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Rotation of electromagnetic fields and the nature of optical angular momentum
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The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now
well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell’s equations,
are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital
angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our
investigation is the duplex symmetry between the electric and magnetic fields.
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1. Introduction

The suggestion that Laguerre–Gaussian laser modes
carry orbital angular momentum about the beam axis
[1] led to rapid and sustained growth of interest in this
previously neglected mechanical property of light [2].
These modes have characteristic helical phase fronts
and a phase vortex on the beam axis such that a circuit
around the beam axis introduces a 2�‘ change in the
phase of the field. There is an orbital angular momen-
tum along the beam axis associated with this of ‘�h per
photon. This angular momentum is quite distinct from
and separate from the ��h of spin angular momentum
associated with the two possible circular polarizations.
The description of orbital and spin angular momenta
for light becomes more difficult if we go beyond the
paraxial approximation [3,4]. Here the larger values
taken by the electric and magnetic fields in the direction
of propagation make it difficult to separate the angular
momentum into orbital and spin components.

Light is fundamentally an electromagnetic phenom-
enon and it should be possible to understand its
properties by reference to those of the electromagnetic
field, as described by Maxwell’s equations. It has long
been known how to write the energy, momentum and
total angular momentum for the electromagnetic field
[5]. It is also possible to split the angular momentum
into spin-like and orbit-like parts [6], but there has
been much confusion as to whether this separation is
physically meaningful [7–11]. The situation was greatly
clarified in the seminal work of van Enk and Nienhuis
[12,13] who showed that the separation is indeed
physical but, remarkably, that neither of the constit-
uent parts is a true angular momentum.

In this paper we recover the startling result of van
Enk and Nienhuis from a slightly different starting
point by asking how we might rotate the electric and
magnetic fields. We follow this with an investigation
into the problem of defining sensible local spin and
orbital properties for the electromagnetic field to
match the familiar densities of energy and linear
momentum. We find that the obvious quantities
derived from the separation of the total angular
momentum into spin and orbital parts are not
satisfactory.

2. Spin and orbital parts of the electromagnetic

angular momentum

Let us begin by reviewing the usual forms for the
mechanical properties of light and for extracting spin
and orbital parts from the total angular momentum.
We work throughout with the electromagnetic field in
vacuum so as to describe freely propagating light. The
electric and magnetic fields (E and B) satisfy the
familiar Maxwell equations

r � E ¼ 0,

r � B ¼ 0,

r � E ¼ � _B,

r � B ¼ _E: ð1Þ

Here we work in the natural system of units in which
the pemittivity, permeability and speed of light are all
unity ("0, �0, c¼ 1). Note that the first two equations
mean that both the electric and magnetic fields are
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purely transverse, that is that for each plane wave

component the directions of both the electric and

magnetic fields are perpendicular to the wavevector.
It will be useful to express the electric fields in terms

of a vector potential, A, which we also take to be

transverse (r �A¼ 0), so that our electric and magnetic

fields have the form.

E ¼ � _A,

B ¼ r � A: ð2Þ

It is important to realise that although the vector

potential is subject to gauge transformations, its

transverse part is gauge invariant. This means that we

can express physically meaningful quantities in terms

of the transverse part of the vector potential, which

is our A.
It is straightforward to find the energy density for

the electromagnetic field, w, and from this to determine

the densities of linear momentum, g and angular

momentum, j [5]:

w ¼
1

2
E2 þ B2
� �

,

g ¼ E� B,

j ¼ r� E� Bð Þ: ð3Þ

From these we can obtain the total energy, momentum

and angular momentum by integrating over all space.

