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Abstract

Organic anion transporting polypeptides or OATPs are central transporters in the disposition of

drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous

substrates. The critical role of OATPs in drug disposition has spurred research both in academia

and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in

academia, while the pharmaceutical industry tries to define and understand the role these

transporters play in pharmacotherapy. The present overview summarizes our knowledge on the

interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it

gives an update on the available information on the structure-function relationship of the OATPs,

and finally, covers the transcriptional and posttranscriptional regulation of OATPs.

Introduction

The liver and the kidney are the two most important organs in the metabolism and excretion

of xenobiotics such as drugs or toxins. In addition, the liver constitutes - after the gut wall -

a second barrier for the entry of xenobiotics into the systemic circulation. It has been known

for a long time that certain toxins like phalloidin (from the death cap Amanita phalloides)

are organ specific. The liver-specific toxicity of phalloidin has been attributed to a transport

system mediating the uptake of this toxin into hepatocytes (Frimmer, 1982). It was found in

the perfused rat liver that adding silymarin shortly after phallodin exposure leads to an

attenuation of the toxic effect of phalloidin as assessed by potassium efflux from the

perfused liver (Weil & Frimmer, 1970). Uptake experiments into isolated rat hepatocytes

lead to the postulation of a transport system accepting the bile acid cholate, the

cholecystographic agent iodipamide and antamanide, which is another toxin from A.

phalloides (Petzinger, Joppen, & Frimmer, 1983). This postulated transport system was

thought to differ from the transport system responsible for the hepatocellular uptake of

bromosulfophthalein (BSP) based on inhibition experiments (Petzinger, et al., 1983).

Subsequently, this transport system was postulated to be a “multispecific organic anion

transporter” (Frimmer & Ziegler, 1988; Ziegler, Frimmer, & Fasold, 1984). Of note, earlier

studies on perfused rat liver by a different group provided evidence for a common uptake

mechanism for bilirubin, BSP and indocyanine green that could not be inhibited by

glycocholic acid (Scharschmidt, Waggoner, & Berk, 1975). Studies in kidneys demonstrated

NIH Public Access
Author Manuscript
Curr Top Membr. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Curr Top Membr. 2014 ; 73: 205–232. doi:10.1016/B978-0-12-800223-0.00005-0.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



even earlier that the handling of organic acids and organic bases differs (Lotspeich, 1958),

again pointing to the presence of more than one transport system. Hence, by the early to

mid-eighties, the stage was set for concepts that functionally discriminated transporters for

organic anions from transporters for organic cations (reviewed in (van Montfoort et al.,

2003).

The method of expression cloning was introduced for transporters by following the uptake

activity for the substrate of interest. This lead to the molecular identification of the intestinal

sodium-dependent uptake system for D-glucose (SGLT1) (Hediger, Coady, Ikeda, &

Wright, 1987). Using BSP as a lead-substrate in conjunction with measurement of chloride

dependent transport activity (Min, Johansen, Campbell, & Wolkoff, 1991), investigators

cloned the first sodium-independent organic anion transporter (rOATP1A1) from a rat liver

cDNA library (Jacquemin, Hagenbuch, Stieger, Wolkoff, & Meier, 1994). In addition to the

organic anion BSP, this transporter could also mediate the sodium-independent transport of

taurocholate and cholate, but independently from chloride. It very soon became clear that

rOATP1A1 had to have closely related homologues (Hagenbuch, Scharschmidt, & Meier,

1996), and this lead to the identification of rOATP1A4 by homology screening of a rat brain

cDNA library (B. Noe, Hagenbuch, Stieger, & Meier, 1997). Functional characterization of

rOATP1A1 (Bossuyt, Muller, Hagenbuch, & Meier, 1996) and rOATP1A4 (B. Noe, et al.,

1997), as well as of their human homolog hOATP1A2 (Bossuyt, Muller, & Meier, 1996)

demonstrated their broad substrate specificity and revealed the ability of OATPs to transport

drugs.

Today, more than 300 members of the OATP (SLCO) transporter superfamily with 11

OATPs expressed in humans are known (Hagenbuch & Stieger, 2013). In a human genome

wide meta-analysis of genes correlating with total serum bilirubin levels, an additional

human OATP (hOATP1B7 (formerly SLC21A21 or LST-3TM12) was among other proteins

identified to be associated with higher bilirubin levels. In contrast, in another genome-wide

association study, hOATP1B7 was not associated with elevated bilirubin levels (Buch et al.,

2010). Importantly, this hOATP1B7 has not been reported to be a functionally active OATP

so far. Nevertheless, in an analysis of tissue specific expression of various solute

transporters in rats, rOATP1B7 was reported to be highly expressed at the mRNA level

exclusively in rat liver (Sreedharan, Stephansson, Schioth, & Fredriksson, 2011). Given the

lack of a reported function of hOATP1B7, SLCO1B7 may be a pseudogene.

Substrates of OATPs constitute endogenous molecules, food constituents, drugs and toxins

(Table 1) as summarized in multiple recent reviews (Hagenbuch & Gui, 2008; Hagenbuch &

Stieger, 2013; Kalliokoski & Niemi, 2009; Konig, 2011; Kusuhara & Sugiyama, 2009; Roth,

Obaidat, & Hagenbuch, 2012; Shitara et al., 2013). The importance of OATPs in drug

disposition is now widely accepted, and interactions with OATPs are tested during drug

development by the pharmaceutical industry as requested by regulatory authorities (Fenner

et al., 2012; Giacomini et al., 2010; S. M. Huang et al., 2008; Tweedie et al., 2013; L.

