate these

missing measurements.

Land surface temperature measurements were first acquired

from NASA in raw tiles. We used the MYD11A1 v005 product

[78]. The MODIS land surface temperature product has been

validated, and is accurate to 1uC (but better than 0.5uC in most

cases) [66–68]. These tiles were then projected to a 30-arc-second

WGS84 latitude/longitude grid. The time series for each latitude/

longitude pair in the grid (pixel of the image) was then Fourier

analyzed. First, we filtered out the noise in the signal due to the

satellite repeat cycle by removing harmonics with 16-day

periodicity as well as other noise frequencies which stood high

above the aperiodic signal level. Then, we extracted the

seasonality of the land temperature by measuring the 0-, 1-, 2-,

and 3-fold yearly oscillation amplitudes, and we kept it for further

processing. The standard Fourier transform procedure was

modified to deal with the missing values, see File S1for details.

After we removed the noise and seasonality from the raw signal,

the daily land temperature anomalies remained. We stationarized

this time series by dividing it by its seasonally-varying standard

deviation. We measured the standard deviation as a function of

day of year using a 31-day weighted window (the weights are

w(t) = 1-|t/16|3). This gave us, for each pixel, a time series of

constant zero mean and constant unit standard deviation, albeit

with missing values. Within the valid values of this time series,

outliers were defined as any measurement four standard deviations

above or below the mean. If any outliers are found, e.g., a freezing

day during the summer, we removed them (they became missing

values) and recalculate the mean and standard deviation of the

time series until no more could be found. We refer to this final

time series as the normalized-departure time series.

Pathological pixels were identified as was done for weather

stations in the air temperature methods: if a pixel contained more

than 30 consecutive days of the year without measurements, or

contained less than 61 valid measurements in any 365 day period,

they were removed. Because we required a mean and standard

deviation at every point, for all days of the year, we used the

average of valid adjacent points to obtain a mean and a standard

deviation for pathological pixels. In some cases, a pathological

pixel did not have adjacent valid pixels. In those cases, and only if

the extent of the pathological regions is small (2–3 pixels in

diameter), we completed the pathological pixel iteratively, one by

one, starting with those which had the most number of adjacent

valid pixels. Using this method, isolated pathological pixels were

eventually connected to valid pixels through interpolated pixels. If

a pathological pixel was an island, without any neighboring valid

pixels, a reasonable value was used in its place, e.g., the nearest

land average. For the period between 2002 and 2011, this method

was successful in Madagascar and Nigeria, but failed in India due

to the continuous cloud cover over large regions during the

monsoon.

The result is that the land temperature data set is composed, at

each pixel, of a normalized departure time series, as well as an

average temperature (MEAN) and a standard deviation (STD) for

each day of the year (see Figure 9).

Since there is some day-to-day temporal correlation in the land

temperature measurements, we adapted the simple Kriging

technique to interpolate valid measurements in time [76]. First,

we calculated the autocorrelation function for each pixel and then

fit their time delay dependence to an analytical form in order to

Figure 6. Lapse rates. Dew point and air temperature lapse rates in
Madagascar, by day of year. The shaded regions represent one standard
deviation above and below the median-mean window filter average
curve. Note, only the dew point lapse rate is used in the humidity
interpolation algorithm.
doi:10.1371/journal.pone.0094741.g006

Figure 7. Variogram parameters. Dew point variogram parameters for Madagascar, from 1981–2010, by day-of-year: sill (A) and half correlation
distance (B). The blue circles result from fitting the variogram for each day-of-year; the red curve is the smooth output of the median-mean window
filter described in the Methods section and used in our Kriging algorithm.
doi:10.1371/journal.pone.0094741.g007
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Figure 8. Air temperature variability at weather stations across Africa. Map of the operating weather stations in Africa included in the GSOD
database [75], within (A) the 1981–2000 period and (B) within the 2001–2010 period. Each weather station is represented by a filled circle. Its size is
proportional to its reporting frequency (maximum size corresponds to daily reporting), and its color corresponds to the 10-day air-temperature
variability. Certain regions of Africa have a dense network of reliable weather stations (e.g. South Africa) while other regions are simply devoid of
weather stations (e.g. DRC). Air temperature variability is smallest at the equator (around 0.5uC) and increases up to 2.5uC at 30 degrees of latitude.
doi:10.1371/journal.pone.0094741.g008

