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Abstract

The human intestine harbors a diverse community of microbes that promote metabolism and

digestion in their symbiotic relationship with the host. Disturbance of its homeostasis can result in

disease. We review factors that disrupt intestinal homeostasis and contribute to non-alcoholic fatty

liver disease (NAFLD), steatohepatitis (NASH), alcoholic liver disease, and cirrhosis. Liver

disease has long been associated with qualitative and quantitative (overgrowth) dysbiotic changes

in the intestinal microbiota. Extrinsic factors, such as the Western diet and alcohol, contribute to

these changes. Dysbiosis results in intestinal inflammation, a breakdown of the intestinal barrier,

and translocation of microbial products in animal models. However, the contribution of the

intestinal microbiome to liver disease goes beyond simple translocation of bacterial products that

promote hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal

environment and host factors are equally important in the pathogenesis of liver disease. We review

how the combination of liver insult and disruptions in intestinal homeostasis contribute to liver

disease.
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Introduction

The intestine and its microbiota (bacteria and other microbes) have a symbiotic relationship.

The microbiota contributes to digestion, synthesis of vitamins, and resistance to intestinal

colonization by pathogens, but also contains potentially pathogenic bacteria. Disruption of

intestinal homeostasis and alterations in the intestinal microbiome contribute to the

pathogenesis of many disorders, including liver disease. How do disturbances in the

intestinal microbiome (detected by analyses of its metagenome and metabolome) contribute
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to liver disease? We discuss how host and dietary factors, including alcohol, affect the

composition of the intestinal microbiome and development of liver diseases, and in turn,

how liver disease can alter the enteric microbiome. We review alterations in the composition

of the intestinal microbiome associated with several liver diseases. These studies were

performed primarily in patients with disease (see Tables 1 and 2). The functional

consequences of the intestinal microbiome for each of these diseases, based primarily on

animal models, are then reviewed in the following section.

Intestinal Microbiome Composition and Liver Disease

Non-alcoholic Fatty Liver Disease (NAFLD) and Steatohepatitis (NASH)

NAFLD is the hepatic manifestation of the metabolic syndrome. NAFLD is generally a

benign disease; approximately one third of the US population has hepatic steatosis1. The

prevalence of NASH among a general medical population diagnosed with NAFLD is 30%2.

NASH is characterized by the development of liver inflammation and fibrosis. Patients with

NASH have a high likelihood of developing advanced fibrosis and cirrhosis; it has been

estimated that about one third of cases of early-stage NASH will progress to stage 3 or 4

fibrosis (cirrhosis) over 5–10 years3.

Dietary factors and changes in diet are determinants of the composition of the microbiome4.

Although patients with NAFLD are often obese and insulin resistant, we focus on published

studies of patients with documented liver disease, rather than obesity. The fecal microbiota

in NAFLD and NASH patients has been assessed using culture-independent techniques such

as quantitative PCR and deep sequencing of a conserved region in the bacterial 16S rRNA

gene5–7. Details about dysbiosis associated with NAFLD and NASH are summarized in

Table 1. Microbiota samples from patients with NAFLD or NASH have a lower proportion

of members of the family Ruminococcaceae than healthy subjects. Escherichia is the only

abundant genus of bacteria in the intestinal microbiota that is significantly disproportionate

between obese children and pediatric patients with NASH7. In contrast, adult patients with

NASH had a significantly higher percentage of Clostridium coccoides than patients with

biopsy-proven NAFLD6. However, studies comparing the bacterial taxonomic composition

of patients with NAFLD vs those with NASH produced variable and even contradictory

findings. Possible reasons for discrepant results include small number of subjects included in

the studies, differences in cohorts (age, sex, ethnicity, geographical location, medication

use), insufficient documentation of liver disease, and differences in methodology. To

determine whether patients with NAFLD and NASH have distinct compositions of the

intestinal microbiome, studies (ideally longitudinal) are needed of larger, better

characterized cohorts. Identifying specific microbial compositions of these patients could

improve our understanding of intestine–liver interactions and lead to fecal biomarkers for

NAFLD and/or NASH.

Small bowel bacterial overgrowth is a disorder in which abnormally large numbers of

bacteria grow in the small intestine. Patients with obesity or NAFLD have a higher

prevalence small intestinal bacterial overgrowth8, 9. Intestinal permeability and bacterial

overgrowth correlate with severity of steatosis, but not fibrosis or hepatic inflammation,

based on liver biopsy analysis8. Small intestinal bacterial overgrowth was also present in
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50% of patients with NASH, which is significantly higher than in healthy controls, matched

for sex and age10. In these studies, patients with small intestinal bacterial overgrowth were

identified by breath tests. However, researchers have debated whether breath tests accurately

detect this disorder. Total bacterial counts in the feces, based on real-time PCR, did not

differ between healthy subjects and persons with NAFLD or NASH6. Further studies are

needed to determine whether fecal bacterial counts actually correlate with the amount of

microbes present in the small intestine. Culture-and breath test-independent methods are

needed to reassess the prevalence of intestinal bacterial overgrowth in patients with NAFLD

or NASH.

Alcoholic Liver Disease

Alcohol abuse is one of the leading causes of chronic liver disease. Chronic alcoholic liver

disease may progress from simple steatosis to steatohepatitis, liver fibrosis, and in 15%–

40% of patients, cirrhosis. Patients with only alcoholic fatty liver disease usually do not

present with any clinical symptoms and their liver continues to function well11, 12.

Research into the role of the microbiome in alcoholic liver disease is unfortunately not as

advanced as that for obesity or fatty liver disease. The mucosa-associated bacterial

taxonomy was evaluated in patients with alcoholic cirrhosis and alcoholics without liver

disease using 16S rRNA gene sequencing. The proportion of Bacteroidaceae was lower in

samples from alcoholic patients than from non-alcoholic individuals13.

