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Abstract Epilepsy is one of the most common chronic neu-
rological conditions worldwide. Anti-epileptic drugs (AEDs)
can suppress seizures, but do not affect the underlying epilep-
tic state, and many epilepsy patients are unable to attain
seizure control with AEDs. To cure or prevent epilepsy,
disease-modifying interventions that inhibit or reverse the
disease process of epileptogenesis must be developed. A
major limitation in the development and implementation of
such an intervention is the current poor understanding, and the
lack of reliable biomarkers, of the epileptogenic process.
Neuroimaging represents a non-invasive medical and research
tool with the ability to identify early pathophysiological
changes involved in epileptogenesis, monitor disease progres-
sion, and assess the effectiveness of possible therapies. Here
we will provide an overview of studies conducted in animal
models and in patients with epilepsy that have utilized various
neuroimaging modalities to investigate epileptogenesis.
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Introduction

Epilepsy is a common neurologic disease characterized by the
occurrence of spontaneous recurrent seizures [1]. Epilepsy
affects approximately 50 million people worldwide [2], and
holds an annual economic cost of over $12.5 billion in the
USA alone [3]. Although some epilepsy patients may be
responsive to pharmaceutical treatments, at least 30 % of
patients are drug-resistant [4]. Furthermore, anti-epileptic
drugs (AEDs) often have adverse side-effects and, even in
drug-responsive cases, AEDs merely suppress seizures with-
out stopping or interfering with the epileptogenic disease
process that converts a healthy brain into an epileptic brain
[4, 5]. Therefore, therapies capable of preventing or reversing
epileptogenesis are needed to cure this disease. Unfortunately,
a major limitation in the development and implementation of
such interventions is the poor understanding, and consequent
lack of reliable biomarkers, of the epileptogenic process [5, 6].

Neuroimaging provides non-invasive research and medical
tools with the capacity to identify early biomarkers involved in
epilepsy, longitudinally monitor disease progression, and as-
sess the effectiveness of epileptogenic therapies [7]. This arti-
cle will review the research conducted at both the basic exper-
imental and clinical level that has utilized various neuroimag-
ingmodalities to study epileptogenesis in vivo. The first section
(‘Neuroimaging Biomarkers in Animal Studies of Epilepsy’)
will present and evaluate studies that have utilized neu-
roimaging within animal models of epilepsy to identify poten-
tial biomarkers of epileptogenesis that may be translatable to
the clinical setting. The second section (‘Neuroimaging Bio-
markers in Clinical Studies’) will review the literature using
neuroimaging in the clinical epilepsy setting. Detailed techni-
cal descriptions of the neuroimaging techniques and animal
models that will be discussed are beyond the scope of this
review, and readers are directed to the references provided in
the appropriate sections for further information.
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Neuroimaging Biomarkers in Animal Models of Epilepsy

It is challenging to study early epileptogenic processes in the
clinical setting as epilepsy is diagnosed in patients after the
onset of spontaneous recurrent seizures, which represents the
culmination of epileptogenesis [7]. Animal models of epilep-
sy, both acquired and genetic, provide the opportunity to
rigorously investigate experimental subjects known to be
experiencing epileptogenic processes, and thereby hold the
potential to increase our understanding and identify early
biomarkers of this disease. Briefly, some of the most com-
monly used and well-validated animal models of epilepsy that
will be discussed in this section include exposure to
proconvulsant chemicals, such as pilocarpine or kainic acid,
to induce status epilepticus (SE) and consequent spontaneous
seizures modeling temporal lobe epilepsy (TLE) [8]; electrical
stimulation, or kindling, of temporal brain regions (e.g.,
amygdala) to model TLE [8]; and the fluid percussion brain
injury (FPI) model of traumatic brain injury (TBI) and post-
traumatic epilepsy (PTE) [9–11]. This section will provide a
summary of the epileptogenic-related changes and neuroim-
aging biomarkers that have been identified to date within these
models.

Magnetic Resonance Imaging: Signal, Volumetrics,
and Contrast Agents

Magnetic resonance imaging (MRI) is based on the magnetic
excitation of hydrogen nuclei in body tissue, and the conse-
quent recording of the electromagnetic signals that are
returned from the body [12]. Given its widespread clinical
availability, non-invasive nature, and relative low cost, MRI is
an attractive technique in both basic and clinical research.
Specific to the basic experimental setting, epilepsy animal

model studies have incorporated conventional MRI tech-
niques for over 20 years [13], with T1, T2, and T2-weighted
(T2W) signal measures amongst the most commonly
employed [14].

