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Motor Cortical Correlates of Arm Resting in the Context of a
Reaching Task and Implications for Prosthetic Control

Meel Velliste,'2 Scott D. Kennedy,’ Andrew B. Schwartz,->* Andrew S. Whitford,’ Jeong-Woo Sohn,?

and Angus J.C. McMorland!

1Systems Neuroscience Institute, 2Department of Neurobiology and *Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
15260

Prosthetic devices are being developed to restore movement for motor-impaired individuals. A robotic arm can be controlled based on
models that relate motor-cortical ensemble activity to kinematic parameters. The models are typically built and validated on data from
structured trial periods during which a subject actively performs specific movements, but real-world prosthetic devices will need to
operate correctly during rest periods as well. To develop a model of motor cortical modulation during rest, we trained monkeys (Macaca
mulatta) to perform a reaching task with their own arm while recording motor-cortical single-unit activity. When a monkey spontane-
ously put its arm down to rest between trials, our traditional movement decoder produced a nonzero velocity prediction, which would
cause undesired motion when applied to a prosthetic arm. During these rest periods, a marked shift was found in individual units’ tuning
functions. The activity pattern of the whole population during rest (Idle state) was highly distinct from that during reaching movements
(Active state), allowing us to predict arm resting from instantaneous firing rates with 98% accuracy using a simple classifier. By cascading
this state classifier and the movement decoder, we were able to predict zero velocity correctly, which would avoid undesired motion in a
prosthetic application. Interestingly, firing rates during hold periods followed the Active pattern even though hold kinematics were
similar to those during rest with near-zero velocity. These findings expand our concept of motor-cortical function by showing that

population activity reflects behavioral context in addition to the direct parameters of the movement itself.
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Introduction

The role of cortical neurons in arm control has been studied
extensively, and the motor cortex in particular has been impli-
cated as a key area involved in volitional movement (Phillips and
Porter, 1977; Porter and Lemon, 1993; Georgopoulos, 1996,
2000; Kalaska, 2009). Since the earliest single-unit recordings in
awake, behaving monkeys established a link between voluntary
arm movement and motor cortical firing (Evarts, 1966, 1968), a
variety of specific models have been proposed, including the sem-
inal finding of directional tuning (Georgopoulos et al., 1982,
1988), followed by refined models that include hand speed, ve-
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locity, and position (Kettner et al., 1988; Moran and Schwartz,
1999; Wang et al., 2007); movement fragments (Hatsopoulos et
al., 2007; Hatsopoulos and Amit, 2012); joint torques (Herter et
al., 2009; Fagg et al., 2009); endpoint force (Ashe, 1997; Gupta
and Ashe, 2009); or muscle activity (Cherian et al., 2011). With
the advent of chronic recording arrays capable of recording many
individual units simultaneously, these models have been imple-
mented in real time to control computer cursors, robotic arms, or
functional electrical stimulation devices, all with the goal of de-
veloping neural prosthetic devices to restore movement ability to
paralyzed individuals and amputees (Schwartz, 2004; Schwartz et
al., 2006; Hatsopoulos and Donoghue, 2009; Lebedev et al.,
2011). Ongoing work is delivering ever higher performance in
terms of speed, accuracy, and the number of decoded degrees of
freedom. A common theme in prior studies, however, is that
cortical activity has only been studied during controlled trial pe-
riods during which subjects performed specific trained behaviors
on cue. Little is known about how the existing models would
behave outside of the controlled trial periods because intertrial
(IT) data have previously been dismissed as irrelevant, discarded
due to storage constraints, or considered intractable to analyze
because the subject’s behavior was unconstrained. However, if a
person is to use a cortical prosthesis in the real world, the neural
decoder must function appropriately at all times, not just during
controlled “trial” periods. Here, we investigate whether tuning
models and decoders calibrated during reaching movements are
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Figure 1.  Center-out/out-center reaching task. @, Monkey moved a cursor (yellow ball),
controlled by an optical marker on the hand, to hit a target (blue ball) in a virtual environment.
Occasionally, between trials, the monkey would spontaneously rest its hand on the lap plate
(black arrow). b, Continuous trial timeline, consisting of IR, IH, FR, FH, and IT, and then starting
over from IR again. The color code defined by this diagram is used to indicate the respective task
periods throughout all figures, unless otherwise indicated. The two Reach periods are the same
color and so are the two Hold periods, because these periods are pooled in the subsequent
analyses. ¢, Hand trajectories from successful trial periods (IH thru FH), and d, IT periods for one
entire Monkey F session, color coded by task period. The hand trajectories were in 3D space, but
only projections onto the x—y plane are shown.

valid during IT periods. We show that the models are generally
accurate during both within-trial and IT periods, but not when
the monkey rests its arm. This has direct implications for neural
prostheses, because a prosthetic arm should not only perform
intended movements, but should also not perform unintended
movements when a user wants to rest the arm (Mirabella, 2012).

Materials and Methods
Subjects and design

Two male monkeys (Macaca mulatta) each performed a 3D point-to-
point reaching task with its arm (Fig. 1; Reina et al., 2001; Taylor et al.,
2002) while hand position was tracked optically and single-unit neural
activity recorded using multielectrode arrays. Monkey F performed a
26-target center-out and out-center task and Monkey C performed a
center-out only task. In addition, electromyographic (EMG) activity was
recorded from Monkey C. Decoding analysis was performed offline.

Behavioral paradigm

Each monkey viewed a 3D virtual environment through a stereoscopic
display (Fig. 1a). The position of an optical marker on the left hand was
mapped to the position of a spherical cursor (6 mm in one Monkey C
session, 8 mm in all other sessions). The animals were operantly condi-
tioned to perform reach-to-target movements. Each trial started with the
presentation of an initial spherical target (same size as cursor) at time .
The monkey would then move the cursor to overlap the target (Initial
Reach [IR] period). A hold at this target (Initial Hold [IH] period) started
at time f,. At time t,, the initial target was removed and a second, final target
displayed. The monkey would then move the cursor to this second target (Final
Reach [FR] period). The monkey held the cursor at the final target (Final
Hold [FH]) starting at time t; and ending at ,. Upon successful comple-
tion of FH, the monkey received a liquid reward. If FR was not completed
within the allowed time (1.0 s in one Monkey C session, 0.8 s in the other
Monkey C session, and in all Monkey F sessions) or the cursor was not
held at the target long enough during either of the hold periods, then the
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trial failed. The minimum required hold time for each trial was randomly
chosen from an interval (Monkey F: 0.39-0.61 s for IH, 0.40—0.60 s for
FH; Monkey C: 0.21-0.60 s for IH, 0.19-0.32 s for FH). Regardless of
success, each trial was followed by an IT period before the beginning of
the next trial. The sequence of task periods is depicted in Figure 1b as a
circular timeline to emphasize the continuity from one trial to the next,
because all time periods were included in analysis. For Monkey C, the
initial target (for IR and IH) was at the center of the workspace and the
final target (for FR and FH) for each trial was chosen from a set of 26
equidistant locations, 78 mm from center (8 in the direction of the cor-
ners of an imaginary cube centered in the workspace, 12 in the direction
of the middle of each edge, and 6 in the direction of the middle of each
face). For Monkey F, the target sequence for each trial was chosen from a
set of 52 (initial center target to final at one of the 26 outer locations or
initial at one of the outer locations to final at the center) and the distance
between center and outer targets was 66 mm.

Neural recordings

Single-unit activity was recorded using chronically implanted silicon mi-
croelectrode arrays (Blackrock Microsystems). Each array had 1.5 mm
electrode shanks arranged in a 10 X 10 grid. Ninety-six of the 100 elec-
trodes were wired for recording. Each monkey had one array in the right
hemisphere of primary motor cortex arm area. Monkey F had an addi-
tional array in the ventral premotor cortex, but data from this array were
not used in the analysis and will be reported elsewhere. Single-unit spike
waveforms were acquired using a 96-channel Plexon MAP system. Spikes
were manually sorted at the beginning of each recording day using the
SortClient in Plexon’s RASPUTIN software. For Monkey F, the spike
waveforms were later resorted using Plexon’s offline sorter.