Although microbiome studies in humans are important to associate distinct compositions of

the intestinal microbiome with different disease states, studies in animal models, under

carefully controlled conditions, offer some advantages. Preclinical studies allow researchers

to control for age, sex, environment, diet, and genetic background. Littermates can be

compared in mouse studies. Pups are typically colonized with the microbes they first

encounter, typically from their mothers,14 so littermates usually have the same microbiota

composition. Changes in the microbiota can be monitored in response to different

environmental factors, and compared among mice that had the same initial microbial

composition.

For example, in the Tsukamoto-French model of alcoholic liver disease, mice are placed on

specific liquid diets and given intragastric infusions of ethanol, whereas control littermates

are placed on the same diet but instead given an isocaloric amount of dextrose. Using this

system, researchers have been able to detect quantitative and qualitative changes in the

microbiome associated with ethanol intake. Bacterial overgrowth was observed along almost

the entire gastrointestinal tract; the dysbiosis was characterized by significant reductions in

proportions of probiotic bacteria such as Lactobacillus, Pediococcus, Leuconostoc and

Lactococcus15. An alcohol-associated decrease in the number of intestinal Lactobacillus,

confirmed by quantitative real-time PCR,16 was also observed in the Lieber DeCarli diet

model of alcohol feeding for 8 weeks (unpublished data). Alternatively, several studies have

reported that administration of probiotic Lactobacillus reduces features of alcoholic liver

disease in animal models17–19. A small clinical trial has also demonstrated improve alcohol-

induced liver injury in patients taking probiotics20. Similar to observations made in animal

models, aerobic and anaerobic bacterial cultures of jejunal aspirates from patients who
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chronically abuse alcohol were found to have bacterial overgrowth21. Excessive alcohol

intake is therefore accompanied by dysbiosis and an increased intestinal bacterial load,

based on clinical and preclinical studies.

Multiple factors are likely to contribute to changes in the intestinal microbiome during

development of alcoholic liver disease. These might include small intestinal dysmotility22,

changes in gastric acid secretion,23 and alterations to the intestinal innate immune response.

Antimicrobial molecules, which are part of the innate immune response, are secreted from

enterocytes or intestinal Paneth cells. In particular, the antimicrobial molecules regenerating

islet-derived (Reg)3b and Reg3g are reduced in the small intestines of mice following 3

weeks of intragastric ethanol feeding15. Further studies are needed to determine if and to

what extent an impaired innate immune response contributes to disease progression. The

commensal microbiota not only produces ethanol, but also metabolizes it24. It is not clear

whether ethanol, as a dietary component or as an energy source for certain bacterial strains,

directly alters the microbiota.

Cirrhosis

Liver fibrosis may result in end-stage liver disease or cirrhosis, which eventually disrupts

the metabolic functions of the liver. Although patients with hepatic fibrosis are often

asymptomatic, development of cirrhosis in these patients is the major determinant of

morbidity and mortality25. Major clinical complications are infections, ascites, renal failure,

variceal hemorrhage, and hepatic encephalopathy. Patients with these complications have a

poor prognosis and liver transplantation is often indicated26.

Several studies assessed the taxonomic composition of the intestinal microbiota in patients

with cirrhosis27–32 (see Table 2). A common feature of cirrhosis is an increase of potentially

pathogenic bacteria, accompanied by reduced proportions of beneficial bacteria. Fecal

microbial communities are similar among patients with cirrhosis of different etiologies.

Therefore, features of end-stage liver disease, such as reduced bile flow, might determine

the shape of the intestinal microbiome. However, fecal microbial communities from patients

with alcoholic cirrhosis have significant increases in the family of Prevotellaceae compared

to patients with hepatitis B-related cirrhosis or healthy individuals, based on sequencing of

the common 16S rRNA gene region of bacteria28. Etiology (particularly an alcohol

association) therefore appears to contribute to the composition of the intestinal microbiome

in patients with end-stage liver disease.

Most patients with cirrhosis have intestinal bacterial overgrowth, demonstrated by

quantitative analyses of bacterial cultures from jejunal aspirates33, 34. So, they not only have

taxonomic differences in microbial communities, compared to people without cirrhosis, but

also an increased intestinal burden of bacteria. Several factors contribute to intestinal

bacterial overgrowth in patients with cirrhosis. These include impaired motility of the small

intestine35, reduced bile flow27, and altered secretion of immunoglobulin A27 and

antimicrobial molecules36. In rats with cirrhosis, ascites, and translocation of viable bacteria

to mesenteric lymph nodes, Paneth cells produce lower levels of defensins and Reg3

molecules, compared to those without bacterial translocation. This reduction is accompanied

by reduced antimicrobial activity against Enterobacteriaceae36. Little is known about how
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Paneth cell function is impaired during development of cirrhosis. Compromised intestinal

host defense might therefore contribute to qualitative and quantitative changes in the enteric

microbiome associated with end-stage liver disease. New sequencing techniques to analyze

the microbiome should help determine the contribution of these factors to compositional

changes in the microbiota.

Functional Consequences of Changes in the Intestinal Microbiome

NAFLD and NASH

Most patients with NAFLD are obese and diabetic. Obesity and insulin resistance are risk

factors for fatty liver disease and are associated with changes in the intestinal

microbiome37, 38. The intestinal microbiome is an important factor in the development of

obesity; germ-free mice are protected from high fat diet-induced weight gain and

obesity39, 40.

Changes in bacterial taxonomy might not be as important as changes in bacterial genes

(metagenomics and metatranscriptomics) in the development of NAFLD and NASH41.

Obesity is accompanied by an intestinal metagenome that has an increased capacity to

collect energy from the host diet. Bacterial enzymes aid in digestion of otherwise

indigestible dietary polysaccharides and extraction of calories from them37. In addition,

enteric bacteria suppress the synthesis of fasting-induced adipocyte factor (Fiaf; also known

as angiopoietin-like 4) and secretion from the small intestine, resulting in increased activity

of lipoprotein lipase (LPL) and increased accumulation of triglycerides in the liver39, 40.