Signal Changes

T2 signal changes on MRI have been consistently reported at
various phases of the epileptogenic process in numerous ani-
mal models, with the common underlying pathological chang-
es being edema, gliosis, and cell loss (see Table 1) [15–18]. In
chemoconvulsant SE models, increased T2 values and T2W
hyperintensity have been reported in several brain regions,
including the cortex, hippocampus, thalamus, amygdala [19,
20], and piriform and entorhinal cortices [15], beginning as
early as 2 h after SE [20]. These acute changes typically return
to baseline within 48–72 h [15, 20], and have been reported to
predict the development of epilepsy at 4 months after SE [15].
However, in contrast to these findings, other studies have
reported a global decrease in T2 values in the acute stages
after SE [17], and evidence of T2W hyperintensity for up to
9 weeks after SE [16]. Consistent with chemically-induced SE
models, SE induced by electrical stimulation of the rat amyg-
dala resulted in increased T2 values in the amygdala beginning
2 days after SE [21], and increased T2W signal intensity in the
hippocampus 2 weeks after kindling had ceased [22]. Taken
together, these findings suggest temporal complexities in T2

signal changes occurring in post-SE TLE models, likely
representing the evolving pathophysiological processes in
epileptogenesis [16, 17] that must be clarified and considered
when translating the use of T2-based biomarkers to the clinical
setting.

Studies using animal models of PTE and febrile seizures
(FS) have also reported T2 signal changes possibly related to

Table 1 Neuroimaging biomarkers in animal models

Imaging
modality

Animal model Potential biomarker Related pathophysiology

MRI—T2 signal Post-SE, FPI, kindling, FS Acute T2 signal increase and T2W hyperintensity Edema, gliosis, cell loss

MRI—volumetrics Post-SE, FPI Decreased volume of limbic structures (i.e., hippocampus) Structural atrophy

MRI—contrast
agents

Post-SE Mn2+- and Gd3+-enhanced signal change Mossy fibers and BBB breakdown

DWI Post-SE, FPI, absence
epilepsy, FS

Altered ADC, FA, and tractography Edema, axonal injury, connectivity

MRS Post-SE Reductions in glutamate, glutamine, GABA, and NAA,
and increased myo-inositol and glutathione

Neurotransmitters, neuronal death
and dysfunction, glia activation

PET Post-SE, FPI Decreases in [18F]FDG–PET signal, increases in
[18F]PBR111–PET signal

Hypometabolism, inflammation

fMRI Post-SE, absence epilepsy Changes in BOLD signal Neuronal activity and metabolism

MRI = magnetic resonance imaging; DWI = diffusion-weighted MRI; MRS = magnetic resonance spectroscopy; PET = positron emission
tomography; fMRI = functional MRI; SE = status epilepticus; FPI = fluid percussion brain injury; FS = febrile seizure; T2W = T2-
weighted; ADC = apparent diffusion coefficient; FA = Fractional anisotropy; GABA = gamma-aminobutyric acid; NAA = N-acetyl
aspartate; BOLD = blood oxygen level-dependent; BBB = blood–brain barrier
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epileptogenesis. In the FPImodel of PTE, early increases in T2

signal values were found to be associated with functional and
histological outcomes at both acute and chronic time-points
[23]. However, it should be noted that these initial T2 changes
were found to be poor predictors of subsequent decreases in
seizure threshold [23]. In a hyperthermia-induced FS model,
rats that experienced prolonged febrile seizures displayed
increased T2W signal intensity at 1 and 8 days after FS [24],
increased T2 values at 1 month after FS [25], and had an
increased likelihood of developing spontaneous seizures after
FS [24, 25]. However, the increase in T2 value itself was not
found to be an accurate predictor of epileptogenesis [25].
Taken together, further research is required to determine the
usefulness of T2-based biomarkers to predict the development
of epileptogenesis that ultimately results in spontaneous re-
current seizures in the context of these models.

Volumetric and Morphological Analyses

In addition to signal changes, conventional T1 and T2 MRI
also allow for volumetric and morphological analyses of brain
structures involved in epileptogenesis. As shown in Fig. 1,
volumetric and morphological changes in the hippocampus
and other limbic structures have been reported in both SE

[26–29] and FPI models [11, 23, 30, 31]. However, these
changes are typically preceded by abnormalities identified
by other more sensitive neuroimaging methods [11, 23,
28–31]. As such, volumetric and morphological changes
may not be ideal neuroimaging biomarkers to identify early
pathophysiological processes involved in epileptogenesis, but
may have more of a role to assess subsequent progressive
neurodegenerative changes, in particular atrophy of key struc-
tures such as the hippocampus, that may follow an epilepto-
genic brain insult [11, 29, 30, 32].