Zhang, Huang, & Lesko, 2011; L. Zhang, Strong, Qiu, Lesko, & Huang, 2006; L. Zhang,

Zhang, Strong, Reynolds, & Huang, 2008). OATPs were identified on their basis to

transport BSP, a substrate which was thought to be transported (in part) by a postulated

bilirubin transport system (Clarenburg & Kao, 1973; Scharschmidt, et al., 1975). Many
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years after their identification it was indeed demonstrated that hOATP1B1 and hOATP1B3

could mediate bilirubin transport (Briz, Serrano, MacIas, Gonzalez-Gallego, & Marin, 2003;

Cui, Konig, Leier, Buchholz, & Keppler, 2001). Furthermore, it was also realized that

selected OATPs play a central role in the disposition of drugs in humans. More importantly,

identifying OATPs has also significantly contributed to an understanding of the molecular

mechanisms of pharmacokinetic drug-drug interactions (Konig, Muller, & Fromm, 2013;

Shitara, et al., 2013)

Transport of natural products by OATPs

Besides the well-established transporter-mediated drug-drug interactions that occur in cases

where a transporter either mediates the uptake of two interacting drugs, or where the uptake

of one drug is inhibited by the interacting drug, transporter-mediated food-drug interactions

have recently become a focus in the field of drug disposition. In particular, polyphenols like

flavonoids, which are found in numerous dietary components, fruit juices and green tea have

been studied as potential perpetrators of OATP-mediated drug uptake (Bailey, Dresser,

Leake, & Kim, 2007; Dolton, Roufogalis, & McLachlan, 2012; Fuchikami et al., 2006; X.

Wang, Wolkoff, & Morris, 2005). Most of these studies investigated to what extent such

dietary components would affect OATP-mediated substrate transport. In 2002, it was

demonstrated that grapefruit, orange and apple juice could inhibit OATP-mediated

fexofenadine uptake (Dresser et al., 2002). In follow-up studies, the same group showed that

grapefruit juice reduced the oral bioavailability of fexofenadine in healthy human

volunteers, possible by inhibiting hOATP1A2-mediated fexofenadine uptake in the small

intestine (Glaeser et al., 2007). Furthermore, they showed that naringin - a component of

grapefruit juice - was able to inhibit completely fexofenadine transport mediated by

hOATP1A2 expressed in HeLa cells (Bailey, et al., 2007). Besides inhibiting fexofenadine

transport, naringin also inhibited talinolol transport in hOATP1A2-expressing Xenopus

laevis oocytes (Shirasaka et al., 2010), and hOATP1A2-mediated uptake of pravastatin and

pitavastatin (Shirasaka, Suzuki, Shichiri, Nakanishi, & Tamai, 2011). Naringin also

inhibited hOATP2B1-mediated uptake of pitavastatin, but did not affect pravastatin

transport by hOATP2B1 (Shirasaka, et al., 2011). The inhibition of OATP-mediated BSP

transport by the flavonoids apigenin, kaempferol and quercetin was reported to be of

competitive nature for intestinal hOATP1A2 and hOATP2B1 (Mandery et al., 2010), as well

as for the liver expressed hOATP1B1 and hOATP1B3 (Mandery et al., 2012). A

standardized extract of milk thistle seeds (silymarin) contains several flavonolignans

including silibinin, and has been used to treat liver disease since the 16th century. Legalon

SIL is a drug that contains the two diastereomers silibinin A and silibinin B (also known as

silybin A and silybin B) and is used as an antidote for acute amatoxin poisoning (Mengs,

Pohl, & Mitchell, 2012). In addition, high dose intravenous silibinin is currently investigated

in clinical trials for the treatment of hepatitis C infections (Ferenci et al., 2008). It was

shown in 2006 that silibinin inhibits hOATP1B3-mediated uptake of amanitin into

hOATP1B3-expressing MDCKII cells (Letschert, Faulstich, Keller, & Keppler, 2006). Two

recent studies further characterized the interactions of silymarin and some of its major

constituents with respect to inhibition of OATP-mediated uptake (Kock, Xie, Hawke,

Oberlies, & Brouwer, 2013; Wlcek, Koller, Ferenci, & Stieger, 2013). In these studies
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silbinin inhibited OATP-mediated substrate uptake. Kock et al. (2013) determined IC50

values for silymarin and three of its major constituents, namely silybin A, silybin B and

silychristin, on hOATP1B1- and hOATP1B3-mediated estradiol-17β-glucuronide and

hOATP2B1-mediated estrone-3-sulfate uptake. Silybin A and silybin B inhibited OATP-

mediated substrate uptake with IC50 values in the low micromolar range (Kock, et al., 2013).

For hOATP1B3- and hOATP2B1-mediated uptake of estrone-3-sulfate, silibinin was a

competitive inhibitor with Ki values of 5μM for hOATP1B3 and 3.6μM for hOATP2B1

(Wlcek, et al., 2013). However, no direct uptake of any of these flavonoids by any OATP

has yet been demonstrated.