Hand tracking

An infrared marker on the back of the left hand was tracked using an
Optotrak 3020 optical tracking system (Northern Digital) at a frame rate
of 60 Hz synchronized to the graphical display frames. The 3D marker
position was used in real time to drive the cursor in the 3D graphical
display.

EMG data

EMG was recorded from Monkey C only. Surface EMG measurements
were amplified using an Octopus AMT-8 EMG system (10-1000 Hz
band pass; Bortec Biomedical) and sampled at 2 kHz with an ADLink
DAQ-2208 data acquisition card. Before each daily session, up to seven
pediatric electrodes (Vermed) were affixed to the monkey’s upper limb.
Electrode placement could vary substantially from day to day, so channel
characteristics were typically evaluated during short periods of instructed
reaching movement before each experimental session. Channels with
poor signals or obvious movement artifacts were discarded. Of the EMG
data collected in 1 d and used in the analysis, signals from 5 of the 7 EMG
channels were deemed acceptable. The electrodes of these five channels
were approximately over the medial biceps, lateral biceps, anterior del-
toid, medial-anterior deltoid, and posterior deltoid. The gains of the pair
of biceps channels were adjusted slightly, early in the session, but param-
eters were otherwise constant throughout the reaching experiment.

Data preprocessing

Before any data analysis, the data were preprocessed. Raw neural data
were transformed from spike event times into two different forms for
different analyses. Spike counts in 30 ms bins were calculated for LGF
decoding analyses (see Kinematic decoding), and fractional interval fir-
ing rates (Georgopoulos et al., 1989; Schwartz, 1992) at 30 ms intervals
were computed for all other analyses. The firing rates were low-pass
filtered with a bell-shaped filter of length 21 samples with a corner fre-
quency of 2.0 Hz. The filter was applied forwards and then backwards
using the filtfilt function of MATLAB (The MathWorks), to avoid intro-
ducing any filtering delay.

Hand marker position was resampled at the same 30 ms intervals as the
neural data using linear interpolation to synchronize the kinematic data
with the spike counts. EMG power within each corresponding 30 ms bin
was calculated by taking the root-mean-square (RMS) amplitude for
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Figure2. Originaland redefined task periods. Speed profiles (black) and distance from cursor to target (yellow) are shown for two example trials: one thatincluded an IR (, ¢) and one where there
was no IR because the hand was already at the initial target at the beginning of the trial (b, d). In the original task periods (a, b), Hold typically started while hand speed was still high because the
monkeys had a habit of allowing the hand to enter the target at high speed because the target region was large enough to allow slowing down within the region without overshooting it. The

redefined periods (a, b) were aligned to the speed profiles, capturing the high-speed movements within the Reach periods and leaving only low speed for Hold periods.
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Figure 3.

a, b, Change in velocity w,,, between consecutive time steps as a function of speed s, showing the Cartesian x, y, and zcomponents separately (purple, cyan, and brown, respectively).

¢, d, The variance g, of the pooled Cartesian components of w as a function of speed, showing mean == 2 SEs of 50 mm/s bins (blue) and a linear fit to the means (magenta).

each channel. Overall EMG power was calculated by taking the mean
across channels for each time bin.

To ensure that the task periods reflected actual behavior, they were
redefined using kinematic data from each trial (Fig. 2). FR was defined as
the time spanning the closest local minimum before and the closest local
minimum after the peak speed between ¢, and ¢, in Figure 1. If the local
minimum was >30% of peak speed, then the next closest minimum was
used instead. FH was the time spanning the end of the FR and the end of
the trial. IR could not be identified from peak speed alone because the
monkey was allowed unrestricted movements between #, and t;; the
monkey could make non-task-related movements such as putting its arm
down to rest or raising the arm from the resting position. Therefore, to
correctly identify the initial reaching movement, we first identified the
peak speed point while the distance from cursor to target was monoton-
ically decreasing up to #;. IR was then defined around the peak speed
point as in FR, based on the local minimum before and after the peak
speed. IH was the time spanning the end of the IR and the beginning of
the FR. IT was defined as the time spanning the end of FR and the
beginning of IR. To simplify the analysis, IR and FR were pooled as Reach
periods and IH and FH were pooled as Hold periods. All analyses were
performed using these redefined task periods.

Principal component analysis

Principal component analysis (PCA) was performed using MATLAB’s
princomp function. Firing rates of all units over a whole session were
square-root transformed (Georgopoulos et al., 1989; Georgopoulos and
Ashe, 2000) and used without filtering for specific task periods. Each
channel’s mean was subtracted before being passed to PCA.

Rest period labeling

There were occasional periods between trials when the monkey sponta-
neously put its hand down to rest (see Results, “Identification of Rest
Periods”). A sample at discrete time k was labeled Rest when the win-
dowed path length dj_ traveled within a 300 ms window (= 5 samples
around current time) was =1 mm, as follows:

5
d, = Z_ |Pk+n _Pk+n—1‘ (1)

and p, was hand position at time k. The Rest period could be detected
reliably because the motion tracking system was precise and the hand was
resting on a solid surface.
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Figure4.

Kinematics and neural signals over a continuous 2 min period. , x, y, and z components of decoded hand velocity with the D1 decoder (red) generally follow actual hand velocity (blue)

during the 37 trial periods (gray background) and most of the IT periods (white background), except for large deviations during some long IT periods (arrows). The hand marker was out of view during
the second long IT period. b, Firing rates (grayscale where white = zero, black = maximum) of the 93 simultaneously recorded units that were used for decoding, aligned in time with the plotsin a.

Linear discriminant analysis for idle state detection

To detect the Idle state (the neural correlate of Rest), a linear discriminant
analysis (LDA) classifier was used. The classifier was trained to distin-
guish two classes, Idle or Active, with firing rates as input. The firing rates
were square-root transformed (Georgopoulos et al., 1989; Georgopoulos
and Ashe, 2000) to better fit the normal distribution expected by LDA.
The training data were labeled Idle during Rest periods, and Active during
Reach and Hold periods. Twofold cross-validation was used for each
session. The folds were chosen as the first half versus the second half of all
samples within each class (Idle and Active).

State detection evaluation

A confusion matrix was computed for each cross-validation fold. The
percentage correct/incorrect entries in the confusion matrix were calcu-
lated as N, /N, where N, was the number of 30 ms samples predicted
as class n, the actual class of which was m, and N,,, was the total number
of samples of class m. Mean = 2 SEs were calculated across all cross-
validation folds and sessions. Average confusion matrices across mon-
keys were computed by averaging each mean or SE value across the two
monkeys. Overall classification accuracy across classes was calculated by
averaging the main diagonal elements of the confusion matrix.

Kinematic decoding
Hand kinematics were predicted from neural data using a Laplace Gaussian
Filter (LGF; Koyama et al., 2010a, 2010b). A series of three decoder config-
urations (D1-D3) were created in order of increasing sophistication:

Basic decoder (D1). In the simplest configuration, typical of prosthetic
control experiments, a simple velocity tuning function was assumed as
follows:

(2)

Where [ is the expected firing rate for unit i at discrete time k, b; and b,
are regression coefficients, and v, = (v, Uy, v,) " is the 3D Cartesian
hand velocity at time k. d; accounted for the delay between motor-cortical
signals and arm movement. A constant value of d; = 3 samples (90 ms)

log Aix = by; + b;* vy,

was used for all units (determined by optimization to minimize the av-
erage decoding error across all sessions). Spike counts ( y;) were as-
sumed to be Poisson distributed as a function of the expected firing rate
as follows:

yic ~ Poisson (A At) (3)

Where D, was the sample period (30 ms).