Figure 9. Land temperature surface completion method steps. (A) Remote-sensing measurements of land temperature contain invalid and/or
missing pixels (shown in white). The measurements shown here are from the MYD 11A1v005 data set [78]. In order to estimate the land temperate at
these missing pixels, the algorithm first calculates the land temperature average (B) and standard deviation (C), for each pixel, for that day of year. At
each pixel, the temporal Kriging algorithm then produce a Kriging guesses (D) and a Kriging error (E). Combined with the average of the valid land
temperature pixels for that day, a final land temperature surface is constructed (F).
doi:10.1371/journal.pone.0094741.g009
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construct the covariance matrix and the covariance vector. A

simple power law provided a good and robust fit across all pixels.

The measured autocorrelations were fitted only up to the smallest

lag, which had a negative autocorrelation value. This maximum

useful lag was used as the maximum distance over which to look

for valid measurements to include into the Kriging prediction. For

example, if the autocorrelation function was only valid up to a lag

of five days, then a valid measurement six or more days before or

after the missing value was not included in the Kriging calculation.

If the autocorrelation function fit failed due to poor statistics, then

Kriging was not performed on that pixel and the uncertainty of all

the missing values on that specific pixel were not reduced.

Using this autocorrelation function and the valid measurements

within the maximum lag, a covariance matrix and a covariance

vector were constructed around each missing measurement. From

there, simple Kriging returned a best mean (the Kriging guess) and

the size of the remaining (unknown) variance (the Kriging error).

Once all the missing values had been treated as outlined above,

information from valid measurements in the same pixel but at

different times was factored into the estimate, but not information

from valid measurements at the same time but in different pixels.

In principle, it could have been possible to calculate a covariance

function between measurements distant in space but equal in time,

and to use Kriging in order to optimally estimate the value of a

stochastic field from a few nearby measurements. In the present

case however, performing an exact Kriging calculation for all the

missing points within a country, day by day, for up to 10 years

would wave been very computationally intensive. Instead, we

estimated the average land temperature anomaly on that calendar

day (Aavg), in the region of interest, and linearly combine it with

the time-derived best guess (G) using the remaining variance (E)

not accounted for in the time-based estimate as weight. By

multiplying this normalized departure estimate with the standard

deviation and average land surface temperature, for that pixel and

day, we obtained our final estimate for the land surface

temperature (LST) (see example in Figure 9):

LSTij(t)~MEANij(DOY )zSTDij(DOY )|½Gij(t)zEij(t)|Aavg(t)�

Here, the subscripts ij represent the latitude/longitude index

within the grid; they index the pixels. This formula does not

account for the cooling effect of clouds during the day or their

warming effect at night. One possible way to include this effect

could be to additively incorporate the cloud flag into the estimate

of the anomaly.

Rainfall
We interpolated the RFE 2.0 [58] data set from a 0.1 degree to

a 30 arc seconds spatial resolution using bi-linear interpolation. As

suggested by the release notes, we replaced any value exceeding

300 mm/day with 300 mm/day and we replaced missing values

with 0 mm/day.

The RFE 2.0 rainfall estimator is available in Africa starting

January 1st 2001 [58] which is based upon work by Xie and Arkin

[79]. It has also been calculated for parts of the middle-east and

south Asia. It combines remote-sensing measurements from the

AMSU-A and -B sensors onboard NOAA satellites, the SSM\I

and SSM\IS sensors on board DMSP satellites, and the infrared

imagers onboard the METEOSAT satellites. AMSU-B and

SSM\I are microwave sounders, they estimate rainfall by

measuring the amount of upwelling microwave scattered radiation

from ice particles in the air [80]. These measurements are

available up to four times a day and have a horizontal resolution

around 30 km at nadir. The METEOSAT satellites estimate the

rain rate using the cloud-top temperature measured by infrared

images [81]. These images are available every half hour, with a

horizontal resolution around 4 km.

Cross-validation of RFE 2.0 product shows it has a 50%

correlation with measurements on the ground and a small negative

bias of -0.15 mm/day [82]. Amongst the methods available to

estimate rainfall in regions of low weather station density, the RFE

2.0 product has sufficiently high spatial and temporal resolution

and shows excellent performance [15,83]. The MiRS rainfall

estimator also combines different satellite measurements, but it has

only been archived since August 30th, 2007 [84].