This process provides a direct link between the intestinal microbiome and fat deposition in

the liver.

Complex interactions between the enteric microbiome and the host are often mediated by

metabolites. Several changes in bacterial metabolites have been associated with obesity, and

in particular, with NAFLD. One of these metabolites is ethanol, a product of the intestinal

microbiome. Obese animals have higher blood concentrations of ethanol, determined by

breath tests, than lean animals42. Alcohol is absorbed and reaches the liver via the portal

blood. Ethanol causes triglyceride accumulation in hepatocytes43, and might also provide a

second hit to livers that have already accumulated fat, via production of reactive oxygen

species and initiation of liver inflammation. Obese children with NAFLD do not have

increased blood levels of ethanol, whereas pediatric patients with NASH do7. Meta-

transcriptomic and metabolomic studies of intestinal contents are needed for further analysis

and confirmation.

Choline is another important metabolite that has been implicated in the pathogenesis of

NAFLD and NASH. Choline deficiency in the diet has been linked to liver disease for a long

time44. Choline-deficient diets are used to create rodent models of NASH. However, until

recently, it was not known that choline deficiency could occur under pathophysiologic

conditions. High-fat diets lead to formation of intestinal microbiota that convert dietary

choline into methylamines, reducing circulating plasma levels of phosphatidylcholine to

produce similar effects of choline-deficient diets and causing NASH45. Phosphatidylcholine

is necessary for the assembly and secretion of very-low-density lipoprotein (VLDL)46.
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Microbiota-induced choline deficiency therefore results in triglyceride accumulation in

hepatocytes, secondary to lower hepatic secretion of VLDL, whereas the increase of plasma

level of trimethylamine (TMA) and its hepatic metabolism to trimethylamine-N-oxide

(TMAO) have been linked to atherosclerosis and cardiovascular disease47, 48. People with

choline-deficient diets develop fatty liver, based on MRI imaging studies. However, a

single-nucleotide polymorphism in the promoter region of PEMT (rs12325817), which

affects de novo synthesis of phosphatidylcholine, is required for development of a fatty

liver49. Taken together, diet-induced changes in the intestinal microbiome can produce

dramatic changes in metabolites in the host.

Microbial products contribute to the pathogenesis of NAFLD and NASH. Children with

NAFLD had markedly higher serum concentrations of endotoxin than control subjects50.

Endotoxemia was also observed in patients with NASH51. The most convincing evidence

for the importance of translocated microbial products comes from preclinical studies of

NAFLD. Signaling via toll-like receptor (TLR)4, a receptor for lipopolysaccharide (LPS), in

hematopoietic-derived cells is required for the development of liver steatosis, but not for the

development of obesity in mice52. Mice deficient in sensing pathogen-associated molecular

patterns (PAMPs) or downstream signaling are resistant to NASH53, 54. Microbial products

reach the liver via the portal circulation and cause inflammation, among other effects.

Genetically obese mice are more sensitive to endotoxin-induced hepatotoxicity and develop

steatohepatitis after exposure to low doses of LPS55. Increased intestinal permeability and

disruption of the mucosal barrier are required for microbial products to translocate from the

intestinal lumen to extra-intestinal space. Patients with NAFLD have significantly increased

intestinal permeability and alterations in the intestinal tight junctions, compared to healthy

individuals8. Bacterial overgrowth is particularly important in patients with a leaky gut

because it increases the luminal amount of PAMPs.

But what causes the onset of intestinal barrier dysfunction? Intestinal inflammation might

cause intestinal leakage and translocation of microbial products. Obesity is accompanied by

inflammation in the colorectal mucosa; in obese individuals, diet-induced weight loss

reduces colorectal inflammation and alters expression of inflammatory and cancer-related

genes56. In mice, high-fat diets increase activity of the transcription factor NFκB and

expression of tumor necrosis factor (TNF)α in the small intestine57. Intestinal inflammation

depends on the enteric microbiota; germ-free mice are protected from inflammation of the

small intestine57. More direct evidence for dysbiosis-induced intestinal inflammation and

bacterial translocation has come from studies of mice deficient for Nlrp3 and Nlrp6. These

mice cannot form cytoplasmic multi-protein complexes composed of nucleotide-binding

domain and leucine-rich repeat containing proteins (NLRPs), called inflammasomes.

Inflammasomes are sensors of exogenous PAMPs or endogenous damage-associated

molecular patterns (DAMPs) that regulate cleavage of precursors to inflammatory cytokines

such as pro-interleukin (IL)1β and pro-IL18. In mice, loss of Nlrp3 and Nlrp6

inflammasomes is associated with intestinal dysbiosis and eventual inflammation of the

colon, via the chemokine CCL5. Dysbiosis is characterized by an increase in Prevotella58.

Subsequent microbe translocation leads to increased accumulation of bacterial products such

as LPS and bacterial DNA in the portal vein. These bacterial products induce an
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inflammatory response in the liver that promotes progression of NAFLD to NASH.

Importantly, this phenotype can be transmitted, by co-housing wild type and NASH-prone

mice58. Dysbiosis therefore induces colonic inflammation and bacterial translocation,

causing simple hepatic steatosis to turn into NASH. Dysbiosis is therefore a significant

contributor to liver disease. This study also demonstrated how features of the host can

determine the composition of the microbiome.

In summary, diet- and host-induced changes in the intestinal microbiota contribute to the

onset of NAFLD and NASH (Figure 1). Changes in the intestinal microbiota can affect the

liver via translocated microbial products or absorbed bacterial metabolites. Alternatively,

direct host–microbiota interactions in the intestine alter intestinal homeostasis, affecting the

liver as distant organ.