As arequirement of the LGF state-space filter, a state transition model
was needed to describe how the kinematic state (v,) was expected to
progress from one time step to the next (assuming no knowledge of
neural data). We defined this as a random walk model as follows:

W, ~ N(O) ka) (4)

Where w,,. was a Gaussian noise term with zero mean and covariance
(Q,o a diagonal matrix with variance g, on the main diagonal). A con-
stant value of g, = 400 mm?/s> was used (found by optimization to
minimize the average decoding error across all sessions).

The b coefficients of Equation 2 were calibrated by generalized linear
model regression based on hand velocity and spike counts from Reach
and Hold periods.

Advanced decoder (D2). To better predict hand kinematics, three im-
provements were made to the decoding model: We added speed and
position terms (Kettner et al., 1988; Moran and Schwartz, 1999; Wang et
al., 2007), improved the state transition model with more realistic vari-
ance, and optimized the delay for each unit.

To add speed and position to the tuning function, the velocity term v,
of Equation 2 was replaced with the augmented kinematic vector z, as
follows:

V= v Ty,

Uy
loghi = bo; + b;* 214, 2 Al 5

143

Where s; = |v,| was the hand speed and p; = (P Py poi) | was posi-
tion. The state transition model was accordingly generalized by replacing

(5)
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Figure 5.  Kinematic identification of the Rest periods. a—d, 2D histograms of hand position over one whole session for each  \where K was the total number of time points

monkey: peaks at the low extreme of the vertical y-dimension (circled) are consistent with locations on the lap plate where the
monkey rested its arm. e—j, Aggregated histograms of hand kinematics over all sessions for each monkey. e, f, Windowed path
length d, (Equation 1) shown for d, << 10 mm. The arrow indicates the 1 mm Rest identification threshold. g, h, Speed, shown for
<20mm/s.i,j, Vertical component of position. Colors indicate task periods as defined in Figure 1b and blackis the newly identified

Rest period.

the velocity state vector v, of Equation 4 with an augmented state vector
X, as follows:

v,
x A [ PZ ]> X, = Fx;— + @y, w,~N(0,Q) (6)

I 0 Quk 0
Fé[mr 1]’ Qké[ 0 ka] 7)

Where I was a 3 X 3 identity matrix and 0 was a zero matrix. The IDt
element of the state transition matrix F constrained the model by ex-

evaluated.

All decoding analyses were performed using
twofold cross-validation. Each session was di-
vided into halves by the number of trials. A
decode on the first half was obtained using a
decoder trained on the second half and vice
versa, resulting in two decode evaluations per
session. Mean * 2 SEs of each metric across all sessions and evaluation
sets were calculated for each decoder.

Idle/Active transition plots

Figure 11, eand f, shows true positive state transitions from one Monkey
C session. The values of four quantities (LDA score, speed, vertical posi-
tion, and average EMG power) were each normalized as follows: First, a
high value (gy;) for each quantity g was chosen as the 5th percentile of all
values during the Active state. Then, a low value (g;) was chosen as the
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95th percentile of all values during Idle state. a
The normalized quantity g’ was then calcu-
lated as follows:

41
du — qt

q (12)

This normalized the transitions to a range of

0-1 so they could be plotted together for all

151

four quantities.
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two Reach periods, two Hold periods, and Normalized Difference Normalized Difference
an IT period (Fig. 1b). In previous studies,

Figure7. Single-unittuning functions. Colorsindicate task periods as defined in Figure 1b. a, Binned firing rate plots for each of the four

analysis had been typically based on the
Reach and Hold, collectively called trial
periods, whereas IT data were excluded.
In the present work, the IT periods were
the focus of analysis. The monkeys per-

task periods for five representative units: three from Monkey F (top three rows) and two from Monkey C (bottom two rows). Colors indicate
task periods defined in Figure 16 and the black dot is the mean firing rate during Rest. Error bars indicate == 2 SE. Baseline firing rate b,
(dashed line) is shown from a linear fit to Reach period data. b, Histogram of the normalized zero-bin firing rate difference ( f;

— by)/ \/1:, where f, is the mean firing rate of a given unit in the zero-velocity bin for a given dimension, b, is the same as above,
and n is the variance of firing rates in 300 ms bins calculated separately and then averaged over the four task periods.

formed consistently in successful trials, as

shown by an orderly pattern of move-

ments to discrete target locations (Fig. 1¢). In contrast, IT trajec-
tories (Fig. 1d) were more variable because the monkey’s
behavior was not directed by the task during that time. With the
assumption that motor cortical single unit firing rates would fit
the same tuning model during both the trial and IT periods, we
tested whether a velocity decoder built during trial periods
would perform equally well during trial and IT.

Continuous decoding including during IT periods

It has been previously shown that hand velocity can be predicted
from motor cortical ensemble activity (Georgopoulos et al., 1988;
Schwartz, 1994; Lebedev et al., 2005; Li et al., 2009). To determine
whether this model was also applicable during IT periods, we
trained an LGF decoder (Koyama et al., 2010a,2010b) using the
velocity tuning model (decoder configuration D1, see Materials

and Methods). The tuning model was calibrated using data from
the Reach and Hold periods, but decoding was performed contin-
uously throughout all periods, including during ITs (Fig. 4a).

Two observations are clear from the plot in Figure 4: (1) the
decoded velocity approximately matched the actual velocity dur-
ing both trial and IT periods and (2) there was a consistent large
offset between decoded and actual velocities during some long IT
periods. A concomitant change in the population activity pattern
(Fig. 4b) suggests that the monkey’s behavior during those peri-
ods may have differed from active trial periods.

Identification of rest periods

2D histograms show that the hand was often at a low position
consistent with the lap plate where the monkey spontaneously
rested its arm between some trials (Fig. 5a—d). However, due to



Velliste et al. @ Motor Cortical Correlates of Arm Resting

J. Neurosci., April 23, 2014 - 34(17):6011- 6022 * 6017

Monkey F Monkey C Where by, b,, by, and b, are regression co-
o) ¥ efficients, and € is a noise term. When
= b ] = d a . .
a2 £ 5000 C s 0 £ 1500 plotted against any one velocity compo-
= 5 < 1000 nent, firing rates that follow the model
£ 5 £10 5 500 should fit a straight line (Fig. 6). Firing
ic : ic . . .
o ° RehHid iT Rst = 20 30 9’ RediTRst 2 0 =0 rates during Rest should be at the intercept
< Avg. Firing Rate (Hz) < Avg. Firing Rate (Hz) 1, if they fit the model, but for many units
e 2 g this was not the case (Fig. 7a). Some units
o gsooo o fired much higher, and some much lower
S @ ﬁ S than b, with the overall distribution dur-
~10 g 0 ing Rest biased toward lower rates (Fig.
S IS iy =W 1 7b). In contrast, the firing rates during the
. kinematically similar Hold periods tended
H] [ [ [’
I 2 5000 < 10000 k%;zooo | £ 4000 to be close to b, as shown by the blue
£ g g £ distribution in Figure 7b.
® & 5000 ® 1000 & 2000
8 S ° 8
2 B0 o 200 %2022 oo o 102 %020 o 20 a Reflectionofrestperiodsin
LDA Score LDA Score LDA Score LDA Score population activity
) o ) L ) - Although some units showed clear Rest-
Figure8. Populationactivity aggregated over one whole session for each monkey. Colors indicate task periods defined in Figure 8

1band blackis Rest. a, ¢, Firing rate averaged over all units and time (= 2 SE). b, d, Histogram of instantaneous average firing rate
(averaged over all units for each 30 ms sample). e, g, First two principal components of the instantaneous firing rates (each dot is
a30ms sample). f, h, Histogram of the first principal component of firing rates. i, k, Histogram of the discriminant score of an LDA
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classifier trained to distinguish Rest from all other task periods based on firing rates of all units.