Contrast Agents

The contrast in conventional MRI signal can be further en-
hanced by administration of exogenous contrast agents, such
as manganese (Mn2+) and gadolinium (Gd3+) complexes.
These agents have been used to study epileptogenesis in
post-SE [16, 33–36] and FPI [32, 37] rodent models, and
enable the assessment of various pathologies potentially in-
volved in the epileptogenic process, such as blood–brain
barrier breakdown [16, 37], mossy fiber sprouting [35], and
reorganization of neural connections [31, 32]. For example,
studies utilizing serial Mn2+-enhanced imaging at 2 days and
6 weeks after SE found increased T1-weighted signal intensity

Fig. 1 Volumetric and [18F]FDG–positron emission tomography (PET)
changes in kainic acid model of temporal lobe epilepsy and fluid percus-
sion injury model of traumatic brain injury (TBI). There is persistent
hypometabolism, and progressive degeneration after kainic acid-induced

status epilepticus (A–C; adapted from [29]). Although all rats suffer
progressive neurodegeneration after fluid percussion injury (D–F), rats
that develop post-traumatic epilepsy display persistent hypometabolism
at 3 months after TBI (G–I; adapted from [11])
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in the hippocampus that were related to spontaneous seizure
outcome in the chronic epilepsy phase, suggesting that Mn2+-
enhanced imaging could provide a preclinical biomarker for
the severity of epileptogenesis [34]. Unfortunately, a major
limitation and confounder with the use of contrast agents,
especially Mn2+, is their high toxicity in mammals [14, 30].
However, these issues continue to be improved and, as such,
contrast agents remain an effective tool in the study of
epileptogenesis, particularly in the basic experimental setting.

Diffusion-weighted MRI

Diffusion-weighted MRI (DWI) and related methods, such as
diffusion tensor and tractography analyses, are based on the
quantification using magnetic resonance of the diffusivity of
water molecules in the brain, which is more directionally
limited (anisotropic) in white matter tracts relative to gray
matter [36–38]. Common measures generated from DWI in-
clude apparent diffusion coefficient (ADC)—the magnitude
of overall water diffusion in a given direction; mean diffusiv-
ity—the mean diffusivity across a number of directions; and
fractional anisotropy (FA)—a value between 0 (isotropic) and
1 (anisotropic) that describes the anisotropy of diffusion [36].
In unhealthy white matter, damaged axonal membranes be-
come less constricting to molecules and are thus less aniso-
tropic [36, 37]. Tractography is another DWI-based post-
processing method that allows for the assessment of structural
connectivity, and holds promise in the study of
epileptogenesis [38]. Notably, changes in DWI-based mea-
sures are also commonly associated with edema [37].

In post-SE rat models of TLE an acute increase in ADC,
beginning as early as 3 mins post-SE [39], has been reported
[17, 40]. However, this is a dynamic and structurally-
dependent response, with reports of acute decreases in ADC
post-SE [17, 39–42], a return to baseline by 1 week, and
increased ADC at chronic time-points [39]. ADC increases
may be related to vasogenic edema or increased metabolic
activity [17, 39, 43, 44], whereas the acute ADC decreases are
associated with cytotoxic edema and neuronal loss [39, 43,
44]. Structural dependent changes in FA have also been iden-
tified at chronic epileptic stages after SE [45, 46]. Although
chronic FA changes that occur after the manifestation of
spontaneous seizures hold little value as an early biomarker
for epileptogenesis, FA may be an effective biomarker if
validated at earlier stages.

Changes in DWI outcomes have also been reported in the
FPI [23, 31, 37] rat model of PTE at various stages in the
epileptogenic process. Of particular importance, acute and
chronic hippocampal ADC changes in the FPI model were
associated with electroencephalography (EEG) parameters
(i.e., total number of interictal epileptiform spikes and epilep-
tiform discharges), mossy fibre sprouting, and seizure suscep-
tibility after a chemoconvulsant challenge [23, 37]. It should

also be noted that reductions in FA and associated
tractography have been reported in animal models of genetic
generalized epilepsy with absence seizures (i.e., WAG/Rij
rats) [47], and decreased ADC and increased FA have been
reported in rats after FS [48]. Taken together, DWI-based
approaches are sensitive and promising in identifying poten-
tial epileptogenic-related changes throughout the disease pro-
cess. However, future research is still required to assess
whether these DWI changes are reliable biomarkers that pre-
dict epileptic outcomes [14].

Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy (MRS) is a neuroimaging
technique capable of identifying levels of brain metabolites,
such as N-acetyl aspartate (NAA), choline, creatine (Cr),
lactate, myo-inositol, and glutathione; levels of neurotransmit-
ters, such as glutamate, glutamine, and gamma-aminobutyric
acid (GABA); and other physiological changes, such as intra-
cerebral pH, all of which may have relevance to
epileptogenesis [49, 50]. In post-SE animal models of TLE,
MRS has identified acute reductions in glutamate, glutamine,
and GABA [51, 52], as well as acute and chronic reductions in
NAA [50, 53–57], a marker of neuronal loss or dysfunction
[49]. Furthermore, progressive increases in myo-inositol and
glutathione have also been detected in acute stages after SE,
and are maintained in epileptic rats [50]. Studies using the FPI
model have also used MRS to identify acute abnormalities
after injury [58, 59], though whether these changes are asso-
ciated with PTE has yet to be determined. Abnormalities in
NAA and Cr have also been reported after FS in rats and may
be related to the later development of spontaneous seizures
[48]. Overall, these findings demonstrate that MRS is capable
of identifying biomarkers associated with numerous patho-
physiological changes occurring throughout the epileptogenic
process, and support its use in future investigations.

Positron Emission Tomography

Positron emission tomography (PET) uses radiotracers to
visualize and quantify functional processes in the brain. A
variety of radiotracers are available, including those capable
of identifying pathophysiological processes recently implicat-
ed in epileptogenesis, such as metabolism, neuroinflamma-
tion, and hyperphosphorylated tau [60–64]. For example,
in vivo [18F]PBR111–PET has found significant inflamma-
tion after SE in the hippocampus and amygdala during
epileptogenesis [60]. To date, the most common radiotracer
employed in animal epilepsy studies, as in human epilepsy
practice and research, is the glucose analogue [18F]FDG–
PET, a biomarker for glucose uptake and brain metabolism.
As shown in Fig. 1, in chemoconvulsant post-SE rat models,
[18F]FDG–PET signal has been consistently found to
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decrease during the acute post-SE period [29, 57, 65, 66], with
some studies reporting a return to baseline at the subacute
stage followed by decreased metabolism again in the chronic
epileptic stage [29, 57]. Importantly, it has been reported that
hypometabolism precedes, and is unrelated to, the atrophy of
limbic structures, suggesting that the hypometabolism is not
simply an effect of atrophy and may indicate cellular changes
important in epileptogenesis [29]. A significant relationship
has been reported between the degree of hypometabolism on
[18F]FDG–PET in the entorhinal cortex early following lith-
ium pilocarpine-induced SE in the rat and the chance of later
developing spontaneous recurrent seizures, suggesting that
this may be a biomarker of early epileptogenesis following a
brain insult [66]. As seen in Fig. 1, [18F]FDG–PET following
FPI in rats has also identified acute and persistent
hypometabolism that preceded significant structural atrophy
[11, 30], and may predict the later onset of PTE [11]. While
further research is clearly required, and other limitations must
be considered [62], these findings, together with the ability to
assess other relevant pathophysiological processes in vivo,
make PET a valuable experimental tool in the investigation
of epileptogenesis.

Functional MRI

As with PET, functional MRI (fMRI) allows for the assess-
ment of functional brain activity. However, fMRI is less
expensive, less invasive, and provides superior temporal and
spatial resolution relative to other functional neuroimaging
techniques. For example, fMRI has temporal and spatial res-
olutions in the order of hundreds of milliseconds and one
millimeter [12, 67, 68], whereas PET has temporal and spatial
resolutions in the order of minutes and millimeters [62, 68].
Considering these factors, fMRI is now the most commonly
used functional imaging method [12, 67]. Ogawa et al. [69]
discovered the basic principle of fMRI, that MRI signal is
sensitive to changes in blood oxygenation levels, over 20 years
ago. As neuronal activity leads to increased blood flow and
changes in blood oxygenation levels, or the blood oxygena-
tion level-dependent (BOLD) signal, fMRI allows for the
investigation of the location and networks of brain function
[12, 67]. As epilepsy is known to involve abnormalities in
neural activity and circuitry, fMRI represents a promising tool
in the study of epileptogenesis [67].