Alcoholic Liver Disease

A prominent feature of alcohol abuse is disruption of the intestinal barrier. Animal models

of alcoholic liver disease have leaky gut16, and patients have impairments to the intestinal

barrier. There is debate over which marker is reliable for identification of patients with leaky

intestine. Arguably the best method to assess increased intestinal permeability is direct

measurement of bacterial products that originate only from the intestinal lumen, and must

therefore have translocated into the extra-intestinal space, blood, and organs. Alcoholics

with no evidence of liver disease and patients with alcoholic hepatitis or alcohol-associated

cirrhosis have higher plasma levels of endotoxin than healthy controls59.

Does the intestinal microbiome initiate and mediate an increase in intestinal permeability?

Intestinal sterilization protects against alcohol-induced intestinal barrier leakage and

prevents bacterial translocation60, 61. Although mice that express nonfunctional Tlr4 are

protected from experimental alcoholic liver disease, levels of endotoxin in the portal vein

increase to levels similar to those of mice that express wild-type Tlr4, indicating that Tlr4

does not control intestinal permeability62.

So how might the intestinal microbiota increase intestinal permeability? Intestinal bacteria

metabolize ethanol and produce acetaldehyde63. Ethanol and its metabolic derivative,

acetaldehyde, disrupt tight junction integrity64. The intestinal microbiome also synthesizes

ethanol, which might have deleterious effects on the intestinal barrier. Alternatively, a

decrease in commensal probiotics could contribute to loss of the protective tight junction

barrier65. A mast cell membrane stabilizer prevents ethanol-induced epithelial barrier

alteration in vivo61. Intestinal inflammatory cells such as mast cells might therefore

contribute to the onset of a leaky intestine, and could be activated by qualitative and/or

quantitative changes in the microbiome. Further metagenomic and metabolomic studies are

needed to determine the functional contribution of the intestinal microbiome to barrier

dysfunction and thereby alcoholic liver disease. Alcohol-induced liver disease itself could

decrease the intestinal barrier, by increasing systemic levels of IL1β or TNFα, which disrupt

tight junctions66. It is not clear to what extent changes in liver function contribute to

mucosal barrier defects.
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Intestinal bacterial overgrowth and dysbiosis are important factors in the pathogenesis of

alcoholic liver disease in patients with leaky intestine. Increased intestinal permeability

facilitates translocation of microbial products from the intestinal lumen to extraintestinal

organs. Mice that are protected from bacterial overgrowth have decreased alcohol-induced

liver disease despite leakier guts16. Similarly, rats fed non-absorbable antibiotics that reduce

the load of Gram-negative bacteria in the intestine have lower systemic levels of endotoxin

and develop less-severe liver disease following ethanol administration60. Ethanol-induced

liver inflammation and injury were also significantly lower in mice that express

nonfunctional Tlr4 compared with mice that express the wild-type protein62, providing

further evidence for the role of bacterial products in alcoholic liver disease.

Microbial products translocate from the intestine to the liver in humans and animal models

after ethanol intake. In patients or animals with leaky intestine, the total intraluminal load of

enteric bacteria determines the amount of translocated bacterial products. PAMPs reach the

liver via the portal system. Alcohol, as an initiating liver insult, and microbial products

might synergize to promote progression of liver disease. Changes in the intestinal

microbiome (particularly bacterial overgrowth) and increased bacterial translocation

contribute to alcoholic liver disease (see Figure 2).

End-stage Liver Disease

The intestinal microbiome has been implicated in complications of cirrhosis such as hepatic

encephalopathy and infections. Increased levels of endotoxin, systemic inflammation, and

production of ammonia (a bacterial byproduct) contribute to pathogenesis of hepatic

encephalopathy67. Intestinal decontamination with non-absorbable antibiotics such as

rifaximin is effective treatment for subclinical and overt hepatic encephalopathy68, 69.

Bacterial translocation occurs in healthy individuals and is important for immune system

development, but can also be harmful. Translocation of microbial products contributes to

progression of NAFLD, NASH, and alcoholic liver disease. In patients with cirrhosis,

bacterial translocation induces inflammation and hemodynamic derangement70, and can

cause serious infections, with reported 38% mortality71. Infections such as spontaneous

bacterial peritonitis and bacteremia develop in patients with end-stage liver disease, caused

by migration of intestinal bacteria into the peritoneal cavity or circulation.

Several mechanisms contribute to intestinal translocation of bacteria in patients with

cirrhosis, such as a leaky intestinal barriers and immune deficits72. Some of these

mechanisms are closely related to the content of the intestinal microbiome. Most infections

(approximately 80%) are caused by Gram-negative bacilli–especially Escherichia coli70.

Interestingly, bacteria from the family Enterobacteriaceae (including E coli, Klebsiella,

Proteus, and Enterobacter) increase in the microbiota of patients with cirrhosis27, 28, 31, 32.

Small intestinal bacterial overgrowth in patients with cirrhosis was associated with systemic

endotoxemia and found to predispose animal models of cirrhosis to bacterial

translocation30, 31, 70. Overgrowth of a dysbiotic microbiota might make a major

contribution to translocation of viable bacteria and thereby infections. A small observational

study highlighted the clinical importance of intestinal bacterial overgrowth in patients with

decompensated cirrhosis. Intestinal decontamination with the non-absorbable antibiotics
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rifaximin reduced endotoxemia and reduced the severity of liver disease73. Randomized

placebo-controlled trials are needed to confirm these preliminary findings.

Other factors that contribute to bacterial translocation include intestinal inflammation and

changes in intestinal immune surveillance. Patients with liver cirrhosis were found to have

inflammation of the duodenum, which could promote leakiness74. Rats with cirrhosis have

increased numbers of activated CD103+ dendritic cells in the lamina propria and mesenteric

lymph nodes, with detectable bacterial DNA but no viable bacteria in the mesenteric lymph

nodes. In contrast, in rats with viable bacteria in mesenteric lymph nodes, CD103+ dendritic

cells did not appear to be activated, indicating tolerance and exhaustion. Intestinal

sterilization prevented bacterial translocation, and reduced the activation and function of

CD103+ dendritic cells, indicating that the intestinal microbiome, rather than the host, seems

to mediate the effects of bacterial translocation75.