Table 1. State detection confusion matrix averaged across monkeys

LDA prediction
ldle Active
Actual
Idle 96.6 * 3.4% 3.4+ 3.4%
Active 1.0 £ 0.9% 99.0 = 0.9%

Table 2. Idle/Active dlassification by task period averaged across monkeys

LDA prediction
Idle Active
Task period
Reach 1.0 = 0.9% 99.0 = 0.9%
Hold 0.0 =0.1% 100.0 = 0.0%
Intertrial 2.7 +2.1% 973 *+ 2.1%
Rest 96.6 = 3.4% 34+ 3.4%

the variability of resting positions, we found that a more unique
identifier of the Rest periods was windowed path length d, (Equa-
tion 1). Because the hand was supported by a solid surface during
Rest, the amount of movement in a 300 ms window was much
lower than during any other periods as indicated by a bimodal
distribution (Fig. 5e,f). Periods below this threshold were labeled
Rest and color coded black in subsequent plots. As expected,
speed and vertical position were at low values during periods that
were labeled Rest (Fig. 5¢—j). Rest periods occurred only during
IT, never during Reach or Hold. IT data in subsequent results
excludes the Rest periods.

Reflection of rest periods in single-unit activity

Based on prior studies (Georgopoulos et al., 1982; Reina et al.,
2001), we expected that the firing rate f of most motor cortical
units would be well approximated as a linear function of hand
velocity v = (v, v, v,) as follows:

f=by+bu.+by +by +e (13)

related modulation, the firing rate of indi-
vidual units would be too noisy to predict
Rest periods reliably. Even if it was not
noisy, the Rest firing rate for a lot of units
was within the range of movement-
modulated rates, meaning that the inter-
pretation of a single unit’s rate could be
ambiguous. We therefore investigated the ensemble activity of all
recorded units. First, we found that the firing rate, averaged over
all units and time, was significantly lower during Rest than during
all other (active) task periods (Fig. 8a—d). This was consistent
with the finding from the previous section that most individual
units’ Rest firing rates were lower than their baseline rates during
the active periods (Fig. 7b). The differences were most visible in
the time-averaged values over a whole session (Fig. 8a,c), in
which that difference was much larger than two SEs (i.e., >95%
confidence). However, on an instantaneous basis, the differences
were not as clear (Fig. 8b,d), showing substantial overlap between
Rest and the active periods. This is not surprising given that some
units increased, rather than decreased, their firing rate during
Rest (Fig. 7b). Therefore, average firing rate alone cannot be the
most accurate predictor of the Rest periods.

Next, we applied PCA to mean-subtracted firing rates and
found that projecting the firing rates onto the first two principal
components gave two easily separable clusters (Fig. 8e,g), with
almost all of the power discriminating these clusters in the first
principal component (PC1; Fig. 8f,h). PC1 appeared to separate
the clusters better than average firing rates, presumably because
PCA has the ability to assign negative (as well as positive) weights
to the firing rates of individual units, thus taking into account
their natural tendency to modulate high or low for Rest.

We will refer to the distinct pattern of cortical activity during
Rest periods as the Idle state. Conversely, the activity pattern dur-
ing other task periods will be termed the Active state. The fact that
this state difference was well separated by the first principal com-
ponent means that the state change was the most prominent
driver of neural activity in this dataset.

For purposes of prosthetic control, it would be useful to be
able to automatically detect the Idle state from neural activity.
Despite the apparent utility of this PCA, its results can be context
dependent. Ifa certain behavior during a different task caused the
units to modulate more than the Idle/Active distinction, then PC1
would no longer predict the Idle state. Therefore, a more reliable
way of detecting the Idle state is required.



6018 - J. Neurosci., April 23,2014 - 34(17):6011- 6022

Idle state detection —fctual
To avoid the problems associated with 200
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the advantage of choosing weights that
optimally separate the classes. This is done 200

by minimizing the ratio of within-class to g 0
between-class variance. LDA assigns pos- &
itive weights to units with a low firing rate > -200

(and negative weights to those with a high

—a00 D2
firing rate) during Idle. In addition, LDA

calculates an offset such that the decision 200

boundary on the output score would lie at g
. . : 0
0, so a positive score would predict Active  E
and a negative score Idle. LDA clearly sep- > -200
arated Rest from other periods (Fig. 8j,1), 100 D3

even when trained to distinguish between 0 10
just Rest and Hold (Fig. 8i,k). This is par-
ticularly interesting because these two
states are kinematically most similar, both
essentially nonmovement states with
nearly zero speed. IT received a positive
score most of the time, but sometimes slightly negative, suggest-
ing that it may include transition periods between Idle and Active
states.

When applied as a binary classifier between Idle and Active,
LDA achieved a high accuracy (Table 1) considering that it made
predictions on instantaneous 30 ms samples, not averaged trial pe-
riods. The correct classification rate, averaged over monkeys and
states, was 97.8 = 2.1% (97.8 £ 2.1% for Monkey F, 97.9 + 2.1%
for Monkey C).

We also looked at the classification accuracy in relation to
individual task periods (Table 2). Not surprisingly, Reach periods
were classified as Active 99.0% of the time. Hold periods, although
kinematically similar to Idle periods, were classified 99.98% as
Active (rounded as 100.0% in Table 2). This suggests that holding
the hand at a position in free space is an active process and is
consistent with earlier figures, where it was shown that neural
activity during hold periods tends to be more similar to that
during movement periods than resting periods. IT periods were
misclassified as Idle 2.7% of the time, suggesting once again that
IT periods may include Idle/Active transitions.

LDA was chosen because of its simplicity. The fact that Idle
and Active can be accurately distinguished with a linear method
implies that the underlying state change itself has little reliance on
complex interactions between neurons. Each unit simply modu-
lates high or low with the state change independently of the other
units.

It is worth noting that, in a practical application, LDA would
not necessarily be the best choice of classifier because of its ten-
dency to overfit noisy neural firing rates. This would lead to poor
cross-validation even when the classifier performed well on train-
ing data. In this study, these problems were not encountered, as
evidenced by the high classification accuracy on cross-validation.

Figure 4.

Kinematic decoding with and without Idle detection

For neural prosthetic applications, it is important that the Idle
pattern be correctly interpreted by a kinematic decoder to avoid
undesired movement. We compared the performance of two de-
coders without (D1 and D2) and one with idle detection (D3) as
follows:

30 40 50 60 70 80 90 100 110 120
Time (s)

Figure 9.  Actual and decoded x-velocity for the three decoder configurations (D1-D3) over the same 2 min period shown in

Monkey F Monkey C
a b
w
£ 10° 10°
E
w
[72]
= Reach
o« 1 1:10::_ rial 1
10 et T 10
c \ d
£
E
g 10
m
10°
D1 D2 D3 D1 D2 D3
Figure 10.  Decoding error for the three decoder configurations (D1-D3). RMSE (a, b) and

bias (c, d) were averaged over all sessions and cross-validation folds. Error bars are == 2 SE.

D1: V tuning model

D2: VSP tuning model + other refinements

D3: D2 + LDA Idle detection
The correct output during rest periods would be zero velocity,
but D1 produced a consistent nonzero decode during long IT
periods when the monkey rested its arm (Figs. 4a, 9a). D2 pre-
dicted velocity far more accurately than D1 and even greatly re-
duced Rest bias (Fig. 9b), but the bias was not completely
removed until explicit Idle detection with D3 (Fig. 9¢). The same
trends were shown by quantitative performance evaluation using
two error measures: RMSE and bias (Fig. 10). RMSE (Equation
10) captures the average amount of difference between decoded
and actual velocity, but is unable to distinguish randomly distrib-
uted error from consistent directional error. The latter is quanti-
fied by bias (Equation 11). To put the magnitude of the errors in
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Figure 11.