Animal models of epilepsy are advantageous for fMRI
studies as they allow for control over the type and timing of
seizure, elimination of movement artifacts, and the use of
more invasive techniques to complement fMRI analysis
[67]. Studies using chemoconvulsant SE models have report-
ed robust BOLD changes associated with seizure activity [67,
70–72]. Similarly, fMRI studies in animal models of genetic
generalized epilepsy with absence epilepsy also report BOLD
signal abnormalities associated with spontaneous spike-wake

discharges [67, 73–75]. Though there have been some incon-
sistencies regarding these findings (i.e., BOLD increase vs
decrease) [76], and other potential confounds and limitations
(e.g., animals are often under general anesthetic) to consider
[67], these studies clearly demonstrate the ability and useful-
ness of fMRI in identifying functional abnormalities in
epileptogenesis.

Neuroimaging Biomarkers in Clinical Studies

Many different neuroimaging modalities are utilized in the
evaluation of patients with epilepsy. It is more challenging,
though, to track the epileptogenic process in the clinical
setting as the majority of our data come from patients with
chronic epilepsy and the changes seen on imaging may reflect,
to varying degrees, the genetics, the pathogenic process, ag-
ing, secondary damage, or even drug effects [77].

Ideally, a biomarker for epileptogenesis would help
diagnose and predict epilepsy in the preclinical or early
symptomatic stage, it would be specific to the epileptic
process, it would monitor disease progression, and dem-
onstrate reversal of epileptogenesis following therapeutic
interventions [78, 79].

In order to help elucidate the role of imaging in the devel-
opment of the epileptogenic process in humans, we will focus
in this portion of the review on data from longitudinal clinical
studies that may infer causality or help document disease
progression. Clinical settings where neuroimaging has been
used to study epileptogenesis include FS, PTE, early-onset
epilepsy in children, and studies assessing long-term disease
prognosis in chronic epilepsy.

MRI

Signal Changes

There has long been observed an association between FS and
development of TLE later in life. In children, immediately
after complex FS or prolonged status, increased T2/DWI
signal has been reported in the hippocampus [80, 81], ipsilat-
eral thalamus, and anterior cingulate gyrus [82]. These acute
changes are reversible [83] and thought to be secondary to
cytotoxic or vasogenic edema. Concurrent EEG background
abnormalities and focal spikes have also been reported [82].
Increased T2 signal and hippocampal volume changes, in this
setting, are the most predictive indicators of subsequent de-
velopment of mesial temporal sclerosis (MTS) [7, 81, 84].

In the FEBSTAT study, a longitudinal study to try and
elucidate the pathogenic link between FS and late develop-
ment of epilepsy, 11.5 % of children presenting with
prolonged (>30 min) febrile status had increased or equivocal
T2 signal in the hippocampus and more widespread in the
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temporal lobe, compared with none among children with
simple febrile seizures [85]. T2W hippocampal signal abnor-
mality was associated with focal EEG slowing or attenuation
suggestive of acute hippocampal injury [86].

In TBI, the presence of cortical or subcortical T2 hyperin-
tense lesions 1 year after the initial insult is associated with an
increased risk of PTE [87]. Furthermore, on T1-weighted
magnetization transfer images, abnormalities extending be-
yond the T2 changes or presence of gliosis surrounding he-
mosiderin deposits (especially when the gliosis wall is incom-
plete or shows a dynamic evolution in subsequent scans) are
associated with higher risk for epilepsy [88, 89]. Furthermore,
hippocampal T2 increased signal and atrophy have been
shown to be strong indicators of seizure recurrence following
AED withdrawal in seizure-free patients [90].

The above findings of mainly T2 signal abnormalities seen
on structuralMRI are suggestive of a potentially epileptogenic
effect of both acute and chronic neural injury, but the causal
link is still under investigation. In the case of FS, the long-term
outcomes of the FEBSTAT study will hopefully shed more
light into the significance of acute signal changes and their
link to epileptogenesis.

Volumetric and Morphological Analysis

Some of the morphometric findings seen on MRI raise the
possibility of a direct contribution to epileptogenesis. In the
FEBSTAT study, developmental abnormalities of the hippo-
campus (hippocampal malrotation being the most common)
were seen in the group of children with prolonged FS, sug-
gestive of a possible predisposition to the initial epileptogenic
insult [85]. Seizure-generating hypothalamic hamartomas ap-
pear to always have a connection to one or both mammillary
bodies [91].