Another family of flavonoids that have been studied extensively because of their potential

beneficial effects on the cardiovascular system (Moore, Jackson, & Minihane, 2009), aging

(Khurana, Venkataraman, Hollingsworth, Piche, & Tai, 2013) and cancer (Singh, Shankar,

& Srivastava, 2011) are the green tea catechins, such as epicatechin gallate (ECG) and

epigallocatechin gallate (EGCG). Both these catechins are modulators of OATP-mediated

transport (Roth, Timmermann, & Hagenbuch, 2011). ECG and EGCG inhibited the uptake

of estrone-3-sulfate mediated by hOATP1A2, hOATP1B1 and hOATP2B1 while EGCG

stimulated estrone-3-sulfate uptake of hOATP1B3. IC50 values for the two compounds

ranged from about 10 to 100μM. Direct transport experiments performed with OATP-

expressing CHO cells (for hOATP1B1, hOATP1B3 and hOATP2B1) or HEK293 cells (for

hOATP1A2) revealed that both ECG, as well as EGCG, are transported substrates of

hOATP1A2 and hOATP1B3 (Roth, et al., 2011). The signals for hOATP1B1 were not

significantly higher than the control cells. Kinetic experiments demonstrated saturable

uptake of ECG and EGCG by hOATP1A2 and hOATP1B3 with Km values between 10 and

39μM (Roth, et al., 2011). These transport data were later confirmed using cytotoxicity

experiments where incubation of control CHO cells or CHO cells expressing hOATP1B1

and hOATP1B3 with increasing concentrations of EGCG for 48 hours killed the

hOATP1B1- and hOATP1B3-expressing cells with IC50 values of 7.7 and 3.2μM,

respectively as compared to 271μM for wild-type CHO cells (Y. Zhang et al., 2013). The

same study also demonstrated that quercetin-3-gallate and three additional synthetic

quercetin derivatives preferentially killed CHO cells that expressed hOATP1B1 or

hOATP1B3, data consistent with these quercetin derivatives acting as substrates of

hOATP1B1 and hOATP1B3 (Y. Zhang, et al., 2013). However, additional studies using cell

lines expressing individual OATPs are required to determine which of the interacting

flavonoids indeed are substrates of the respective OATPs.

Transport Mechanisms of OATPs

OATPs as anion exchangers

OATPs tend to transport amphipathic molecules with a molecular weight of more than 350

Da (Roth, et al., 2012). Furthermore, they are capable of mediating the transport of a tightly

albumin bound substance like bilirubin. Hence, the transport mechanism of OATPs should

involve the binding of generally amphipathic or even rather hydrophobic substrates followed

by a translocation process across the plasma membrane. In the case of bilirubin, this process

most likely involves binding and transport of a molecule with two negative charges because
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the pKa of both carboxylic groups is most likely below 5.0 (Vega-Hissi, Estrada, Lavecchia,

& Pis Diez, 2013), even though others hypothesized that it may be above 8.0 (Mukerjee &

Ostrow, 2010). Regardless of this discussion on the protonation state of bilirubin at

physiologic pH, BSP is a dianionic molecule. Furthermore, many OATP substrates are

anions (Roth, et al., 2012). Consequently, transporting anionic OATP substrates across the

membrane involves the movement of one or two negative charges against a negative

membrane potential of about – 35 mV in hepatocytes (Boyer, Graf, & Meier, 1992). This

process is energetically unfavorable and not very likely to occur. To date, the transport

mechanism(s) of OATPs is not known in detail. However, a considerable body of evidence

supporting an anion-exchange transport mechanism has accumulated. Bicarbonate was the

first anion to be identified, and can act as a counter ion of rOATP1A1. In HeLa cells

expressing rOATP1A1, uptake of taurocholate was demonstrated to occur in exchange for

bicarbonate (Satlin, Amin, & Wolkoff, 1997). Subsequently, trans-stimulation of uptake of

taurocholate and leukotriene by glutathione was demonstrated for rOATP1A1 (L. Li, Lee,

Meier, & Ballatori, 1998). rOATP1A1, and rOATP1A4, mediated uptake of taurocholate

was trans-stimulated by preloading X. laevis oocytes with taurocholate (L. Li, Meier, &

Ballatori, 2000). In the same study, intracellular glutathione stimulated uptake of the

uncharged digoxin via rOATP1A4, suggesting a rather complex transport mechanism for

this OATP. Interestingly, S-(2,4-dinitrophenyl)-glutathione (DNP-SG) only stimulated

taurocholate uptake mediated by rOATP1A4 but not taurocholate uptake mediated by

rOATP1A1 (L. Li, et al., 2000). In addition, only rOATP1A4 mediated efflux of this

glutathione conjugate. In this context, it should be kept in mind that digoxin is a substrate

for rOATP1A4 but not for rOATP1A1 (B. Noe, et al., 1997). Using isolated membrane

vesicles with defined sidedness from HeLa cells expressing rOATP1A1, investigators

demonstrated asymmetric glutathione transport (Mittur, Wolkoff, & Kaplowitz, 2002).

Uptake into inside-out membrane vesicles (representing glutathione efflux from intact cells)

was 2- to 3-fold higher than in right-side out vesicles (Mittur, et al., 2002). Furthermore, this

transport activity was insensitive to changes in the membrane potential. A report suggesting

that bile acids are cotransported with glutathione by hOATP1B3 (Briz et al., 2006) could not

be confirmed by others (Mahagita, Grassl, Piyachaturawat, & Ballatori, 2007). This is in

agreement with the fact that substrate transport by hOATP2B1 could not be stimulated by

glutathione (Nozawa, Imai, Nezu, Tsuji, & Tamai, 2004). More recently, a study testing

various OATPs in stably transfected cell lines found substrate-mediated bicarbonate efflux

for all 5 transporters investigated (Leuthold et al., 2009). Hence, current evidence supports

the concept that OATPs in general work as organic anion exchangers with bicarbonate likely

being a physiologic counterion. This exchange process has not been characterized

extensively at a molecular level like reconstituted transporters in liposomes. To the best of

our knowledge, there is only one publication so far that describes the electrophysiologic

characterization of OATPs. In this study the authors found that in X. laevis oocytes

expressing either hOATP1B1 or hOATP1B3 a current across the membrane could be

recorded in the presence of different OATP substrates, indicating a net movement of a

negative charge into the oocytes (Martinez-Becerra et al., 2011).
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Binding sites of OATPs