The total angular momentum, in particular, is

J ¼

ð
dVr� E� Bð Þ: ð4Þ

If we substitute for B in terms of the transverse vector

potential A and then perform some elementary vector

calculus we find that we can rewrite this total angular

momentum in the form [11]

J ¼

ð
dV

X
i

Eir� rAi þ E� A�
X
i

ri Eir� Að Þ

" #

¼

ð
dV

X
i

Eir� rAi þ E� A

 !
�

ð
ðr� AÞE � dS,

ð5Þ

where we have used Gauss’s theorem to obtain the

final integral over the surface of the volume. If the

fields fall off quickly enough or if the volume is large

enough then this surface integral will be zero and we

are left with the highly suggestive form

J ¼

ð
dV

X
i

Eir� rAi þ

ð
dVE� A ¼ Lþ S: ð6Þ

It is entirely natural, if only by analogy with quantum

theory, to associate the first integral (L) with the

orbital angular momentum of the field and the second

(S ) with its spin angular momentum, and this is

usually what is done. It is these quantities that have

given rise to the controversy and that were shown, by

van Enk and Nienhuis, not to be true angular

momenta because their quantised forms do not satisfy

the required commutation relations [12,13].
For monochromatic fields it is sometimes appro-

priate to cycle-average the total angular momentum

and also the quantities L and S and to rewrite these in

terms of the components of a complex electric

field [14]:

J j ¼
�0
2i!

ð
dV

X
k

E
�
kðr� rÞjEk

þ
�0
2i!

ð
dV

X
kl

"jklE
�
kEl ¼ Lj þ Sj, ð7Þ

where ! is the angular frequency of the light and "jkl
is the usual permutation symbol. This is a familiar

starting point in describing the angular-momentum

properties, in particular, of paraxial laser fields. Let us

emphasise, however, that no such restriction applies to

expression (6) and hence our analysis applies both to

paraxial and non-paraxial fields and there is no

restriction placed on the spectrum of the light.

3. The problem of rotation of electric and

magnetic fields

It is a fundamental, even defining, property of angular

momentum that it is the generator of rotations [15].

It is reasonable, therefore, to begin a study of optical

angular momentum by considering the rotation of the

electric and magnetic fields. It is natural to associate

the spin angular momentum with the vector nature of

the electromagnetic field and the orbital part with the

spatial dependence. If these two parts are distinct

angular momenta then the spin angular momentum

should rotate the direction of E and B and the orbital

angular momentum should rotate the fields in space

and leave their directions unchanged. We show,

however, that such separate rotations are not possible

without violating Maxwell’s equations.
It suffices to consider only small (formally infini-

tesimal) rotations and to this end we introduce the

vector h the direction of which corresponds to the axis

of the rotation and the magnitude of which (j�j� 1) is

the angle of rotation. Let us consider first a rotation of

the coordinates but not the direction of the electric

field to produce

E! Eþ h � ðr� rÞE: ð8Þ
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For this to be an allowed field it must satisfy Maxwell’s

equations and, in particular, for the first equation, it is

straightforward to show, however, that this is not

the case

r � Eþ h � ðr� rÞE½ � ¼ �h � r � Eð Þ

¼ h � _B: ð9Þ

This is not, in general zero and so the rotation violates

the first Maxwell equation.
The same problem occurs, naturally enough, for

rotations only of the direction of E:

E! E� h� E: ð10Þ

This field also violates the first Maxwell equation:

r � E� h� Eð Þ ¼ h � r � Eð Þ

¼ �h � _B: ð11Þ

It is clear that it is not possible, in general to rotate

independently the direction of the electric field or to

parallel transport the field by rotating the coordinates

but leaving the direction of the field unchanged.

Clearly the same problem arises for the magnetic

field, for which we find

r � Bþ h � ðr�rÞB½ � ¼ �h � _E

r � B� h� Bð Þ ¼ h � _E: ð12Þ

Note that there is no problem, of course, if we

rotate both the field distribution and its direction:

E! Eþ h � ðr� rÞE� h� E: ð13Þ

This rotated field is clearly transverse and satisfies

Maxwell’s equations. This is an indication, of course,

that there is a well-behaved total angular momentum

for the electomagnetic field. We can take the impos-

sibility of rotating just the field distribution or just the

direction of the field as a demonstration of the absence

of well-defined orbital and spin angular momenta.
It is reasonable to ask what is the effect on the