Cortical dysgenesis and development of subsequent epi-
lepsy is well known, but prognosis after surgical removal of
the visible structural abnormality varies. Lack of gray or white
matter volume distribution abnormalities outside the primary
lesion in the preoperative volumetric MRI is associated with
better prognosis following lesionectomy [92]. Presence on
MRI of thickened gyri and focal versus hemispheric involve-
ment with severe hypometabolism on [18F]FDG–PET is a
better predictor of specific epileptogenic cells than interictal or
ictal EEG, and therefore may be used as a biomarker of
epileptogenic tissue [93].

Gray matter volume reduction also correlates with epilepsy
duration and has been reported for the hippocampus, entorhi-
nal cortex [94], and thalamus [7]. It is more widespread in
refractory TLE [90] and more severe in patients withMTS [7].
In TLE, MR volumetry has demonstrated bilateral white [95]
and graymatter changes, and a history of FS is associated with
smaller thalamic volumes ipsilateral to the seizure focus [82].

In familial mesial TLE, progression of hippocampal atrophy is
seen in patients with frequent seizures and poor outcome [96].

Neocortical atrophy can be quantified by measuring cortical
thickness across the entire cortical mantle to track continuous
changes [97]. Cross-sectional analysis in refractory TLE
showed progressive atrophy in the ipsilateral orbitofrontal,
mesiotemporal, postcentral, and contralateral prefrontal areas.
Longitudinal analysis over 2.5 years showed ipsilateral
temporopolar and central, as well as contralateral orbitofrontal,
insular, and angular region, cortical atrophy. Atrophy in
somatomotor and parahippocampal regions in medial temporal
lobe epilepsy (MTLE) has also been reported [94]. In patients
with idiopathic generalised epilepsy (IGE), a 3.2 % decrease in
global mean cortical thickness and focal cortical thinning in
frontal, precentral, central, and lateral temporal regions has been
described. Increased seizure frequency showed faster cortical
thinning [97]. Contrary to the above findings, larger septal nuclei
are reported in patients with TLE without MTS compared with
extratemporal epilepsy, and controls raise a possible prophylac-
tic effect against epileptogenesis of these structures [98].

Taken together, the above findings show that morphologi-
cal change may be a direct marker of intrinsic epileptogenesis,
but—as in animal models—MRI volumetric analysis plays
more of a role in describing disease progression. Higher
extracellular glutamate concentration (a highly excitotoxic
molecule) has been associated with decreased ipsilateral epi-
leptogenic hippocampal volume and history of increased fre-
quency of seizures [99], but a causal link to epileptogenesis
has not yet been demonstrated. Unfortunately, most longitu-
dinal MRI epilepsy studies have had a small number of
patients or limited follow-up. Therefore, long-term longitudi-
nal documentation of these changes may help characterize the
epileptogenic process per se in the future [94].

DWI

White matter is an integral part of the epileptic network and
assessment of its integrity, as discussed in the animal studies,
may offer further insight in understanding the epileptogenic
process. DWI changes are thought to be an effect of ongoing
neuronal damage representing downstream axonal degenera-
tion. Correlation between duration of epilepsy and DWI ab-
normalities has been shown in some white matter tracts,
especially in TLE without MTS [95]. In children with TLE
there are reports of decreased FA in the hippocampi ipsilateral
and contralateral to the seizure focus [7], in the uncinate
fasciculus, arcuate fasciculus, internal longitudinal fasciculus,
and cortical spinal tract, as well as increased mean diffusivity,
but normal FA in the temporal lobe white matter and cingulate
gyrus [95]. In patients with TLE there is reduced FA in the
external capsule and corpus callosum [95]. When unilateral
MTS is present, DWI shows more extensive, bilateral
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decrease in white matter integrity [77] and bilateral fornix
abnormalities [100].

In frontal cortical dysplasia (FCD) among patients with and
without epilepsy, DWI abnormalities extend beyond the
visible FCD abnormalities in both groups, but when white
matter tracts projecting to and from the FCD where evaluated,
those with seizures had more severe changes [101].

Following a single event of SE there was progressive
atrophy of the left hippocampus with abnormal mean diffu-
sivity over a period of 6 months thought to be secondary to
delayed programmed cell death [100].