Results

Air temperature
We measure the accuracy and precision of our interpolation

method using cross-validation, i.e., comparing the true value

measured at a weather station, with the interpolated value

calculated without measurements from that weather station. The

computed average bias and the prediction variance can be

compared with the computed Kriging error. We repeat this

procedure for each weather station.

For air temperature interpolation, the resulting error distribu-

tions are shown in Figure 10, and compared with what is predicted

by the Kriging algorithm. The median daily bias is 20.786uC, the

median daily mean absolute error is 1.21uC, the median daily root

mean squared error is 1.47uC, and the median daily 95th

percentile absolute error is 2.75uC. Here, and systematically in

what follows, the median is taken across the 26 weather stations on

Madagascar. Computing 10-day error measures is more appro-

priate due to the natural time scale of vector-borne diseases. As

such, the median 10-day bias is 20.436uC and the median 10-day

95th percentile absolute error is 1.49uC.

The predicted air temperature values are significantly biased,

with the true value lying outside of the interquartile prediction

range for 15 out of 26 weather stations. This is due to the

underlying WorldClim climate layer which is used to offset the

Kriging predictions for unmeasured points. This observed bias

(20.786uC) is consistent with the reported average error of this

climate layer (less than 1uC) [64]. This bias-related interpolation

error could possibly be reduced by substituting the WorldClim

climate layer by a lapse-rate corrected temperature surface, as is

done for dew point interpolation.

The width of the central mass of the error distribution is similar

to the Gaussian distribution assumed by the Kriging method. This

can be seen by the good agreement between the predicted and

observed inter-quartile distance (25th to 75th percentile). By

contrast, the tails of the observed error distribution are signifi-

cantly more dispersed and more asymmetrical than for a Gaussian

distribution; this can be seen by comparing the location of the 2.5th

and 97.5th percentile markers in Figure 10. In File S1, detailed air

temperature predictions and Kriging error distributions are

presented for each weather station.

Spatial interpolation error is maximal far from weather stations,

and can be estimated from the maximum Kriging error (black

regions in Fig. 1c). For a given distribution of weather stations, the

Kriging error is proportional to the temporal and spatial

variability of air temperature. For a point multiple spatial

correlation distances away from any weather stations, the

prediction error reduces to the regional temperature variability

added to the climate layer error. We can use this result to estimate

the maximum Kriging error across Africa.

In Figure 8, we present maps of the operating weather stations

across Africa, first for the 1981–2010 period (A) and then for the
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2001–2010 period (B). Each dot represents one weather station

which passes our quality criterion (described in the Methods

section). The area of each filled circle is proportional to its

reporting frequency (the largest dots represent stations that report

at least once a day), and the color of the filled circle corresponds to

its 10-day temperature variability. The number of reporting

stations has decreased in the last ten years, but the remaining

stations have increased their reporting frequency. There are

extended regions in Africa for which no weather station

measurements are available, e.g., in the Democratic Republic of

the Congo (DRC). However, in the DRC the average combined

error is approximately 1.5uC because the 10-day variability of air

temperature is low near the equator. By comparison, in northern

Algeria the average combined standard error is approximately

2.5uC. Interestingly, while the 10-day temperature variability

increases away from the equator, the density of weather stations

also increases; the resulting net change (increase or decrease) in

Kriging error will depend on the correlation length of air

temperature.

Relative humidity
As above, we evaluate the accuracy and precision of our relative

humidity interpolation algorithm by cross-validation. Since

relative humidity is calculated using dew point and air temper-

ature, we present cross-validation results first for dew point, and

then for relative humidity. The interpolation error of relative

humidity is calculated assuming that the errors and biases that

affect dew point and air temperature are uncorrelated.

Dew point cross-validation normalized error distributions are

shown in Figure 11a, and compared with what the Kriging

method predicts. The median (across weather stations) dew point

daily bias is 20.177uC, the median mean absolute error is 1.25uC,

the median RMSE is 1.64uC, and the median 95th percentile

absolute error is 3.32uC. Computing 10-day error measures is

more appropriate due to the natural time scale of vector-borne

diseases; as such, the median dew point 10-day bias is 20.289uC
and the median dew point 10-day 95th percentile absolute error is

2.27uC. Dew point predictions have less bias error than air

temperature predictions do: the true value is outside of the

interquartile prediction range for only 6 out of the 26 weather

stations. Further study of the large bias observed for stations 18,

21, and 25 may help to improve the interpolation algorithm. Both

the predicted interquartile range and the 95% confidence intervals

agree well with what the Kriging method anticipates.