Relationship of the /dle state to speed, position, and EMG from one Monkey Csession. a, Histogram of EMG power for each task state. b, ¢, ROC curves for predicting the /dle state from

vertical position, speed, or EMG power (cis a zoomed-in version of b to show the detail in the top left part of the curve). Dashed line indicates expected performance of a random classifier. d—f, LDA
score, speed, vertical position, and average EMG power during transitions into and out of the /dle state. d, Example data showing two transitions (arrows), the first into and the second out of the /dle
state. The four quantities were arbitrarily scaled to put them approximately in the same range for plotting. e, f, Normalized values of the same four quantities showing multiple transitions into (e)
and out of (f) the /dle state aligned on the time when the normalized LDA score crossed a threshold of 0.5. Normalization mapped the 95th percentile of /dle period values to 0 and the 5th percentile

of Active period values to 1 (Equation 12).

perspective, the average speed of reaching movements was about
100 mm/s. Without idle detection, D1, the configuration typical
of neural prosthetic experiments, would produce ~200 mm/s
unintended movements during Rest (twice as fast as the average
reaching movement). The more advanced D2 configuration re-
duced bias more for Monkey F (~35 mm/s) than Monkey C
(~100 mm/s), but would still produce very obvious undesired
movements. When idle detection was applied in D3, the bias was
reduced to approximately 3—4 mm/s, a mere fraction of reaching
speed. The reason for this small residual bias was the 3% misclas-
sification rate for Idle.

Alternative correlates of the Idle state

The most obvious measurement that should correlate with arm
relaxation would be EMG. The distribution of EMG power dur-
ing Rest was clearly separated from its Hold and Reach distribu-
tions (Fig. 11a). Such clear separation was not present for speed
or position (Fig. 5¢—j). To show that the Idle state was better
related to actual arm relaxation than its kinematic correlates, we
tried predicting the Idle state by thresholding vertical position,
speed, and EMG. Predictions were labeled Idle whenever the
value was below threshold. Rather than picking any specific
threshold, we used receiver-operating characteristic curves to
evaluate the full range of thresholds (Fig. 11b,c¢). The graphs show
that all three quantities were good for predicting the Idle state, but

EMG power was the best. Approximately an equally high true
positive rate was attained with both position and EMG, predict-
ing Idle correctly approximately 97% of the time. But the false-
positive rate was much lower for EMG, at ~0.5% compared with
3.5% for position. This means that, with EMG, we made seven
times fewer errors of predicting Idle when the actual state was
Active. In other words, the arm was not necessarily resting just
because it was in a low position. The correlation of resting with
position was most likely coincidental as a consequence of the fact
that there happened to be a convenient surface for the monkey to
rest its hand on. Speed was an even worse predictor than position,
suggesting that its correlation to the state change was likely also
coincidental. Although EMG data were only available from one
monkey, this seemed to strongly support the view that the neural
Idle state could be related to arm relaxation.

We also wanted to account for the possibility that the Rest
period activity could be driven by the sensation of touch when the
monkey put the hand down. If this were true, then the LDA score
should transition from low to high or high to low after a change in
speed, position, or EMG. A plot of the transition periods (Fig.
11d—f) shows that the opposite was true: the LDA score always
transitioned first. Because the state change in motor cortical ac-
tivity occurred before any possible onset of tactile sensation, we
can conclude that it was not driven by such feedback.
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Figure12.  Tuning manifold concept. The firing rate distribution for /dle can be overlapping

that of Reach and Hold for each unit alone (bottom and left). When plotted together (top right),
the firing rates during Reach and Hold tend to fall on a manifold (dashed line) because they are
correlated with each other by following a common tuning function, a common driver. However,
Idlefiring rates follow a different correlation pattern. Unit 1 has a higher-than-average rate and
unit 2 a lower-than-average rate during /dle, so the /dle cluster (black oval) separates from the
manifold.

Discussion
We have shown that there was a very clear, characteristic shift in
motor cortical activity when the monkey put its arm down to rest.
We call this novel pattern of activity the Idle state. We use the
term “state” the same way as Churchland et al. (2012): the firing
rate of all units. This means the state change is an emergent effect
across the population. It is not necessarily identifiable from a
single unit because the Idle firing rate for most units is within the
range of firing rates exhibited during movement. However, when
taken as a population, the change becomes apparent. Consider an
N-dimensional space for N units where each dimension is the
firing rate of one unit. The ensemble population activity at any
given time would then be represented as a point in this space. In
the Active state, the points tend to fall on a manifold described by
a movement-related tuning function. For example, if all of the
units followed velocity tuning, the manifold would be a 3D hy-
perplane within the N-dimensional space. Idle state would be a
cluster of points away from the manifold. Figure 12 conveys this
concept with the example of a 2D space and a 1D manifold. The
amount of separation achieved with two units is exaggerated in
this sketch. In reality, individual units are so noisy that it can only
be recognized from the combined activity of many units.
Because the activity during rest periods did not follow the
expected tuning functions, decoders that used linear tuning func-
tions produced a biased output when cortical activity was in the
Idle state, meaning that there was a consistent error in one direc-
tion. In the context of prosthetic control with velocity being the
decoded variable, the bias would manifest as a “drift”: the arm
would keep moving in one direction despite the subject’s inten-
tion to keep it stationary and relaxed. This phenomenon has been
observed in brain—computer interface (BCI) studies (Taylor et
al., 2002; Velliste et al., 2008) in which a constant “drift correc-
tion” vector was applied in an attempt to cancel output bias.
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It is worth clarifying that Idle detection is not required for
stopping, because the monkeys had no trouble holding a cursor
(Taylor et al., 2002) or a virtual arm (O’Doherty et al., 2011)
within a small target region or steadying a robotic manipulator to
pick up food (Velliste et al., 2008) when continuous kinematic
variables were decoded without any discrete state information. In
light of the present study, it is easy to see how this is possible
under active control because there is relatively little output bias
during Hold periods. In closed-loop control, a subject can inten-
tionally apply corrective commands under visual feedback to
counteract the bias. The problem starts when the subject rests
because then, as we have shown, motor cortical units change their
tuning: individual units change their baseline rates to values that
would normally be associated with nonzero velocity, thus leading
to biased output.

Qualitatively, unintended movement could be more of a
problem for a prosthetic user than a mere increase in decoding
error. For example, in circumstances in which the user wanted to
rest their arm, such as sitting at a meeting or watching TV at
home, any amount of unintended movement would be distract-
ing and frustrating. Although it may be possible to prevent drift
by using visual feedback and staying only in the active state, such
a strategy may present a constant, high cognitive load that would
be absent during true rest.

Asasolution to this problem, we showed that the Idle state can
be detected with near-perfect accuracy using a classifier trained
on the instantaneous firing rates of a population of motor cortical
units. By combining the state detection with kinematic decoding,
the bias during rest periods was almost completely removed.

An interesting nuance of our findings was that the firing rates
during hold periods followed the Active pattern, even though
hold was kinematically similar to rest with almost zero velocity.
This means that the Idle neural state was not just an epiphenom-
enon of kinematic modulation, but rather seemed to relate to
dynamic parameters, as evidenced by the lack of EMG power
when the Idle state was detected. In this sense, hold versus rest can
be distinguished as actively maintained versus passive.

The concept of state detection in the context of BCI is not new
in itself. Single-unit activity has been used to detect “click” (Kim
et al., 2011), attentional states (Wood et al., 2005), change in
target direction (Ifft et al., 2012), forward/backward walking di-
rection in a switching decoder (Fitzsimmons et al., 2009), hold/
release periods (Lebedev etal., 2008), grasp type (Townsend et al.,
2011), or movement onset (Acharya et al., 2008; Aggarwal et al.,
2008; Santaniello et al., 2012). Movement onset can also be de-
tected from local field potential (LFP) activity (Pesaran et al.,
2002; Rickert et al., 2005; Scherberger et al., 2005; O’Leary and
Hatsopoulos, 2006; Hwang and Andersen, 2009; Mollazadeh et
al., 2011; Aggarwal et al., 2013) or from cortical surface (Wang et
al., 2012) or scalp recordings (EEG; Hallett, 1994; Awwad Shiekh
Hasan and Gan, 2010; Muralidharan et al., 2011; Niazi et al.,
2011; Lew et al., 2012).