Although the intestinal microbiota contributes to progression of liver disease in pre-cirrhotic

states, the pathologic functions of the intestinal microbiota change during advanced stages of

liver disease. Translocated viable bacteria and microbial products make important

contributions to clinical complications associated with end-stage liver disease. Bacterial

translocation, rather than failed liver function, could be the major determinant of mortality in

this patient cohort.

Interactions Between Liver and Intestine via Bile Acids

Bile acids mediate communication between the liver and intestine. They are produced as

glycine or taurine conjugates in the liver, from cholesterol, for secretion into the small

intestine. Conjugated bile acids are absorbed in the terminal ileum to return to the liver.

Intestinal bacteria in the large intestine generate secondary bile acids by deconjugation and

dehydroxylation. Bile acids are important not only for the absorption of dietary fats and

vitamins, they are also ligands for the nuclear receptor farnesoid X receptor (FXR) and the

G-protein coupled receptor TGR5. The intestine therefore communicates with the liver via

the entero-hepatic circulation.

Not surprisingly, germ-free rats have an altered bile acid profile, characterized

predominately by taurine-conjugated bile acids with relatively lower amounts of

unconjugated and glycine-conjugated bile acids76. Fecal samples from patients with

cirrhosis have reduced total bile acids, likely due to decreased bile flow. Interestingly, the

ratio between secondary and primary fecal bile acids is also decreased, possibly from

reduced microbial deconjugation77—bacterial gene expression studies are needed to confirm

this. Levels of conjugated and unconjugated bile acids are higher in the serum samples from

patients with cirrhosis—especially those with advanced-stage disease77. Changes in serum

bile acids have also been reported in experimental models of NASH and alcoholic liver

disease7879. It is not clear whether the microbiota contributes to these changes.

Bile acids have direct bacteriostatic effects; intestinal bacterial overgrowth might result from

the decrease in total fecal bile acids in patients with cirrhosis77. Administration of

conjugated bile acids to rats with cirrhosis normalized bile secretion and reduced intestinal

bacterial overgrowth and translocation80. Conjugated bile acids bind to FXR in intestinal
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epithelial cells, which increases production of the antimicrobial proteins angiogenin 1 and

RNase family member 4. These prevent bacterial overgrowth and promote epithelial cell

integrity81. Bile acids therefore inhibit bacterial proliferation directly and indirectly, by

modulating host cells expression of antimicrobial genes.

Microbial modification of bile acids is an important mechanism by which the microbiota can

interact with the host and affect not only liver disease, but other organs and metabolic

pathways. FXR and TGR5 have been implicated in the metabolic syndrome. Fxr-deficient

mice are protected from genetic and diet-induced obesity, but not hepatic steatosis82. The

FXR agonist obeticholic acid reduced markers of liver inflammation and fibrosis in patients

with type 2 diabetes mellitus and NAFLD in a phase 2 clinical trial83. Interestingly,

cholestatic liver fibrosis following bile duct ligation is lower in Fxr-deficient mice, but the

absence of Fxr had no effect on toxin-induced liver fibrosis84. Activation of Tgr5 by bile

acids in brown adipose tissue and muscle increased energy expenditure and attenuated diet-

induced obesity in mice85. The Tgr5 agonist INT-777 caused release of intestinal glucagon-

like peptide-1, and reduced adiposity and hepatic steatosis in mice placed on high-fat

diets86.

Therefore, the intestinal microbiota might contribute to liver disease by modifying intestinal

bile acids and regulating FXR and TGR5 signaling. Future studies should investigate how

changes in expression of bacterial genes and the bile acid profile affect the host via

modulation of FXR and TGR5 and contribute to liver disease.

Future Directions

The intestinal microbiome contributes to the onset and progression of alcoholic liver disease

and NAFLD, and mediates complications in end-stage liver disease. There appears to be an

association between intestinal dysbiosis and liver disease in patients. Changes in the

intestinal microbiome were found to cause liver disease mostly in animal models, and few

have been associated with metabolic and immunologic features of patients with NAFLD and

NASH. Future studies should assess microbial gene expression, proteins, and metabolites,

and focus on patients in particular. Increasing our understanding of the delicate homeostasis

between the intestine and its microbes could lead to new insights into the pathogenesis of

liver disease and therapeutic strategies. There is sufficient evidence to justify a rationale

attempt to modulate the intestinal microbiome to treat liver disease. The ultimate goal is to

restore eubiosis, which might restore intestinal homeostasis.
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FXR farnesoid X receptor

IL interleukin

LPL lipoprotein lipase

LPS lipopolysaccharide

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NLRP NLR family, pyrin domain containing

PAMP pathogen-associated molecular pattern

Reg3 regenerating islet-derived 3
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TNF tumor necrosis factor
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Figure 1. Effects of the Intestinal Microbiota on NAFLD and Progression to Steatohepatitis
High-fat diets (HFD) result in dysbiosis and intestinal bacterial overgrowth. Alterations in the intestinal microbiota increase

energy extraction and fermentation of dietary fibers into oligosaccharides, monosaccharides, and short chain fatty acids (SCFA),

respectively. Dietary choline is metabolized by the intestinal microbiota to TMA, resulting in choline deficiency. Hepatic

choline deficiency results in decreased VLDL efflux, producing hepatic steatosis. Changes in the microbiota also produce

ethanol (EtOH), which is absorbed and metabolized in the liver. The intestinal microbiota suppresses gene expression of Fiaf in

intestinal epithelial cells, resulting in enhanced activity of LPL and increased levels of free fatty acids (FFA). NLRPs regulate

microbial composition via changes of the effector protein IL18. Dysbiosis, in turn, causes CCL5-mediated disruption of tight

junctions in enterocytes. Increased intestinal permeability leads to translocation of microbial products to the liver and causes

inflammation by activating TLRs.
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Figure 2. Effects of the Intestinal Microbiota on Alcoholic Liver Disease
Suppressed secretion of antimicrobial peptides and proteins (AMP), and possibly EtOH itself, contribute to bacterial overgrowth

and dysbiosis. Qualitative changes in the microbiota are characterized by decreased Lactobacilli in experimental models of

alcohol-induced liver disease. An altered intestinal microbiota is able to produce ethanol and metabolize it into acetaldehyde.