Relative humidity cross-validation normalized error distribu-

tions are shown in Figure 11b, and compared with what the

Kriging method predicts. The median (across weather stations)

relative humidity daily bias is 3.09% (percentage points), the

median mean absolute error is 6.61%, the median RMSE is

8.38%, and the median 95th percentile absolute error is 16.6%.

Computing 10-day error measures is more appropriate due to the

natural time scale of vector-borne diseases; as such, the median

relative humidity 10-day bias is 3.08% (percentage points) and the

median 10-day 95th percentile absolute error is 11.0%. Since the

air temperature was systematically more underestimated by the

Kriging algorithm than dew point, the resulting relative humidity

is systematically overestimated: the true value is outside of the

interquartile prediction range for 8 out of the 26 weather stations.

In File S1, detailed predictions and Kriging error distributions of

dew point and relative humidity are presented for each weather

station.

In our algorithm, the error of relative humidity is the

combination of the Kriging (interpolation) error and the support-

ing climate layer error. The climate layer error for air temperature

is that of the WorldClim data set (less than 1uC), and the climate

layer error for the dew point is related to the lapse rate fit. The

Kriging error is at most the intrinsic variability of the data set. In

Figure 12a, we present the average 10-day variability of the

Figure 10. Cross-validation of air temperature Kriging estimates across Madagascar. (Left) For each weather station, the observed
absolute error distribution (blue) is compared with the median error distribution predicted by the Kriging interpolation method (red). The percentiles
corresponding to the different features of the boxplot are explained in the legend. (Right) Index of weather station location in Madagascar.
doi:10.1371/journal.pone.0094741.g010
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relative humidity for weather stations across Africa. In Figure 12b,

we combine this variability taking a fixed climate layer error of

1uC for both dew point and air temperature in order to estimate

what average maximum error of our interpolation algorithm could

produce in other regions. We note that the largest driver of error is

the variability of the relative humidity. The combined standard

error, which varies between 5% and 12.5%, is applicable only far

from weather stations. In regions of higher weather station density,

the climate layer and Kriging errors will decrease. The relative

humidity in coastal areas varies less than the in-land relative

humidity.

In our Madagascar example (Figure 6), we observe that the

environmental dew point lapse rate is season dependent (as

expected [85]), and is larger than the air temperature lapse rate,

except during the dry season. This should be contrasted with the

moist adiabatic lapse rate, which is typically smaller than the

environmental lapse rate, and corresponds to the rate at which a

‘‘parcel of air’’, saturated with moisture, will cool when it rises.

The altitude at which the air temperature equals the dew point

and moisture starts to condense is called cloud base. By

comparison, the environmental dew point lapse rate we calculate

includes the effect of orographic precipitation of the average

Figure 11. Cross-validation for relative humidity Kriging estimates across Madagascar. (Left) cross-validation error distributions for dew
point, and (right) cross-validation errors for relative humidity. The percentiles corresponding to the different features of the boxplot are explained in
the legend.
doi:10.1371/journal.pone.0094741.g011

Figure 12. Relative humidity, 10-day variability, and combined error. (A) 10-day variability of relative humidity reported by weather stations
across Africa (from GSOD database [75]), averaged over the 2001–2010 reporting period. Size of filled circles proportional to the reporting frequency
of the station; 10-day variability on a green color scale. (B) By combining the 10-day variability and climate layer error, we obtain a combined average
error on relative humidity that is indicative of what the average maximum Kriging error would be.
doi:10.1371/journal.pone.0094741.g012
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climate in the region. In this case, the relative humidity tends to

decrease with altitude, except during part of the dry season.

The interpolated dew point can in some situations be greater

than the interpolated air temperature. When that is the case, the

interpolated relative humidity will be greater than 100%; the user

of the algorithm may then cap the calculated value to 100%, or

use it as an indication that precipitation may have taken place in

that area.