Some of the studies listed included detection of a baseline state
(Achtman et al., 2007; Kemere et al., 2008; Aggarwal et al., 2013)
that might be considered similar to our Rest periods. However,
their baseline states corresponded to our Hold periods, during
which a cued position was maintained. One LFP study (Hwang
and Andersen, 2009) referred to relax periods, but these were not
explicitly detected. An EEG study specifically addressed the dis-
tinction of Rest from movement periods (Zhang et al., 2007), but
did not distinguish it from the kinematically similar Hold peri-
ods. In some of the studies, movement onset was detected, but the
end of movement was not.
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Our study advanced state detection by: (1) identifying Rest
and Hold as distinct behavioral states despite similar kinematics,
(2) identifying correspondingly distinct Idle and Active neural
states, (3) characterizing these neural states in relation to individ-
ual units’ tuning functions, (4) showing that the neural states
were highly distinct in their population firing rate pattern, (5)
detecting the states on an instantaneous basis, allowing the iden-
tification of not only the onset of active periods, but also their
end, and (6) detecting the states with an unprecedented 98%
accuracy.

The results from this study suggest that kinematic predictions
can be improved by identifying state changes in tuning functions.
This is an important step toward continuous decoding, which
will be necessary for the implementation of real-world prosthetic
devices. Other findings suggest that, in addition to the Idle/Active
state transition identified in this study, other state transitions
occur in motor cortical ensemble firing patterns, such as upon
removal of a manipulandum from the subject’s grasp (Lebedev et
al., 2005), switching from unimanual to bimanual control (Ifft et
al., 2013), or falling asleep (Jackson et al., 2007; Pigarev et al.,
2013; Pigarev, 2013). Decoders will need to account for these and
other potential shifts to maintain decoding accuracy across a
wide range of contexts. Abstract variables related to motivation
may well have a motor-cortical representation, but would be dif-
ficult to measure. In this study, we have shown that there is a state
change related to arm resting, but we do not know why the mon-
key rested its arm. Was it due to fatigue, lack of attention, lack of
motivation, or boredom? The observed state change may relate to
any of these variables or it may simply reflect something as mech-
anistic as the gating of motor output from the cortex to the spinal
cord or a command to relax the muscles.

Further experiments are needed to explore cortical state
changes as they relate to motor control. By identifying state tran-
sitions in neural activity that account for distinct clusters in the
population firing rate space, we can more accurately attribute the
variance of neural activity within a state to relevant motor param-
eters and improve our understanding of the mechanisms driving
motor cortical activity.

References

Acharya S, Tenore F, Aggarwal V, Etienne-Cummings R, Schieber MH,
Thakor NV (2008) Decoding individuated finger movements using
volume-constrained neuronal ensembles in the m1 hand area. IEEE Trans
Neural Syst Rehabil Eng 16:15-23. CrossRef Medline

Achtman N, Afshar A, Santhanam G, Yu BM, Ryu SI, Shenoy KV (2007)
Free-paced high-performance brain-computer interfaces. ] Neural Eng
4:336-347. CrossRef Medline

Aggarwal V, Acharya S, Tenore F, Shin HC, Etienne-Cummings R, Schieber
MH, Thakor NV (2008) Asynchronous decoding of dexterous finger
movements using m1 neurons. IEEE Trans Neural Syst Rehabil Eng 16:
3-14. CrossRef Medline

Aggarwal V, Mollazadeh M, Davidson AG, Schieber MH, Thakor NV (2013)
State-based decoding of hand and finger kinematics using neuronal en-
semble and Ifp activity during dexterous reach-to-grasp movements.
J Neurophysiol 109:3067-3081. CrossRef Medline

Ashe J (1997) Force and the motor cortex. Behav Brain Res 87:255-269.
CrossRef Medline

Awwad Shiekh Hasan B, Gan JQ (2010) Unsupervised movement onset de-
tection from eeg recorded during self-paced real hand movement. Med
Biol Eng Comput 48:245-253. CrossRef Medline

Cherian A, Krucoff MO, Miller LE (2011) Motor cortical prediction of emg:
evidence that a kinetic brain-machine interface may be robust across
altered movement dynamics. ] Neurophysiol 106:564-575. CrossRef
Medline

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P,
Ryu SI, Shenoy KV (2012) Neural population dynamics during reach-
ing. Nature 487:51-56. CrossRef Medline

J. Neurosci., April 23, 2014 - 34(17):6011- 6022 * 6021

Evarts EV (1966) Pyramidal tract activity associated with a conditioned
hand movement in the monkey. ] Neurophysiol 29:1011-1027. Medline

Evarts EV (1968) Relation of pyramidal tract activity to force exerted during
voluntary movement. ] Neurophysiol 31:14-27. Medline

Fagg AH, Ojakangas GW, Miller LE, Hatsopoulos NG (2009) Kinetic trajec-
tory decoding using motor cortical ensembles. IEEE Trans Neural Syst
Rehabil Eng 17:487-496. CrossRef Medline

Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA (2009) Extracting
kinematic parameters for monkey bipedal walking from cortical neuronal
ensemble activity. Front Integr Neurosci 3:3. CrossRef Medline

Fraser GW, Schwartz AB (2012) Recording from the same neurons chroni-
cally in motor cortex. ] Neurophysiol 107:1970-1978. CrossRef Medline

Georgopoulos AP (1996) Arm movements in monkeys: behavior and neu-
rophysiology. ] Comp Physiol A 179:603—612. CrossRef Medline

Georgopoulos AP (2000) Neural aspects of cognitive motor control. Curr
Opin Neurobiol 10:238-241. CrossRef Medline

Georgopoulos AP, Ashe] (2000) One motor cortex, two different views. Nat
Neurosci 3:963; author reply 964-965. CrossRef Medline

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the rela-
tions between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. ] Neurosci 2:1527-1537. Medline

Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex
and free arm movements to visual targets in three-dimensional space. ii.
coding of the direction of movement by a neuronal population. ] Neuro-
sci 8:2928-2937. Medline

Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989)
Mental rotation of the neuronal population vector. Science 243:234-236.
CrossRef Medline

Gupta R, Ashe ] (2009) Offline decoding of end-point forces using neural
ensembles: application to a brain-machine interface. IEEE Trans Neural
Syst Rehabil Eng 17:254-262. CrossRef Medline

Hallett M (1994) Movement-related cortical potentials. Electromyogr Clin
Neurophysiol 34:5-13. Medline

Hatsopoulos NG, Amit Y (2012) Synthesizing complex movement frag-
ment representations from motor cortical ensembles. ] Physiol Paris 106:
112-119. CrossRef Medline

Hatsopoulos NG, Donoghue JP (2009) The science of neural interface sys-
tems. Annu Rev Neurosci 32:249-266. CrossRef Medline

Hatsopoulos NG, Xu Q, Amit Y (2007) Encoding of movement fragments
in the motor cortex. ] Neurosci 27:5105-5114. CrossRef Medline

Herter TM, Korbel T, Scott SH (2009) Comparison of neural responses in
primary motor cortex to transient and continuous loads during posture.
J Neurophysiol 101:150—163. CrossRef Medline

Hwang EJ, Andersen RA (2009) Brain control of movement execution onset
using local field potentials in posterior parietal cortex. ] Neurosci 29:
14363-14370. CrossRef Medline

Ifft PJ, Lebedev MA, Nicolelis MA (2012) Reprogramming movements: ex-
traction of motor intentions from cortical ensemble activity when move-
ment goals change. Front Neuroeng 5:16. CrossRef Medline

Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MA (2013) A brain-machine
interface enables bimanual arm movements in monkeys. Sci Transl Med
5:210ral54. CrossRef Medline

Jackson A, Mavoori ], Fetz EE (2007) Correlations between the same motor
cortex cells and arm muscles during a trained task, free behavior, and
natural sleep in the macaque monkey. ] Neurophysiol 97:360-374.
CrossRef Medline

Kalaska JF (2009) From intention to action: motor cortex and the control of
reaching movements. Adv Exp Med Biol 629:139-178. CrossRef Medline

Kemere C, Santhanam G, Yu BM, Afshar A, Ryu SI, Meng TH, Shenoy KV
(2008) Detecting neural-state transitions using hidden markov models
for motor cortical prostheses. ] Neurophysiol 100:2441-2452. CrossRef
Medline

Kettner RE, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex
and free arm movements to visual targets in three-dimensional space. iii.
positional gradients and population coding of movement direction from
various movement origins. ] Neurosci 8:2938—2947. Medline

Kim SP, Simeral JD, Hochberg LR, Donoghue JP, Friehs GM, Black MJ
(2011) Point-and-click cursor control with an intracortical neural inter-
face system by humans with tetraplegia. IEEE Trans Neural Syst Rehabil
Eng 19:193-203. CrossRef Medline

Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE
(2010a) Comparison of brain-computer interface decoding algorithms


http://dx.doi.org/10.1109/TNSRE.2007.916269
http://www.ncbi.nlm.nih.gov/pubmed/18303801
http://dx.doi.org/10.1088/1741-2560/4/3/018
http://www.ncbi.nlm.nih.gov/pubmed/17873435
http://dx.doi.org/10.1109/TNSRE.2007.916289
http://www.ncbi.nlm.nih.gov/pubmed/18303800
http://dx.doi.org/10.1152/jn.01038.2011
http://www.ncbi.nlm.nih.gov/pubmed/23536714
http://dx.doi.org/10.1016/S0166-4328(97)00752-3
http://www.ncbi.nlm.nih.gov/pubmed/9331494
http://dx.doi.org/10.1007/s11517-009-0550-0
http://www.ncbi.nlm.nih.gov/pubmed/19888613
http://dx.doi.org/10.1152/jn.00553.2010
http://www.ncbi.nlm.nih.gov/pubmed/21562185
http://dx.doi.org/10.1038/nature11129
http://www.ncbi.nlm.nih.gov/pubmed/22722855
http://www.ncbi.nlm.nih.gov/pubmed/4961643
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://dx.doi.org/10.1109/TNSRE.2009.2029313
http://www.ncbi.nlm.nih.gov/pubmed/19666343
http://dx.doi.org/10.3389/neuro.07.003.2009
http://www.ncbi.nlm.nih.gov/pubmed/19404411
http://dx.doi.org/10.1152/jn.01012.2010
http://www.ncbi.nlm.nih.gov/pubmed/22190623
http://dx.doi.org/10.1007/BF00216125
http://www.ncbi.nlm.nih.gov/pubmed/8888576
http://dx.doi.org/10.1016/S0959-4388(00)00072-6
http://www.ncbi.nlm.nih.gov/pubmed/10753794
http://dx.doi.org/10.1038/79882
http://www.ncbi.nlm.nih.gov/pubmed/11017158
http://www.ncbi.nlm.nih.gov/pubmed/7143039
http://www.ncbi.nlm.nih.gov/pubmed/3411362
http://dx.doi.org/10.1126/science.2911737
http://www.ncbi.nlm.nih.gov/pubmed/2911737
http://dx.doi.org/10.1109/TNSRE.2009.2023290
http://www.ncbi.nlm.nih.gov/pubmed/19497832
http://www.ncbi.nlm.nih.gov/pubmed/8168458
http://dx.doi.org/10.1016/j.jphysparis.2011.09.003
http://www.ncbi.nlm.nih.gov/pubmed/21939762
http://dx.doi.org/10.1146/annurev.neuro.051508.135241
http://www.ncbi.nlm.nih.gov/pubmed/19400719
http://dx.doi.org/10.1523/JNEUROSCI.3570-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17494696
http://dx.doi.org/10.1152/jn.90230.2008
http://www.ncbi.nlm.nih.gov/pubmed/19005005
http://dx.doi.org/10.1523/JNEUROSCI.2081-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906983
http://dx.doi.org/10.3389/fneng.2012.00016
http://www.ncbi.nlm.nih.gov/pubmed/22826698
http://dx.doi.org/10.1126/scitranslmed.3006159
http://www.ncbi.nlm.nih.gov/pubmed/24197735
http://dx.doi.org/10.1152/jn.00710.2006
http://www.ncbi.nlm.nih.gov/pubmed/17021028
http://dx.doi.org/10.1007/978-0-387-77064-2_8
http://www.ncbi.nlm.nih.gov/pubmed/19227499
http://dx.doi.org/10.1152/jn.00924.2007
http://www.ncbi.nlm.nih.gov/pubmed/18614757
http://www.ncbi.nlm.nih.gov/pubmed/3411363
http://dx.doi.org/10.1109/TNSRE.2011.2107750
http://www.ncbi.nlm.nih.gov/pubmed/21278024

6022 - J. Neurosci., April 23,2014 - 34(17):6011- 6022

in open-loop and closed-loop control. ] Comput Neurosci 29:73—87.
CrossRef Medline

Koyama S, Pérez-Bolde LC, Shalizi CR, Kass RE (2010b) Approximate
methods for state-space models. ] Am Stat Assoc 105:170—180. CrossRef
Medline

Lebedev MA, Carmena JM, O’Doherty JE, Zacksenhouse M, Henriquez CS,
Principe JC, Nicolelis MA (2005) Cortical ensemble adaptation to rep-
resent velocity of an artificial actuator controlled by a brain-machine
interface. ] Neurosci 25:4681-4693. CrossRef Medline

Lebedev MA, O’Doherty JE, Nicolelis MA (2008) Decoding of temporal in-
tervals from cortical ensemble activity. ] Neurophysiol 99:166-186.
CrossRef Medline

Lebedev MA, Tate AJ, Hanson TL, Li Z, O’Doherty JE, Winans JA, Ifft PJ,
Zhuang KZ, Fitzsimmons NA, Schwarz DA, Fuller AM, An JH, Nicolelis
MAL (2011) Future developments in brain-machine interface research.
Clinics (Sao Paulo) 66:25-32. CrossRef Medline

LewE, Chavarriaga R, Silvoni S, Millan Jdel R (2012) Detection of self-paced
reaching movement intention from eeg signals. Front Neuroeng 5:13.
CrossRef Medline

Li Z, O’Doherty JE, Hanson TL, Lebedev MA, Henriquez CS, Nicolelis MA
(2009) Unscented kalman filter for brain-machine interfaces. PLoS One
4:6243. CrossRef Medline

Mirabella G (2012) Volitional inhibition and brain-machine interfaces: a
mandatory wedding. Front Neuroeng 5:20. CrossRef Medline

Mollazadeh M, Aggarwal V, Davidson AG, Law AJ, Thakor NV, Schieber MH
(2011) Spatiotemporal variation of multiple neurophysiological signals
in the primary motor cortex during dexterous reach-to-grasp move-
ments. ] Neurosci 31:15531-15543. CrossRef Medline

Moran DW, Schwartz AB (1999) Motor cortical representation of speed and
direction during reaching. ] Neurophysiol 82:2676-2692. Medline

Muralidharan A, Chae J, Taylor DM (2011) Early detection of hand move-
ments from electroencephalograms for stroke therapy applications.
J Neural Eng 8:046003. CrossRef Medline

Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D (2011)
Detection of movement intention from single-trial movement-related
cortical potentials. ] Neural Eng 8:066009. CrossRef Medline

O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis
MA (2011) Active tactile exploration using a brain-machine-brain in-
terface. Nature 479:228 -231. CrossRef Medline

O’Leary JG, Hatsopoulos NG (2006) Early visuomotor representations re-
vealed from evoked local field potentials in motor and premotor cortical
areas. ] Neurophysiol 96:1492—1506. CrossRef Medline

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal
structure in neuronal activity during working memory in macaque pari-
etal cortex. Nat Neurosci 5:805-811. CrossRef Medline

Phillips CG, Porter R (1977) Corticospinal neurones. their role in move-
ment. Monogr Physiol Soc pp. v-xii, 1-450.