Luminal or systemic ethanol and acetaldehyde disrupt tight junctions and increase intestinal permeability. An influx of microbial

products into the liver via the portal vein results in hepatic inflammation, which synergizes with ethanol to induce alcoholic liver

disease. EtOH and/or acetaldehyde-induced inflammation in the intestinal lamina propria might contribute to dysfunctional tight

junctions and reduced production of antimicrobial peptides and proteins by enterocytes.

Schnabl and Brenner Page 18

Gastroenterology. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schnabl and Brenner Page 19

T
ab

le
 1

C
ha

ng
es

 in
 th

e 
in

te
st

in
al

 m
ic

ro
bi

ot
a 

as
so

ci
at

ed
 w

ith
 N

A
FL

D
 a

nd
 N

A
SH

 in
 h

um
an

s

D
is

ea
se

C
om

pa
ri

so
n1

Im
pl

ic
at

ed
 M

ic
ro

bi
ot

a 
2

M
et

ho
do

lo
gy

R
ef

. 3

P
hy

lu
m

C
la

ss
O

rd
er

F
am

ily
G

en
us

H
ea

lth
y 

(n
=

30
)

N
A

FL
D

 (
n=

30
)

H
ea

lth
y 

vs
 N

A
FL

D
Fi

rm
ic

ut
es

B
ac

ill
i

L
ac

to
ba

ci
lla

le
s

L
ac

to
ba

ci
lla

ce
ae

 ↑
L

ac
to

ba
ci

ll
us

 ↑
16

S 
rR

N
A

 g
en

e
Py

ro
se

qu
en

ci
ng

St
oo

l s
am

pl
e

5

C
lo

st
ri

di
a

C
lo

st
ri

di
al

es
L

ac
hn

os
pi

ra
ce

ae
 ↑

R
ob

in
so

ni
el

la
 ↑

, R
os

eb
ur

ia
 ↑

, D
or

ea
↑

C
lo

st
ri

di
a

C
lo

st
ri

di
al

es
R

um
in

oc
oc

ca
ce

ae
 ↓

O
sc

ill
os

pi
ra

ce
ae

O
sc

il
li

ba
ct

er
 ↓

C
hi

ld
re

n:
H

ea
lth

y 
(n

=
16

)
O

be
se

 (
n=

25
)

N
A

SH
 (

n=
22

)

H
ea

lth
y 

vs
 O

be
se

B
ac

te
ro

id
et

es
 ↑

Pr
ev

ot
el

la
ce

ae
 ↑

P
re

vo
te

ll
a 
↑

16
S 

rR
N

A
 g

en
e

Py
ro

se
qu

en
ci

ng
St

oo
l s

am
pl

e

7

R
ik

en
el

la
ce

ae
 ↓

A
li

st
ip

es
 ↓

Fi
rm

ic
ut

es
 ↓

L
ac

hn
os

pi
ra

ce
ae

 ↓
B

la
ut

ia
 ↓

, C
op

ro
co

cc
us

 ↓
, R

os
eb

ur
ia

↓

E
ub

ac
te

ri
ac

ea
e

E
ub

ac
te

ri
um

 ↓

R
um

in
oc

oc
ca

ce
ae

 ↓

H
ea

lth
y 

vs
 N

A
SH

B
ac

te
ro

id
et

es
 ↑

Pr
ev

ot
el

la
ce

ae
 ↑

P
re

vo
te

ll
a 
↑

R
ik

en
el

la
ce

ae
 ↓

A
li

st
ip

es
 ↓

Fi
rm

ic
ut

es
 ↓

L
ac

hn
os

pi
ra

ce
ae

 ↓
B

la
ut

ia
 ↓

, C
op

ro
co

cc
us

 ↓

E
ub

ac
te

ri
ac

ea
e

E
ub

ac
te

ri
um

 ↓

R
um

in
oc

oc
ca

ce
ae

 ↓
O

sc
il

lo
sp

ir
a 
↓

A
ct

in
ob

ac
te

ri
a 
↓

B
if

id
ob

ac
te

ri
ac

ea
e 
↓

B
if

id
ob

ac
te

ri
um

 ↓

Pr
ot

eo
ba

ct
er

ia
 ↑

G
am

m
ap

ro
te

ob
ac

te
ri

a
E

nt
er

ob
ac

te
ri

al
es

E
nt

er
ob

ac
te

ri
ac

ea
e 
↑

E
sc

he
ri

ch
ia

 ↑

O
be

se
 v

s 
N

A
SH

Pr
ot

eo
ba

ct
er

ia
 ↑

G
am

m
ap

ro
te

ob
ac

te
ri

a
E

nt
er

ob
ac

te
ri

al
es

E
nt

er
ob

ac
te

ri
ac

ea
e 
↑

E
sc

he
ri

ch
ia

 ↑

H
ea

lth
y 

(n
=

17
)

St
ea

to
si

s 
(n

=
11

)
N

A
SH

 (
n=

22
)