Land temperature
We have tested our method in three countries: Madagascar,

Nigeria, and India. Our method can limit the number of pixels for

which it is not possible to determine, by Fourier transform, a mean

temperature for all days of the year; we refer to them as

pathological pixels. These pixels are completed using neighboring

valid pixels. For Madagascar and Nigeria, we were able to

complete missing all pixels using this method. In the southern

region of India however, our method fails due to the presence of

large, contiguous areas of pathological pixels resulting from the

Monsoon.

During the day, land surface temperature correlates with land

cover type. In a region of Madagascar, Figure 13a shows the

average daytime land surface temperature for January 1st and

Figure 13b shows the MODIS Type 1 land cover product. The

demarcation between high and low land surface temperature

corresponds to the demarcation between low and high-density

forest canopy areas. By comparison, this correlation is weaker for

nighttime measurements. At night, the land surface temperature

correlates with altitude in the same way that air temperature does.

In the same region of Madagascar, Figure 13c shows the average

nighttime land surface temperature for January 1st and Figure 13d

shows altitude. While land cover type and altitude are correlated

in this region, nighttime land surface temperature measurements

are more correlated with altitude than they are with land cover

type.

Figure 13. Daytime and nighttime land surface temperature. (A–B) Average land surface temperature in a region of Madagascar for January
1st during the day (at approximately 2 pm) and at night (approximately 2 am) from MODIS aboard the AQUA satellite. (C) Land cover type 1 index
classification from the MODIS 12 product [78]. The dominant land cover classification in this region are evergreen broadleaf forest (index 2), savannas
(index 9), woody savannas (index 8), barren or sparsely vegetated (index 16), and closed shrubland (index 6). (D) Altitude of the region from the
WorldClim data set [64]. Daytime land surface temperature correlates with land cover type; nighttime land surface temperature correlates with
altitude.
doi:10.1371/journal.pone.0094741.g013
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Rainfall
Comparing the rainfall climate layer derived from the RFE 2.0

data set to other climate layers, e.g., CRU 2.1 [86–88], GPCC

[89], and WorldClim [64], can also provide information on the

RFE 2.0 accuracy. For example, in Figure 14, we show that all

four climate layers are consistent with each other during the rainy

season (January) in Madagascar. There are some differences

among the interpolated climate layers either due to different

weather stations being used or different interpolation methods, but

the RFE 2.0 climate layer compares very well with all three.

During the dry season (July) however, all four climate layers differ,

the RFE 2.0 most significantly. The WorldClim average rainfall is

much more limited to low altitude regions on the east coast of

Madagascar than the GPCC and CRU 2.1 climate layers because

it includes both latitude and altitude as interpolation covariates. By

comparison, the RFE 2.0 climate layer shows signs that 10 years

are not sufficient to average over the inhomogeneity of rainfall.

Nonetheless, further support for the RFE 2.0 data set comes from

its good agreement with the GPI+GTS satellite climate layer

which use data over a much longer period (1982–2010) [82].

The length of periods of drought are important in modeling

vector-borne diseases because vector habitat is commonly rain-fed

or rain-dependent, i.e., puddles, rice fields, river banks, etc. In

Figure 15, we compare the longest dry period of the GPCC

interpolated rainfall time series with the longest dry period in the

RFE 2.0. We see that the RFE 2.0 contains significantly longer dry

periods. In the GPCC time series, because it results from spatial

interpolation of weather station measurements, any weather

station recorded rainfall during a 24 hour period effectively

extends in the neighboring region and reduces the probability of a

rain-free day.

Discussion

Air temperature
Kriging can compensate for the inhomogeneous distribution of

weather stations and their bias towards populated areas. Kriging

estimates the spatial distribution interpolation error, it compensate

for the inhomogeneous distribution of weather stations (e.g., their

bias towards populated areas), and it can take into account

measurement error and inhomogeneity at short length scales.

However, Kriging can be numerically unstable and is more

technically complex to implement. By comparison, spline or

distance-based methods are simpler and provide good accuracy,

but they cannot estimate the spatial or temporal dependence of

Figure 14. A comparison of rainfall climate layers. Average January rainfall across Madagascar according to (A) the CRU2.1 CL (1991–2000) data
set [88], (B) the GPCC (1995–2004) data set [89], and (C) the WorldClim (1950–2000) data set [64] compared to (D) the average rainfall from the RFE 2.0
(2001–2010) data set [58]. Average July rainfall according to (E) the CRU2.1 CL (1991–2000) data set [88], (F) the GPCC (1995–2004) data set, and (G)
the WorldClim (1950–2000) data set compared to (H) the average rainfall from the RFE 2.0 (2001–2010) data set. There is good agreement between
the RFE 2.0 derived climate layer and other established climate layers during the rainy season (e.g., January), but during the dry season (e.g., July) all
four climate layers differ, the RFE 2.0 most significantly.
doi:10.1371/journal.pone.0094741.g014
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interpolation error, opting instead to report the median (or

average) cross-validation error.