While no information of the architecture of the substrate binding site(s) of any OATP is

currently available, there exists considerable evidence for OATPs having multiple binding

sites. Kinetic analysis of the transport of estrone-3-sulfate by hOATP1B1 revealed both a

high and a low affinity transport activity, while the same transporter revealed simple

Michaelis-Menten kinetics for estradiol-17β-glucuronide (Tamai et al., 2001). Similarly,

transport of estrone-3-sulfate by hOATP2B1 expressed in X. laevis oocytes has two binding

sites (Shirasaka, Mori, Shichiri, Nakanishi, & Tamai, 2012), while when expressed in

HEK-293 cells only one binding site was reported (Tamai, et al., 2001). This discrepancy

was explained by a difference in expression levels, although the potential impact of different

expression systems (amphibian versus mammalian cells) was not ruled out. Two binding

sites for estrone-3-sulfate on hOATP1B1 were later independently confirmed (Gui &

Hagenbuch, 2009; J. Noe, Portmann, Brun, & Funk, 2007). Recently, different binding sites

of hOATP4C1 for estrone-3-sulfate and digoxin were reported (Yamaguchi et al., 2010).

Bovine OATP1A2 was also reported, in contrast to hOATP1A2, to have two binding sites

for estrone-3-sulfate (X. Liu et al., 2013).

Additional evidence for the presence of more than one binding site on OATPs was obtained

from inhibition experiments and reported first for rOATP1A4, which showed a stimulation

of taurocholate transport by estradiol-17β-glucuronide. However, taurocholate did not

stimulate the transport of the substrate digoxin (D. Sugiyama, Kusuhara, Shitara, Abe, &

Sugiyama, 2002). Among the human OATPs, hOATP2B1-mediated

dehydroepiandrosterone sulfate transport could be increased by co-addition of prostaglandin

A1 or prostaglandin A2 (Pizzagalli et al., 2003). Low progesterone also stimulated

hOATP2B1-mediated etrone-3-sulfate transport, but interestingly, at higher progesterone

concentrations this stimulation was attenuated, demonstrating a biphasic action of

progesterone (Grube et al., 2006). The same study found classic inhibition of hOATP2B1-

mediated estrone-3-sulfate transport by other steroids, namely testosterone and mifepristone.

However, testosterone has recently been reported to stimulate hOATP2B1 (Karlgren et al.,

2012). Some dietary components like the flavonoid rutin stimulated transport of

dehydroepiandrosterone sulfate by hOATP1B1, while other flavonoids like biochanin A or

luteolin acted as inhibitors (X. Wang, et al., 2005). hOATP1B3 transport activity can also be

stimulated by green tea extracts or epigallocatechin as measured by estron-3-sulfate uptake

(Roth, et al., 2011). Silbinin has recently been tested with several human organic anion

transporters, and found to be a classic inhibitor of the high affinity estrone-3-sulfate binding

site of hOATP1B1. The low affinity binding site was stimulated at low silibinin-

concentrations and inhibited at high silibinin concentrations (Wlcek, et al., 2013). Finally,

the classic drug and PXR agonist clotrimazole stimulated hOATP1B3-, but not hOATP1B1-

mediated estradiol-17β-glucuronide transport (Gui et al., 2008). Most interestingly, in the

same study, clotrimazole did not affect the hOATP1B3-mediated transport of estrone-3-

sulfate and inhibited fluo-3 uptake. As an additional modulating drug, fendiline stimulated

hOATPB2B1-mediated estrone-3-sulfate transport (Karlgren, et al., 2012).
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Modulation of transport activity

According to in vitro experiments, the transport activity of hOATP2B1, which is expressed

in the small intestine and many other organs, is stimulated by an extracellular acidic milieu

(Kobayashi et al., 2003). Based on an investigation of the pH dependence of 13 rat and

human OATPs, all but hOATP1C1 were stimulated by an acidic extracellular pH (Leuthold,

et al., 2009). Of note, this stimulation was substrate dependent. For example, while

hOATP2B1-mediated uptake of prostaglandin E2 was not stimulated by an extracellular low

pH, transport of thyroxine increased at low pH (Leuthold, et al., 2009). Similarly,

hOATP2B1-mediated pemetrexed transport was strongly stimulated by an acidic pH, while

this was not the case for BSP (Visentin, Chang, Romero, Zhao, & Goldman, 2012). Along

these lines, hOATP1B1-meditiated transport was also stimulated in a substrate-dependent

manner at an acidic pH, and may be due to the presence of two different binding sites on this

transporter (Leuthold, et al., 2009). However, other reasons cannot be excluded. Of note,

different statins when tested as hOATP2B1 substrates show also a variable response to

extracellular pH (Varma et al., 2011). Kinetic characterization of five OATPs revealed a

significantly increased affinity or a trend towards increased affinity at low pH (Leuthold, et

al., 2009). Mutating a highly conserved histidine in the third transmembrane (TM) domain

of rOATP1A1 to a glutamine found at the same position in hOATP1C1 abolished pH

sensitivity of transport, while the reverse replacement in hOATP1C1 converted this

transporter into a pH-sensitive transporter (Leuthold, et al., 2009). Comparing the effect of

different pH gradients across the cell membrane on the transport activity of rOATP1A1,

revealed that transport stimulation was not proportional to the magnitude of the pH gradient

and the authors suggested a pH-dependent modification of the protonation state of the

intracellular portion of the transporter (Marin et al., 2003).