H
ea

lth
y 

vs
 N

A
SH

B
ac

te
ro

id
et

es
 ↓

Q
ua

nt
ita

tiv
e

re
al

tim
e 

PC
R

St
oo

l s
am

pl
e

6

Pr
ot

eo
ba

ct
er

ia
E

nt
er

ob
ac

te
ri

ac
ea

e
E

sc
he

ri
ch

ia
 c

ol
i n

s

St
ea

to
si

s 
vs

 N
A

SH
B

ac
te

ro
id

et
es

 ↓

Fi
rm

ic
ut

es
L

ac
hn

os
pi

ra
ce

ae
C

lo
st

ri
di

um
 c

oc
co

id
es

 ↑

Pr
ot

eo
ba

ct
er

ia
E

nt
er

ob
ac

te
ri

ac
ea

e
E

sc
he

ri
ch

ia
 c

ol
i n

s

1 C
om

pa
ri

so
n 

co
nd

iti
on

 A
 v

s 
co

nd
iti

on
 B

: ↑
 I

nc
re

as
e 

in
 c

on
di

tio
n 

B
 r

el
at

iv
e 

to
 c

on
di

tio
n 

A
, ↓

 D
ec

re
as

e 
in

 c
on

di
tio

n 
B

 r
el

at
iv

e 
to

 c
on

di
tio

n 
A

, n
s 

no
t s

ig
ni

fi
ca

nt

2 T
ax

on
om

y 
w

as
 u

pd
at

ed
 u

si
ng

 th
e 

N
C

B
I 

T
ax

on
om

y 
B

ro
w

se
r

Gastroenterology. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schnabl and Brenner Page 20
3 R

ef
er

en
ce

s 
fo

cu
s 

on
 m

ic
ro

bi
ot

a 
ch

an
ge

s 
as

so
ci

at
ed

 w
ith

 li
ve

r 
di

se
as

e 
ra

th
er

 th
an

 o
be

si
ty

 o
r 

th
e 

m
et

ab
ol

ic
 s

yn
dr

om
e

Gastroenterology. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schnabl and Brenner Page 21

T
ab

le
 2

C
ha

ng
es

 in
 th

e 
in

te
st

in
al

 m
ic

ro
bi

ot
a 

as
so

ci
at

ed
 w

ith
 li

ve
r 

ci
rr

ho
si

s 
in

 h
um

an
s

D
is

ea
se

C
om

pa
ri

so
n1

Im
pl

ic
at

ed
 M

ic
ro

bi
ot

a2
M

et
ho

do
lo

gy
R

ef
.

P
hy

lu
m

C
la

ss
O

rd
er

F
am

ily
G

en
us

H
ea

lth
y 

(n
=

32
) 

H
B

V
ci

rr
ho

tic
s 

(n
=

31
)

H
ea

lth
y 

vs
 H

B
V

ci
rr

ho
tic

s
B

ac
te

ro
id

et
es

P
re

vo
te

ll
a 
↓

Q
ua

nt
ita

tiv
e 

re
al

tim
e

PC
R

St
oo

l s
am

pl
e

27

Fi
rm

ic
ut

es
E

nt
er

oc
oc

cu
s 

fa
ec

al
is

 ↑

F
ae

ca
li

ba
ct

er
iu

m
pr

au
sn

it
zi

i ↓
, C

lo
st

ri
di

um
cl

us
te

rs
 X

I 
↓,

 C
lo

st
ri

di
um

cl
us

te
rs

 X
IV

 ↓

L
ac

tic
 a

ci
d 

ba
ct

er
ia

 ↓
(i

nc
lu

di
ng

 L
ac

to
ba

ci
ll

us
,

P
ed

io
co

cc
us

, L
eu

co
no

st
oc

,
an

d 
W

ei
ss

el
la

)

A
ct

in
ob

ac
te

ri
a

B
if

id
ob

ac
te

ri
um

 ↓

Pr
ot

eo
ba

ct
er

ia
E

nt
er

ob
ac

te
ri

ac
ea

e 
↑

H
ea

lth
y 

(n
=

15
)

H
B

V
 c

ir
rh

ot
ic

s
(n

=
16

)

H
ea

lth
y 

vs
 H

B
V

ci
rr

ho
tic

s
A

ct
in

ob
ac

te
ri

a
B

if
id

ob
ac

te
ri

um
ca

te
nu

la
tu

m
 g

ro
up

 ↓
Q

ua
nt

ita
tiv

e 
re

al
tim

e
PC

R
St

oo
l s

am
pl

e

29

H
ea

lth
y 

(n
=

38
)

H
B

V
 c

ir
rh

ot
ic

s
(n

=
61

)

H
ea

lth
y 

vs
 H

B
V

ci
rr

ho
tic

s
Fi

rm
ic

ut
es

L
ac

to
ba

ci
ll

us
 a

ci
do

ph
il

us
 ↓

,
L

ac
to

ba
ci

ll
us

 r
ha

m
no

su
s 
↓,

L
ac

to
ba

ci
ll

us
 r

eu
te

ri
 ↓

,
L

ac
to

ba
ci

ll
us

 g
as

se
ri

 ↑

Q
ua

nt
ita

tiv
e 

re
al

tim
e

PC
R

St
oo

l s
am

pl
e

30

H
ea

lth
y 

(n
=

24
)

H
B

V
 c

ir
rh

ot
ic

s
(n

=
24

)
A

lc
oh

ol
ic

 c
ir

rh
ot

ic
s

(n
=

12
)