An earlier comparison of the accuracy of remote sensing and

spatial interpolation of air temperature data set had shown spatial

interpolation to be more accurate [90]. However, a new

comparison is warranted to evaluate the performance of spatial

Kriging and of novel satellite instruments which measure air

temperature directly. Multiple weather satellites are currently

capable of estimating atmospheric temperature as a function of

altitude. The horizontal resolution of these instruments is typically

on the order of 50 km (AIRS, AMSU-A, IASI) [91], which is a

fraction of the half-correlation distance of air temperature in the

tropics [92], and significantly smaller than the distances between

weather stations in Africa (typically 100–300 km). Some instru-

ments have horizontal resolutions down to 5 km, e.g., MODIS 7,

but their products are experimental [69,70,93,94] and their time

span can be short (2–5 years) which limits their use for modeling.

For AMSU+HIRS, the root mean squared error (RMSE) error on

surface temperature is 3uC [70]. For MODIS 7, the RMSE on

surface temperature is below 4uC [93]. By comparison, the median

RMSE of Kriged air temperature was 1.47uC over Madagascar.

Overall, spatial interpolation of weather station measurements is

an accurate and reliable method to obtain air temperature, even in

Africa. In Madagascar, the low density of weather stations does

limit the interpolation accuracy, but it has significantly better

accuracy than remote sensing products.

In some parts of the world, it is possible to use the land surface

temperature as a proxy for surface air temperature. In the Italian

Alps, for example, linear relations were established between air

temperature measured at weather stations and land temperature

measured using a satellite. These linear relations were then used to

convert remote sensing measurements of land surface temperature

away from weather stations to estimates of the surface air

temperature with a RMSE of 1.9uC [95]. Similarly, a statistical

model was used to estimate air temperature in Portugal using land

surface temperature measurements from MODIS with a RMSE of

1.8uC [63]. In Africa however, a similar analysis was performed in

four different countries and a robust relationship between air and

land temperature could only be obtained during the night [46],

when air and land temperature are more closely related.

Relative humidity
Relative humidity can be calculated by combining measure-

ments of air temperature and dew point. In some contexts, The

interpolation of relative humidity between weather stations is

typically performed by individually interpolating air temperature

and dew point measurements, and then combining them [96,97];

a direct interpolation of relative humidity is more difficult [98]. In

some contexts, when measurements of dew point are not available,

the minimum air temperature during the day can be an acceptable

proxy [99].

Few examples of dew point interpolation are available for

comparison. Kim et al. [96], using a distance-based interpolation

method, quote a mean absolute interpolation error for dew point

of 1.3uC; this is comparable to our median mean absolute error of

1.25uC.

A possible improvement to the interpolation of the dew point

would be to develop a supporting dew point climate layer that

includes all weather stations (not only the ones reporting on a

specific day). Alternatively, remote sensing measurements of water

vapor profile from MODIS 7 could also be used to create a

relative humidity data set with improved spatial resolution; recent

work has shown that an accurate relative humidity data set can be

obtained in this way [69,94,100].

Land temperature
Cloud cover or heavy aerosol in the satellite line-of-sight can

lead to erroneous measurement of land surface radiance.

Instrument failure, relief obstructing the line-of-sight, or the

bulging of the earth around the equator can also create large

regions with missing measurements in remote-sensing data sets. To

limit their impact, NASA offers 8-day and 30-day averages of their

remote sensing measurements as products. These products

however average day-to-day variability and reduce the amplitude

Figure 15. Longest dry spell during a 10-year period. The (A) GPCC (1995–2004) data set [89] contains significantly shorter dry periods than
the (B) RFE 2.0 (2001–2010) data set [58]. In the GPCC time series, any rainfall recorded during a 24 hour period at a weather station extends in the
neighboring region (due to spatial interpolation), thus effectively reducing the probability of rain-free day.
doi:10.1371/journal.pone.0094741.g015
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of seasonal oscillations. There are a number of areas where 8-day

composites are not sufficient [101,102], and even 30-day

aggregates can fail in particularly cloudy regions or periods.