Overall, a detailed mechanistic understanding of the transport mechanism(s) and driving

forces for OATPs is currently lacking. There is however, evidence that OATPs have a rather

complex transport mechanism, and many (if not most of them) have more than one binding

site. In addition, the extracellular pH dependence of OATPs, as seen in the acidic

microclimate in the small intestine (Daniel, Fett, & Kratz, 1989) may mean that they are

modulated in vivo by nearby acid extruders, such as Na+/H+-exchangers. Consequently, in

vitro experiments aimed at determining substrate specificities of OATPs expressed in an

acidic environment should be performed at acidic and neutral pH.

Structural information on OATPs

General structure

Given that all mammalian OATPs (650 to 700 amino acids) have an amino-acid sequence

identity of more than 30% to their more distant relatives (Hagenbuch & Meier, 2003), it is

highly likely that they all share the same overall TM domain structure. Initial

hydrophobicity analysis of rOATP1A1 and hOATP1A2 predicted the presence of 10 to 12

TM domains with both N- and C-terminal ends on the cytoplasmic side (Jacquemin, et al.,

1994; Kullak-Ublick et al., 1995). The intracellular localization of the C-terminal end was

experimentally confirmed using an antibody against the C-terminal end of hOATP1B3.

Immunostaining was only observed in detergent permeabilized cells (Abe et al., 2001),
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confirming a topology with both termini on the cytoplasmic side of the membrane. In 2008,

the 12 TM domain structure of rOATP1A1 was confirmed using site-directed mutagenesis

of putative N-glycosylation sites (P. Wang, Hata, Xiao, Murray, & Wolkoff, 2008). It was

demonstrated that rOATP1A1 was N-glycosylated in the second and fifth extracellular loop,

and that the unglycosylated protein was retained intracellularly and thus caused reduced

transport function (P. Wang, et al., 2008). Similar results were recently published for

hOATP1B1 (Yao et al., 2012). The authors demonstrated that hOATP1B1 is N-glycosylated

in the second and fifth extracellular loop, and that the unlgycosylated protein is retained in

the endoplasmic reticulum. Thus, it is likely that all mammalian OATPs are N-glycosylated

in these two extracellular loops. Disulfide bonds can also have an effect on the proper

folding and function of a protein. Based on results from site-directed mutagenesis of the 10

conserved cysteine residues in the large extracellular loop 5 of hOATP2B1, all 10 cysteine

residues are normally disulfide bonded and these disulfide bonds are important for the

proper targeting of hOATP2B1 to the plasma membrane (Hanggi, Grundschober, Leuthold,

Meier, & St-Pierre, 2006).

Role of conserved amino acids

In the absence of a crystal structure for any of the OATPs, homology modeling has been

performed by several groups and the respective models were used to test structural

hypotheses. The first of such models was described in 2005 and predicted the presence of a

central pore in hOATP1B3 and hOATP2B1 that contained several positively charged

arginine, lysine and histidine residues (Meier-Abt, Mokrab, & Mizuguchi, 2005). The role of

some of these conserved positively charge amino acids was then tested in site-directed

mutagenesis studies using hOATP1B1 (Weaver & Hagenbuch, 2010) and hOATP1B3

(Glaeser, Mandery, Sticht, Fromm, & Konig, 2010; Mandery et al., 2011) as a template. In

hOATP1B1, mutations at R57, K361 and R580 all decreased the affinity for estradiol-17β-

glucuronide and increased the affinity for BSP, suggesting that these amino acid residues are

part of the substrate binding sites. Mutations of the intracellular K90, H92 and R93 mainly

affected the maximal transport activity. Mutants R181K and R580A also reduced surface

expression of hOATP1B1 (Weaver & Hagenbuch, 2010). K41, K361 and R580 are

important for substrate transport of hOATP1B3 (Glaeser, et al., 2010; Mandery, et al., 2011)

while K399 is necessary for normal surface expression (Mandery, et al., 2011). Because

hOATP1B1 and hOATP1B3 have overlapping substrate specificities, it is interesting to note

that both K361 and R580 are important for the transport function of both hOATP1B1 and

hOATP1B3.

Individual transmembrane domains

According to several studies, certain amino acids in TM domains 2, 6, 8, 9 and 10 are

important for the function of hOATP1B1 (Gui & Hagenbuch, 2009; J. Huang et al., 2013; N.

Li et al., 2012; Miyagawa, Maeda, Aoyama, & Sugiyama, 2009) and hOATP1B3 (Gui &

Hagenbuch, 2008). In TM2, charged amino acids D70 and E74 seem critical for estrone-3-

sulfate transport (N. Li, et al., 2012). While D70 seems to decrease both high- and low-

affinity estron-3-sulfate uptake, E74 seems only important for high-affinity transport. In

addition, mutant G76A showed reduced protein expression when compared to wild-type

hOATP1B1 and the other mutants (N. Li, et al., 2012). The effect of two tryptophan residues
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within the OATP family signature at the extracellular half of TM6 of hOATP1B1 was tested

by mutating the tryptophan to alanine residues, and the effect of these mutations on

estrone-3-sulfate transport was tested. While wild-type hOATP1B1 has a high- and a low-

affinity binding site for estrone-3-sulfate resulting in biphasic kinetics (Gui & Hagenbuch,