H
ea

lth
y 

vs
 C

ir
rh

ot
ic

s
B

ac
te

ro
id

et
es

 ↓
B

ac
te

ro
id

ia
 ↓

B
ac

te
ro

id
ac

ea
e 
↓

16
S 

rR
N

A
 g

en
e

Py
ro

se
qu

en
ci

ng
,

Q
ua

nt
ita

tiv
e 

re
al

tim
e

PC
R

St
oo

l s
am

pl
e

28

Fi
rm

ic
ut

es
E

nt
er

oc
oc

cu
s 

fa
ec

al
is

 ↑

B
ac

ill
i ↑

St
re

pt
oc

oc
ca

ce
ae

 ↑

C
lo

st
ri

di
a

L
ac

hn
os

pi
ra

ce
ae

 ↓

N
eg

at
iv

ic
ut

es
V

ei
llo

ne
lla

ce
ae

 ↑

C
lo

st
ri

di
um

 c
lu

st
er

s 
X

I 
↑

Pr
ot

eo
ba

ct
er

ia
 ↑

G
am

m
ap

ro
te

ob
ac

te
ri

a 
↑

E
nt

er
ob

ac
te

ri
ac

ea
e 
↑,

Pa
st

eu
re

lla
ce

ae
 ↑

Fu
so

ba
ct

er
ia

 ↑
Fu

so
ba

ct
er

iia
 ↑

Fu
so

ba
ct

er
ia

ce
ae

 ↑

H
ea

lth
y 

vs
 A

lc
oh

ol
ic

ci
rr

ho
tic

s
B

ac
te

ro
id

et
es

Pr
ev

ot
el

la
ce

ae
 ↑

H
B

V
 c

ir
rh

os
is

 v
s

A
lc

oh
ol

ic
 c

ir
rh

ot
ic

s
B

ac
te

ro
id

et
es

Pr
ev

ot
el

la
ce

ae
 ↑

Gastroenterology. Author manuscript; available in PMC 2015 May 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Schnabl and Brenner Page 22

D
is

ea
se

C
om

pa
ri

so
n1

Im
pl

ic
at

ed
 M

ic
ro

bi
ot

a2
M

et
ho

do
lo

gy
R

ef
.

P
hy

lu
m

C
la

ss
O

rd
er

F
am

ily
G

en
us

H
ea

lth
y 

(n
=

10
)

C
ir

rh
ot

ic
s2

 (
n=

25
)

H
ea

lth
y 

vs
 C

ir
rh

ot
ic

s
Fi

rm
ic

ut
es

L
ac

hn
os

pi
ra

ce
ae

 ↓
,

R
um

in
oc

oc
ca

ce
ae

 ↓
,

C
lo

st
ri

di
um

 I
nc

er
ta

e
se

di
s 

X
IV

 ↓
,

L
eu

co
no

st
oc

ac
ea

e 
↑,

L
ac

to
ba

ci
lla

ce
ae

 ↑

16
S 

rR
N

A
 g

en
e

Py
ro

se
qu

en
ci

ng
St

oo
l s

am
pl

e

32

Pr
ot

eo
ba

ct
er

ia
E

nt
er

ob
ac

te
ri

ac
ea

e 
↑,

A
lc

al
ig

en
ac

ea
e 
↑

Fu
so

ba
ct

er
ia

Fu
so

ba
ct

er
ia

ce
ae

 ↑

H
ea

lth
y 

(n
=

17
)

C
ir

rh
ot

ic
s2

 (
n=

36
)

M
uc

os
al

 s
am

pl
es

 -
H

ea
lth

y 
vs

 C
ir

rh
ot

ic
s

Fi
rm

ic
ut

es
C

lo
st

ri
di

ac
ea

e
C

lo
st

ri
di

um
 ↑

16
S 

rR
N

A
 g

en
e

Py
ro

se
qu

en
ci

ng
St

oo
l s

am
pl

e,
R

ec
to

si
gm

oi
d 

m
uc

os
al

bi
op

sy

31

L
ac

hn
os

pi
ra

ce
ae

D
or

ea
 ↓

R
um

in
oc

oc
ca

ce
ae

Su
bd

ol
ig

ra
nu

lu
m

 ↓

A
ci

da
m

in
oc

oc
ca

ce
ae

A
ci

da
m

in
oc

oc
cu

s 
↑

E
nt

er
oc

oc
ca

ce
ae

E
nt

er
oc

oc
cu

s 
↑

Pr
ot

eo
ba

ct
er

ia
B

ur
kh

ol
de

ri
ac

ea
e

B
ur

kh
ol

de
ri

a 
↑,

 R
al

st
on

ia
↑

E
nt

er
ob

ac
te

ri
ac

ea
e

P
ro

te
us

 ↑

M
uc

os
al

 s
am

pl
es

C
ir

rh
ot

ic
s 

vs
 S

to
ol

sa
m

pl
es

 C
ir

rh
ot

ic
s

Fi
rm

ic
ut

es
V

ei
llo

ne
lla

ce
ae

V
ei

ll
on

el
la

 ↑

L
ac

hn
os

pi
ra

ce
ae

R
os

eb
ur

ia
 ↑

, B
la

ut
ia

 ↓

L
eu

co
no

st
oc

ac
ea

e
L

eu
co

no
st

oc
 ↑

A
ct

in
ob

ac
te

ri
a

Pr
op

io
ni

ba
ct

er
ia

ce
ae

P
ro

pi
on

ib
ac

te
ri

um
 ↓

St
re

pt
om

yc
et

ac
ea

e
St

re
pt

om
yc

es
 ↓

Pr
ot

eo
ba

ct
er

ia
V

ib
ri

on
ac

ea
e

V
ib

ri
o 
↓

1 C
om

pa
ri

so
n 

co
nd

iti
on

 A
 v

s 
co

nd
iti

on
 B

: ↑
 I

nc
re

as
e 

in
 c

on
di

tio
n 

B
 r

el
at

iv
e 

to
 c

on
di

tio
n 

A
, ↓

 D
ec

re
as

e 
in

 c
on

di
tio

n 
B

 r
el

at
iv

e 
to

 c
on

di
tio

n 
A

, n
s 

no
t s

ig
ni

fi
ca

nt

2 T
ax

on
om

y 
w

as
 u

pd
at

ed
 u

si
ng

 th
e 

N
C

B
I 

T
ax

on
om

y 
B

ro
w

se
r

3 M
ix

ed
 e

tio
lo

gy

H
B

V
, H

ep
at

iti
s 

B
 v

ir
us

Gastroenterology. Author manuscript; available in PMC 2015 May 01.