In a group of 5 children with epilepsy and large cavum
septum pellucidum, use of DWI identified that the fornix body
was consistently split into 2 bundles; the authors postulated a
possible link to epileptogenesis, given the close association of
the fornix to the limbic system [102].

DWI studies may prove a useful method for recording
secondary cerebral damage, and more studies are needed to
document the reproducibility of results and their potential
prognostic utility in chronic epilepsy.

PET

[18F]FDG–PET

Metabolic dysfunction of neurons and glia is common in
epilepsy and often specific enough to identify the seizure
onset zone. As a measure of total glucose consumption
[18F]FDG–PET is commonly used to identify hypometabolic
areas [103].

In a series of patients with Sturge–Weber syndrome, tran-
sient interictal hypermetabolism on [18F]FDG–PETwas doc-
umented in the posterior or frontal lobes within a short time
before or after the onset of the first clinical seizures thought to
be secondary to chronic ischemia inducing cortical damage
and excitotoxicity. These changes were then followed by
progressive loss of metabolism as epilepsy established itself
[104].

A longitudinal study of 170 patients looking into long-term
prognosis after hemispherectomy reported that hypometabolic
abnormalities on [18F]FDG–PET may be a more reliable
marker of potential independent epileptogenesis in the contra-
lateral hemisphere than the structural abnormalities seen on
brain MRI [105].

a-[11C]Methyl-L-tryptophan

a-[11C]Methyl-L-tryptophan tracer has been successful in
children with tuberous sclerosis in differentiating epileptic
from non-epileptic tubers. This particular radiotracer is inter-
esting, as preliminary data suggest that its predilection to
epileptogenic tissue may be due to increased focal activity of
inflammatory pathways. Another radiotracer that has been

found in activated microglia is [11C]-(R)-PK11195. Given
the fact that neuroinflammation plays a potential role in
epileptogenesis, these tracers might be useful in tracking
response to immunotherapy that is already available [106].

5-HT1A

Decreased 5-HT1A receptor binding correlated with the de-
gree of epileptogenesis in regions involved in seizure onset
and where discharges propagated. Reduced free fraction-
corrected volume of distribution and significantly greater
asymmetry was described in the fusiform gyrus, hippocam-
pus, and parahippocampus ipsilateral to epileptic foci [7].

11C-flumazenil

Complex mechanisms of epileptogenesis are characterized by
metabolic and neurotransmitter/receptor disturbances. Func-
tional impairment of inhibitory neurotransmission is probably
a major factor. 11C-flumazenil is a PET tracer that serves as a
useful in vivo marker of central inhibitory GABA A-type
benzodiazepine receptor. 11C-flumazenil decreases are largely
congruent with seizure onset zone and more severely de-
pressed in the epileptogenic lesion than in adjacent cortex.
Reductions have been described with various etiologies of
seizures, in resected hippocampi, in spiking cortex, and in
perilesional epileptogenic cortex with a highly variable pattern
[107].

Single Photon Emission Computed Tomography

Single photon emission computed tomography (SPECT) stud-
ies use tracers sensitive to cerebral blood flow. One such tracer
of central GABA-A benzodiazepine receptor binding is 123I
iomazenil. Studies in mesial TLE showed decreased binding
that correlated with decreased neuronal density in the hippo-
campus and dentate gyrus. Similar changes were present in
neocortical dysplasia, even in the absence of structural MRI
lesions or SPECTstudies evaluating cerebral blood flow [108,
109]. Among patients who had severe TBI, hypoperfusion in
the temporal lobes 1 year after trauma, as measured with 99m

Tc hexamethyl-propyleneamine-oxime, correlated highly with
the development of PTE [110]. However, despite this finding,
no studies to date have suggested a role for SPECT as a
biomarker for epilepsy.

MRS

MRS as a marker of epileptogenesis has primarily focused on
measurements of the NAA/Cr ratio, reduction of which has
been linked to neuronal mitochondrial injury and neuronal
dysfunction.
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In one study among patients with IGE, thalamic MRS
imaging measuring NAA/Cr showed progressive thalamic
neuronal dysfunction without volume decrease supporting
the notion of abnormal thalamo-cortical circuitry as a substrate
of seizure generation. There is significant reduction in thalam-
ic NAA/Cr comparedwith normal controls that correlates with
disease duration, but not the age of onset [111].