2009; J. Noe, et al., 2007; Tamai, et al., 2001), the W258A mutant showed only a single

binding component with a Km value in between the high- and low-affinity values of wild-

type hOATP1B1 (J. Huang, et al., 2013). In contrast, the W259A mutant retained biphasic

kinetics for estrone-3-sulfate with a higher Km value for the high-affinity but a similar Km

value for the low-affinity component as compared to wild-type hOATP1B1 (J. Huang, et al.,

2013). Several groups utilized a chimera approach and constructed chimeras using

hOATP1B1 and hOATP1B3 (Degorter, Ho, Leake, Tirona, & Kim, 2012; Gui &

Hagenbuch, 2008, 2009; Miyagawa, et al., 2009). Replacing TM8 in hOATP1B1 with that

of hOATP1B3 resulted in a protein with an 18-fold higher Km value for estrone-3-sulfate

than that of wild-type hOATP1B1 and abolished estradiol-17β-glucuronide transport

(Miyagawa, et al., 2009). Replacing TM9 in hOATP1B1 with that of hOATP1B3 did not

change the transport of estradiol-17β-glucuronide, but increased the Km value for estron-3-

sulfate 7.4-fold (Miyagawa, et al., 2009). TM10 was identified as being important for

substrate transport in both hOATP1B1 (Gui & Hagenbuch, 2009) and hOATP1B3 (Gui &

Hagenbuch, 2008). Follow-up site-directed mutagenesis studies identified several amino

acids (L545, F546, L550 and S554) within TM10 that when replaced with the hOATP1B3

counterparts converted hOATP1B1 from a biphasic to a monophasic estron-3-sulfate

transporter (Gui & Hagenbuch, 2009). Similar experiments with hOATP1B3 resulted in the

identification of Y537, S545 and T550 in TM10 as being important for the hOATP1B3

selective substrate CCK-8 (Gui & Hagenbuch, 2008). Finally, in a recent report, hOATP1B1

was converted into an hOATP1B3-like transporter that was able to transport CCK-8 when

the three amino acid residues A45 in TM1, L545 in TM10 and T615 in extracellular loop 6

were replaced by the corresponding hOATP1B3 residues (Degorter, et al., 2012). Although

this triple mutant showed uptake of CCK-8, its intrinsic clearance was about 8-fold smaller

than the intrinsic clearance of hOATP1B3.

Taken together, available data are consistent with OATPs being 12TM domain proteins with

both termini on the cytoplasmic side. Furthermore, OATPs seem to have an aqueous pore

that can accept several substrates with overlapping and partially distinct binding sites, which

consist in part of conserved positively charged amino acids. Future experiments using higher

resolution homology modeling will help to better delineate the location of functionally

important amino acid residues until the three-dimensional structure has been elucidated

either using crystallography and/or NMR spectroscopy. In addition, the current hypothetical

models will have to be improved by investigating which amino acid residues within the

postulated TM domains are accessible from the outside or the inside in the absence or

presence of substrates.
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Regulation of OATPs

Transcriptional regulation of OATPs

Regulation of gene expression at the transcriptional level for adaptive purposes is governed

by transcription factors, which act as sensors for endogenous ligands and xenobiotics

(Germain, Staels, Dacquet, Spedding, & Laudet, 2006). Hence, at the level of the intact

organism, transcriptional regulation of gene expression can be studied by applying

xenobiotics to animal models and then analyzing the expression of genes of interest. Such

studies were performed with knockout mice lacking the genes for nuclear receptors and

demonstrated that expression of SLCOs can be up-regulated by ligands for the

arylhydrocarbon receptor AhR, the constitutive androgen receptor CAR, the pregnane X

receptor PXR and the farnesoid X receptor FXR (Klaassen & Aleksunes, 2010; Meyer zu

Schwabedissen & Kim, 2009). However, such studies do not demonstrate that the

transcription factors investigated bind directly to the gene of interest. Liver-enriched

transcription factors (Schrem, Klempnauer, & Borlak, 2002) belong to different classes of

transcriptional regulators. They are also called hepatocyte nuclear factors and are known to

positively or negatively regulate the transcription of SLCO genes (reviewed in (Geier,

Wagner, Dietrich, & Trauner, 2007; Hagenbuch & Stieger, 2013; Klaassen & Aleksunes,

2010; Stieger & Geier, 2011; Svoboda, Riha, Wlcek, Jaeger, & Thalhammer, 2011)).

The bile acid sensor FXR can directly and indirectly modulate the expression of SLCO

genes, leading either to up-regulation or to down-regulation of gene transcription of the

respective genes (Eloranta & Kullak-Ublick, 2008; Godoy et al., 2013). Such studies may

also lead to conflicting results. Expression of SLCO1B1 was reported to be reduced via

FXR-dependent repression of HNF-1 (Jung, Elferink, Stellaard, & Groothuis, 2007), and

increased via direct up-regulation by FXR (Meyer Zu Schwabedissen et al., 2010). Other

nuclear receptors like PXR, CAR and LXR are also known to regulate the expression of

SLCO genes. (Godoy, et al., 2013; Hagenbuch & Stieger, 2013; Klaassen & Aleksunes,

2010). Lately, the vitamin D receptor VDR has been added to this list, and it has been shown

to activate the expression of SLCO1A2 (Eloranta, Hiller, Juttner, & Kullak-Ublick, 2012).