PigarevIN (2013) The visceral theory of sleep [Article in Russian]. Zh Vyssh
Nerv Deiat Im I P Pavlova 63:86-104. Medline

Velliste et al. @ Motor Cortical Correlates of Arm Resting

Pigarev IN, Bagaev VA, Levichkina EV, Fedorov GO, Busigina II (2013)
Cortical visual areas process intestinal information during slow-wave
sleep. Neurogastroenterol Motil 25:268-275, €169. CrossRef Medline

Porter R, Lemon R (1993) Corticospinal function and voluntary move-
ment. Oxford: Clarendon.

Reina GA, Moran DW, Schwartz AB (2001) On the relationship between
joint angular velocity and motor cortical discharge during reaching.
J Neurophysiol 85:2576-2589. Medline

Rickert J, Oliveira SC, Vaadia E, Aertsen A, Rotter S, Mehring C (2005)
Encoding of movement direction in different frequency ranges of motor
cortical local field potentials. ] Neurosci 25:8815—8824. CrossRef Medline

Santaniello S, Sherman DL, Thakor NV, Eskandar EN, Sarma SV (2012)
Optimal control-based bayesian detection of clinical and behavioral state
transitions. IEEE Trans Neural Syst Rehabil Eng 20:708-719. CrossRef
Medline

Scherberger H, Jarvis MR, Andersen RA (2005) Cortical local field potential
encodes movement intentions in the posterior parietal cortex. Neuron
46:347-354. CrossRef Medline

Schwartz AB (1992) Motor cortical activity during drawing movements:
single-unit activity during sinusoid tracing. ] Neurophysiol 68:528-541.
Medline

Schwartz AB (1994) Direct cortical representation of drawing. Science 265:
540-542. CrossRef Medline

Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:
487-507. CrossRef Medline

Schwartz AB, Cui XT, Weber D], Moran DW (2006) Brain-controlled inter-
faces: movement restoration with neural prosthetics. Neuron 52:205-220.
CrossRef Medline

Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3d
neuroprosthetic devices. Science 296:1829-1832. CrossRef Medline

Townsend BR, Subasi E, Scherberger H (2011) Grasp movement decoding
from premotor and parietal cortex. ] Neurosci 31:14386—-14398. CrossRef
Medline

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical
control of a prosthetic arm for self-feeding. Nature 453:1098-1101.
CrossRef Medline

Wang W, Chan SS, Heldman DA, Moran DW (2007) Motor cortical repre-
sentation of position and velocity during reaching. ] Neurophysiol 97:
4258-4270. CrossRef Medline

Wang Z, Gunduz A, Brunner P, Ritaccio AL, JiQ, Schalk G (2012) Decoding
onset and direction of movements using electrocorticographic (ECoG)
signals in humans. Front Neuroeng 5:15. CrossRef Medline

Wood F, Prabhat, Donoghue J, Black M (2005) Inferring attentional state
and kinematics from motor cortical firing rates. Conf Proc IEEE Eng Med
Biol Soc 1:149-152. Medline

Zhang D, Wang Y, Gao X, Hong B, Gao S (2007) An algorithm for idle-state
detection in motor-imagery-based brain-computer interface. Comput
Intell Neurosci 2007:39714. CrossRef Medline


http://dx.doi.org/10.1007/s10827-009-0196-9
http://www.ncbi.nlm.nih.gov/pubmed/19904595
http://dx.doi.org/10.1198/jasa.2009.tm08326
http://www.ncbi.nlm.nih.gov/pubmed/21753862
http://dx.doi.org/10.1523/JNEUROSCI.4088-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15888644
http://dx.doi.org/10.1152/jn.00734.2007
http://www.ncbi.nlm.nih.gov/pubmed/18003881
http://dx.doi.org/10.1590/S1807-59322011001300004
http://www.ncbi.nlm.nih.gov/pubmed/21779720
http://dx.doi.org/10.3389/fneng.2012.00013
http://www.ncbi.nlm.nih.gov/pubmed/23055968
http://dx.doi.org/10.1371/journal.pone.0006243
http://www.ncbi.nlm.nih.gov/pubmed/19603074
http://dx.doi.org/10.3389/fneng.2012.00020
http://www.ncbi.nlm.nih.gov/pubmed/22973225
http://dx.doi.org/10.1523/JNEUROSCI.2999-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22031899
http://www.ncbi.nlm.nih.gov/pubmed/10561437
http://dx.doi.org/10.1088/1741-2560/8/4/046003
http://www.ncbi.nlm.nih.gov/pubmed/21623009
http://dx.doi.org/10.1088/1741-2560/8/6/066009
http://www.ncbi.nlm.nih.gov/pubmed/22027549
http://dx.doi.org/10.1038/nature10489
http://www.ncbi.nlm.nih.gov/pubmed/21976021
http://dx.doi.org/10.1152/jn.00106.2006
http://www.ncbi.nlm.nih.gov/pubmed/16738219
http://dx.doi.org/10.1038/nn890
http://www.ncbi.nlm.nih.gov/pubmed/12134152
http://www.ncbi.nlm.nih.gov/pubmed/23697225
http://dx.doi.org/10.1111/nmo.12052
http://www.ncbi.nlm.nih.gov/pubmed/23216826
http://www.ncbi.nlm.nih.gov/pubmed/11387402
http://dx.doi.org/10.1523/JNEUROSCI.0816-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16192371
http://dx.doi.org/10.1109/TNSRE.2012.2210246
http://www.ncbi.nlm.nih.gov/pubmed/22893447
http://dx.doi.org/10.1016/j.neuron.2005.03.004
http://www.ncbi.nlm.nih.gov/pubmed/15848811
http://www.ncbi.nlm.nih.gov/pubmed/1527573
http://dx.doi.org/10.1126/science.8036499
http://www.ncbi.nlm.nih.gov/pubmed/8036499
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144233
http://www.ncbi.nlm.nih.gov/pubmed/15217341
http://dx.doi.org/10.1016/j.neuron.2006.09.019
http://www.ncbi.nlm.nih.gov/pubmed/17015237
http://dx.doi.org/10.1126/science.1070291
http://www.ncbi.nlm.nih.gov/pubmed/12052948
http://dx.doi.org/10.1523/JNEUROSCI.2451-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21976524
http://dx.doi.org/10.1038/nature06996
http://www.ncbi.nlm.nih.gov/pubmed/18509337
http://dx.doi.org/10.1152/jn.01180.2006
http://www.ncbi.nlm.nih.gov/pubmed/17392416
http://dx.doi.org/10.3389/fneng.2012.00015
http://www.ncbi.nlm.nih.gov/pubmed/22891058
http://www.ncbi.nlm.nih.gov/pubmed/17282133
http://dx.doi.org/10.1155/2007/39714
http://www.ncbi.nlm.nih.gov/pubmed/18274604

	Motor Cortical Correlates of Arm Resting in the Context of a Reaching Task and Implications for Prosthetic Control
	Introduction
	Materials and Methods
	Results
	Continuous decoding including during IT periods
	Identification of rest periods
	Reflection of rest periods in single-unit activity
	Reflection of rest periods in population activity
	Idle state detection

	Kinematic decoding with and without Idle detection
	Alternative correlates of the Idle state
	Discussion
	References