Furthermore, aggregates are biased towards clear-sky values. This,

for example, overestimates growing-degree days when 16-day

averages are used instead of daily values [103], or it can lead to

errors when estimating the phase and amplitude of seasonal

oscillations [102].

There is an advantage in analyzing the raw data directly and in

estimating the value of missing measurements. The extraction of

Fourier components was shown to be more precise when missing

measurements where linearly interpolated using adjacent mea-

surements in time, on a per pixel basis, than using the 8-day

aggregated data [102]. This is distinct from the completion of a

map using spatially adjacent pixels, for the same time period.

Spatial interpolation of the missing values, using volumetric splines

with altitude as a covariate, was recently shown to be effective at

estimating the average temperature in the Italian Alps [101]. By

comparison, our algorithm estimates missing pixel values using

both temporal and spatial data. It extracts the seasonal variations

in land temperature without requiring interpolation of missing

pixels, which improves the accuracy of the Fourier analysis when

large missing regions are present. The seasonal variations are

extracted independently for each pixel, thus including the effect of

local variables like altitude, land cover type, soil content, and

exposure.

In order to improve the Kriging prediction, spatial information

and additional covariates (e.g., land cover type, cloud cover,

altitude, distance from the ocean, or interpolated air temperature)

could be integrated [104]. With the large amount of spatial data

involved, spatial Kriging can become a rate limiting step, but one

approach to this addressing this problem would be to sample only

a fraction of the valid measurements [101]. However, extended

areas with persistent cloud cover are likely to remain a problem for

remote sensing data completion algorithms.

Rainfall
Interpolation of weather station rainfalls reduces the inherent

temporal variability and effectively integrates over the natural

spatial variability of rainfall [105]. By comparison, the RFE 2.0

remote sensing rainfall estimator can capture the inherent spatial

and temporal inhomogeneity of precipitation better. This

variability of rainfall has important effects in modeling vector

population. During the vector life cycle, large rainfall can kill a

large number of larvae, and long periods without rain can

eliminate much of the rain fed habitat which can then take a

longer time to growth, when starting at a lower set point, than if

the rainfall had stayed medium.

The RFE 2.0 product is however limited in its ability to capture

warm cloud precipitation, e.g., orographic (relief) precipitation,

due to the nature of the satellite measurements used. Depending

on the complexity of the terrain, this satellite product may

systematically underestimate the amount of rainfall. Orographic

effects are however inherently difficult to capture and they

represent a topic of ongoing research [64,65,106,107]. For

example, neither the standard GPCC [89] nor the CRU 2.1

[88] interpolated rainfall data sets capture relief-related precipi-

tation patterns. One possible improvement to this data set would

be to try to capture warm cloud precipitation related to

topography by using the PRISM method which was devised to

improve weather station interpolation [106]. Alternatively, some

of the orographic effects could be captured by using a large

number of weather stations as well as latitude and altitude as

interpolation covariates [64].

Conclusions

We have presented robust algorithms to construct an environ-

mental data set where weather data availability is most limited,

i.e., in Africa. The air temperature and relative humidity data

were constructed using statistical interpolation techniques in order

to quantify the precision of each component, an uncommon

feature of environmental data sets which allows the user to

propagate input uncertainty through their calculations.

Our data set was designed to capture important aspects of the

variability of climate. The daily temporal resolution and the

kilometer-scale of our air temperature, humidity, rainfall, and land

temperature time series, for example, captures both multi-year

variability as well as the spatial correlation of climate. In the

context of dynamic vector disease modeling, accuracy in input

variability leads to, e.g., more realistic estimates of risk to an

eradication campaign.

In addition, the land temperature data completion algorithm

can be used for other non-climate related periodic data sets.

Possible avenues to extend this work would be to study the use of

remote sensing products to increase the spatial resolution and the

accuracy of our air temperature and relative humidity data sets.

Additionally, the land temperature spatial interpolation method

could be improved by sampling the measurements neighboring

missing regions in order to reduce the amount of computation

needed to perform Kriging.
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