As ligands for nuclear receptors are also substrates for OATPs (Gui, et al., 2008), the

transporters may, to some extent, control the access of nuclear receptor ligands to their own

genes. Hypoxia leads to the expression of hypoxia-inducible factors, which in turn regulate

transcription (Schodel, Mole, & Ratcliffe, 2013). Interestingly, a cancer-specific variant of

hOATP1B3 was found to be induced by hypoxia and a promoter construct of SLCO1B3 was

demonstrated to bind HIF-1α (Han, Kim, Thakkar, Kim, & Lee, 2013). Another research

group identified two functional HIF-response elements in the promoter of SLCO1B3

(Ramachandran et al., 2013).

Tissue-specific regulation of protein expression is frequently associated with epigenetic

regulation. In mice, a genome-wide DNA-methylation profiling revealed CpG dinucleotides

in the area of the transcriptional start site of hOATP1B2 (Imai et al., 2009). An extension of

this analysis revealed CpG islands around the translation start sites of mOATP1A1,

mOATP1A6, mOATP1C1 and mOATP1A4; comparable findings were obtained for

hOATP1B1 and hOATP1B3 (Imai, Kikuchi, Kusuhara, & Sugiyama, 2013). The different
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methylation patterns are suggested to be involved in the tissue-specific expression of the

investigated OATPs. In Caco-2 cells, heterochromatin protein 1β up-regulation leads to an

up-regulation of SLCO1B3 among other targets (Tell, Wang, Blunier, & Benya, 2011).

Expression of a cancer-specific variant of hOATP1B3 in various cancer cell lines is

critically dependent on the methylation pattern around the translational start site (Imai et al.,

2013), as well as the expression of SLCO2A1 in human head and neck squamous cell

carcinoma (Zolk et al., 2013).

Posttranslational regulation of OATPs

At the post-transcriptional level, ATP-induced functional down-regulation of rOATP1A1 is

mediated by serine phosphorylation (Glavy, Wu, Wang, Orr, & Wolkoff, 2000). This

phosphorylation is not associated with subsequent internalization of rOATP1A1. In a

subsequent study, S634 and S635 of rOATP1A1 were found to be phosphorylated (Xiao,

Nieves, Angeletti, Orr, & Wolkoff, 2006). This study was extended to rOATP1A4 in X.

laevis oocytes, where PKC-dependent inhibition of transport activity of rOATP1A1 and

rOATP1A4 was observed (Guo & Klaassen, 2001). Plasma membrane expression of

hOATP1B1 in COS7 and HEK293 cells on the other hand, was stimulated after treatment of

the cells with 8-Br-cAMP and this stimulation could be blocked by protein kinase A-

inhibitors (Sun, Ponamgi, Boyer, & Suchy, 2008). Using protein kinase A inhibitors alone,

plasma membrane expression of hOATP1B1 was reduced. In contrast, hOATP2B1 stably

transfected in MDCK cells could be phosphorylated in a protein kinase C-dependent

manner, thereby leading to a rapid internalization of hOATP2B1 (Kock et al., 2010).

hOATP1A2 expressed in COS-7 cells was also internalized from the plasma membrane in a

protein kinase C-dependent manner by a process requiring ongoing clathrin-dependent

endocytosis (Zhou, Lee, Krafczyk, Zhu, & Murray, 2011). According to a recent paper,

short-term treatment of either Caco-2 cells or rats with amiodarone leads to an increased

surface expression of hOATP2B1 in Caco-2 cells and of rOATP2B1 at the brush border

membrane of rat jejunum and ileum as assessed by Western blotting (Segawa et al., 2013).

Scaffolding of OATPs

Protein-protein interactions leading to scaffolds at the plasma membrane can also be

considered a posttranslational regulatory mechanism. A yeast two-hybrid screen using the

C-terminus of various drug transporters indeed revealed an interaction of hOATP1A2,

hOATP1C1 and hOATP3A1 with PDZ proteins (Kato, Yoshida, Watanabe, Sai, & Tsuji,

2004). PDZ adaptors are well known to be involved in the regulation of transport proteins by

regulating their plasma membrane expression level (Sugiura, Shimizu, Kijima, Minakata, &

Kato, 2011). rOATP1A1 was shown in a cell-culture system in conjunction with

coimmunoprecipitation to interact with PDZK1 (P. Wang et al., 2005). Most interestingly,

mice with a disrupted gene for PDZK1 showed a strongly reduced expression of

mOATP1A1 at the hepatocyte basolateral membrane, with an increased cytoplasmic

localization of mOATP1A1 (P. Wang, et al., 2005). These mice display a slightly reduced

fractional uptake rate for the prototypic OATP substrate BSP and about a 25 % increased

plasma half-life (P. Wang, et al., 2005). PDZK1 mediates the trafficking to the plasma

membrane by a selective recruitment of microtubule-based motor proteins (W. J. Wang,

Murray, & Wolkoff, 2013). Others found a reduced estrone-3-sulfate uptake into the portal
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vein of mice lacking PDZK1 without a change in systemic circulation (Sugiura et al., 2010).

Using an Ussing-chamber setup with small intestine from the same mice, uptake of

estrone-3-sulfate from the apical lumen into intestinal tissue was significantly reduced. This

study confirmed and found interactions of the C-terminus of mouse OATPs with different

PDZ proteins (Sugiura, et al., 2010). Interactions of human and mouse OATPs with the

different adaptor proteins are summarized in Table 2 (Sugiura, et al., 2010).

In summary, OATPs are extensively regulated at the transcriptional and posttranscriptional

levels. Given that many OATPs are xenobiotic transporters and hence involved in the

disposition and elimination of potentially toxic xenotiotics, this extensive network of

regulatory processes acting on OATPs may contribute to protect organisms from toxic

actions of xenobiotics. Regulation of gene expression by xenosensors like the nuclear

receptors CAR or PXR is key in the detoxification of xenobiotics by metabolizing as well as

exporting them for excretion. Hence, common transcriptional regulatory mechanisms for

OATPs as cellular xenobiotic uptake systems with down-stream metabolism and metabolite

export is an effective functional network preventing cells from being overloaded with

potentially harmful compounds.