An intimate relation between interictal epileptiform dis-
charges and reduction of the NAA/Cr ratio in the contralateral
side has been described in MTLE patients, and it may be a
possible marker of epileptogenesis of the contralateral side
[112]; it has been associated with worse outcomes following
epilepsy surgery [113]. Along the same lines, MRS in patients
with TLE who failed to respond to the first AED trial had
significantly lower NAA/Cr ratios compared with responders,
possibly reflecting the different nature of the underlying
epileptogenesis [90]. In one case of TLE with unilateral
MTS there was normalization of the NAA/Cr ratio in the
contralateral temporal lobe following successful temporal lobe
resection [7], raising the possibility of a biomarker that could
potentially track reversal of epileptogenesis.

Comparison of NAA/Cr data of 12 different limbic foci
between resting controls and MTLE patients showed that
although both groups shared a metabolic network between
the thalami and hippocampi, in patients there was an addition-
al metabolic covariance seen between the ipsilateral insula and
basal ganglia. The authors postulated it may represent down-
stream metabolic injury linked to seizure spread, and it re-
mains to be proven if this network plays a role in the late
recurrence of seizures after epilepsy surgery [114].

fMRI

BOLD signal changes have helped identify epileptogenic
networks that not only correlate with seizure foci, but which
are also seen at sites distant from EEG foci [77]. Among
MTLE patients, compared with resting controls, there is de-
creased basal functional connectivity seen in the epileptogenic
medial temporal lobe [115–117]. Decreased functional con-
nectivity has been described in left mesial TLE across a
network that includes thalamic, brainstem, frontal, and parietal
regions, as well as focally in the dorsal medial prefrontal
cortex, mesial temporal lobe, and inferior temporal cortex
compared with controls [7]. However, no conclusive studies
have shown a direct correlation between the bold signal and
seizure progression.

Taken together, PET, SPECT, MRS, and fMRI studies that
detect cerebral function are proving to be more sensitive in
identifying an “epileptic network” and offer a more dynamic
look into the epileptogenic process, with some evidence also
alluding to reversibility of findings following therapeutic
interventions.

Future Directions and Conclusions

There is currently no therapy proven to prevent or reverse
epileptogenesis in patients. To develop and implement such an
intervention, the underlying disease mechanisms, and related
biomarkers, must first be identified and validated. Therapies
can then be discovered, implemented, and rigorously investi-
gated in preclinical studies that make use of the epileptogenic
biomarkers to monitor disease progression. If a biomarker is
modified by therapeutic intervention, and this correlates with
reversal of the epileptogenic process, these therapies and
biomarkers may then be valuable as surrogate endpoints in
well-designed clinical trials. As highlighted in this review,
neuroimaging represents a non-invasive and clinically appli-
cable technique that can contribute to each of these needs.
Methods such as MRI, PET, MRS, fMRI, and DWI
are capable of assessing, or have already been associated with,
a number of pathophysiological changes occurring in
epileptogenesis. Future preclinical and clinical studies that
continue to identify and validate neuroimaging biomarkers,
improve imagingmethods, usemultimodal imaging, and com-
bine imaging with other validated techniques (e.g., EEG), will
make further strides towards our better understanding of the
epileptogenic process. There is also growing evidence from
animal models that epilepsy is a preventable disorder (see
[118] for a review), with the identification of promising anti-
epileptogenic treatments, including rapamycin and sodium
selenate [118, 119]. However, to maximize the translatability
of these findings to human patients it is important that future
preclinical anti-epileptogenic studies utilize valid and clin-
ically applicable biomarkers, such as neuroimaging, in
their assessment of these therapies [e.g., 120]. To date,
the few human clinical trials investigating potential anti-
epileptogenesis treatments have failed to demonstrate sig-
nificant efficacy (see [121] and [122] for reviews). How-
ever, these failures have occurred in trials using therapies
that lacked preclinical evidence of anti-epileptogenic ef-
fects and/or had major methodological shortcomings [121,
122]. In light of these failures, future anti-epileptogenic
clinical trials should select a patient population with a high
epilepsy risk or early in the disease process, include large
sample sizes, employ a longitudinal study design with long
observation periods, implement a treatment with strong pre-
clinical evidence of anti-epileptogenic effects, and incorporate
biomarkers, such as neuroimaging, that are reproducible, reli-
able, safe, and widely available [121, 122]. Neuroimaging
provides promising epieptogenic biomarkers that are likely
to play an integral role in our quest to develop interventions
that are effective at preventing or reversing epilepsy.
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