Although single nucleotide polymorphisms are not in a strict sense a regulatory mechanism

because they cannot be modified by cells, there is now ample evidence that polymorphic

variants of OATPs are abundant in humans and may contribute significantly to changes in

drug disposition. They also constitute risk factors for adverse drug actions. This topic has

lately been extensively reviewed (Clarke & Cherrington, 2012; Gong & Kim, 2013;

Hagenbuch & Stieger, 2013; Nakanishi & Tamai, 2012; Niemi, 2010; Niemi, Pasanen, &

Neuvonen, 2011; Shitara, et al., 2013; Stieger & Meier, 2011; Zair, Eloranta, Stieger, &

Kullak-Ublick, 2008).

Outlook

The role of OATPs in drug and xenobiotic disposition is now well established and accepted

(Fenner, et al., 2012). Due to their wide expression in most tissues, they govern the access

(or exit) of many endogenous and exogenous compounds in a vast variety of cell types and

associated tissues and organs. Lately, the importance of transporters, including OATPs, to

monitoring organ function and to visualize them has been prominently recognized (Hoekstra

et al., 2013; Stieger, Heger, de Graaf, Paumgartner, & van Gulik, 2012; Van Beers, Pastor,

& Hussain, 2012). Imaging is widely used to diagnose and manage a variety of diseases

including neurologic disorders or cancer. Because OATPs are found to be expressed in

many different cancers (Cutler & Choo, 2011; Obaidat, Roth, & Hagenbuch, 2012; Sissung,

Reece, Spencer, & Figg, 2012), they are an important diagnostic marker.. They may also be

used as entry sites for drugs used to fight cancer (T. Liu & Li, 2013) an important aspect that

certainly has a large potential for further anticancer drug development. As OATPs are very

important in drug disposition, direct determination of their transport activity in vivo is highly

desirable. With the rapid progress in the development of better imaging tools such as

positron emission tomography or single-photon emission computed tomography (Mairinger,

Erker, Muller, & Langer, 2011; Y. Sugiyama & Yamashita, 2011), such a goal should be

achievable. In order to successfully develop novel OATP substrates to be used for in vivo
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transporter function determination, a tight coordination of studies performed in vitro (e.g. by

using heterologous expression systems) and in vivo experiments will be necessary, whereby

special consideration has to be given to the overlapping substrate specificity of OATPs. As

OATPs are also the entry sites for toxins, (e.g. the ones present in the mushroom death cap),

there potential as drug target for the treatment of patients after ingestion of toxic substances

could certainly be further developed. Because drug effects and adverse drug actions

critically depend on the intracellular drug concentrations (Chu et al., 2013), a major effort

has to be made in elucidating the exact transport mechanism as well as the potential driving

forces of OATPs. This knowledge will be critical for better understanding and potentially

even predicting cellular effects of drugs. Lastly, there is currently no information about the

high-resolution structure of OATPs available. Such information is critical for understanding

the molecular transport mechanisms of OATPs. The emergence of new tools like cryo-

electronmicroscopy (Milne et al., 2013), and its integration with structure determination by

NMR or x-ray crystallography will advance this challenging area of OATP research.
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Table 1

Substrate classes of human OATPs

OATP Endogenous substrates Xenobiotic substrates Model substrates

OATP1A2 bile salts, bilirubin, steroid hormone
metabolites, thyroid hormones and
metabolites,

liver function markers, β-blockers,
statins, antiviral drugs, antibiotics,
mushroom toxins, neuropeptides,
anticancer drugs

Bromosulfophthalein
Estrone-3-sulfate
Fexofenadine

OATP1B1 bile salts, bilirubin, steroid hormone
metabolites, thyroid hormones and
metabolites, inflammatory mediators

liver function markers, mushroom
toxins, statins, sartanes, antibiotics,
antiviral drugs, anticancer drugs

Bromosulfophthalein
Estradiol-17β-glucuronide
Estrone-3-sulfate
Pitavastatin
Atorvastatin
Pravastatin
Rosuvastatin
Valsartan

OATP1B3 bile salts, bilirubin, steroid hormone
metabolites, thyroid hormones, inflammatory
mediators

liver function markers, mushroom
toxins, statins, sartanes, antibiotics,
antiviral drugs, anticancer drugs,
peptides

Bromosulfophthalein
Cholecystokinin octapeptide
Estradiol-17β-glucuronide
Valsartan

OATP1C1 thyroid hormones and metabolites, steroid
hormone metabolites

liver function markers Thyroxine

OATP2A1 inflammatory mediators Prostaglandines (PGE1, PGE2,
PGE2α)

OATP2B1 steroid hormone metabolites, inflammatory
mediators, thyroid hormones

liver function markers, statins, Bromosulfophthalein
Estron-3-sulfate

OATP3A1 steroid hormone metabolites, inflammatory
mediators, thyroid hormones

PGE1

PGE2

OATP4A1 bile salts, steroid hormone metabolites,
thyroid hormones,

Triiodothyronine
Taurocholate

OATP4C1 bile salts, steroid hormone metabolites,
thyroid hormones

Estrone-3-sulfate
Digoxin

For a detailed recommendation of OATP probe substrates and inhibitors, please refer to: (Brouwer et al., 2013)
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