electric and magnetic fields of the spin (S ) and orbital

(L) parts of the angular momentum, obtained in the

previous section. We could proceed within the frame-

work of either classical or quantum electrodynamics,

but for definiteness we choose the quantum description

which requires us to introduce the canonical

(equal-time) commutation relation

AiðrÞ, � Ej ðr
0Þ

� �
¼ i�h�?ij ðr� r0Þ, ð14Þ

where

�?ij ðrÞ ¼
2

3
�ij�ðrÞ �

1

4pr3
�ij �

3rirj
r2

� �
ð15Þ

is the transverse delta function [16,17]. It will be

recalled that the transverse delta function extracts the

transverse, or divergenceless, part of a vector field:ð
dV

X
j

�?ij ðr� r0ÞVj ðrÞ ¼ V?i ðr
0Þ, r � V? ¼ 0: ð16Þ

There is also a longitudinal delta function

�kijðrÞ ¼ �ij�ðrÞ � �
?
ij ðrÞ ð17Þ

the action of which extracts the longitudinal or

curl-less part of a vector field:ð
dV

X
j

�kijðr� r0ÞVj ðrÞ ¼ Vki ðr
0Þ, r � Vk ¼ 0: ð18Þ

We consider the effect, on the electric and magnetic

fields, of unitary transformations generated by the

operators S and L. For the effect of the spin part on

the electric field we find

exp �
i

�h
h � S

� �
E exp

i

�h
h � S

� �
	 E�

i

�h
h � S,E½ �

¼ E� h� Eð Þ
?: ð19Þ

Similarly, we find for the magnetic field that

exp �
i

�h
h � S

� �
B exp

i

�h
h � S

� �
	 B� r � ðh� AÞ

¼ B� h� Bð Þ
?, ð20Þ

where we have used the fact that

h� B ¼ rðh � AÞ � ðh � rÞA

¼ rðh � AÞ þ r � ðh� AÞ, ð21Þ

the first term of which is clearly longitudinal and the

second is clearly transverse. It is clear, when written in

this way, that the spin part of the angular momentum

generates the closest approximation to the desired

rotation of the directions of E and B that is consistent

with the requirements of transversality [12,13]. We note

that there is much experimental evidence to support the

idea that, at least for a paraxial beam of light [2], the

components of spin and orbital angular momenta in

the direction of propagation of the beam are well

defined. We can see at least an indication of why this

is so in these expressions, as for such beams the

components of E and B (and also of A) in the direction

of propagation are very small and it follows that these

expressions for the rotated fields, (19) and (20), are

close to the ideal ones, (8) and its magnetic counter-

part. We can see, clearly, that this is true by consid-

ering the identity (21) in which the missing longitudinal

part of h�B (which is r(h �A)) is proportional to the

gradient of the component of the vector potential in
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the direction of propagation. For rotations not in the

direction of propagation, no such simplification is

possible; it is only the component of angular momen-

tum parallel to the direction of propagation which

simplifies in this way in the paraxial approximation.
Naturally enough, the orbital part of the angular

momentum generates the closest approximation to

rotation leaving the directions of the fields unchanged:

exp �
i

�h
h � L

� �
E exp

i

�h
h � L

� �
	 Eþ h � ðr�rÞE½ �

?,

exp �
i

�h
h � L

� �
B exp

i

�h
h � L

� �
	 Bþ h � ðr�rÞB½ �

?:

ð22Þ

We can understand the fact that the spin and

orbital parts of the angular momentum are not

themselves angular momenta as a consequence of the

impossibility of performing, independently, the rota-

tion of the direction of the fields or a rotation of the

field leaving the orientations of E and B unchanged.

4. Electric-magnetic symmetry

We have seen that it is not possible to rotate, for

example, the orientations of the electric and magnetic

fields whilst leaving the spatial distribution of the fields

unchanged. It is possible to separate the total angular

momentum into spin and orbital parts and, although

neither of these is a true angular momentum, they

are the generators of the closest physically allowed

approximation to the desired independent rotations.

There is a remaining difficulty, however, with the spin

and orbital parts as we have identified them. To see

this we need to invoke a subtle symmetry of Maxwell’s

equations (1).
It was noted by Heaviside and by Larmor

(although it is not easy to find in their writings)

[18,19] that these equations are unchanged on inter-

changing the electric and magnetic fields (E!B,

B!�E ).1 More generally, we see that their form is

unchanged if we make the duplex transformation [5]

E! E 0 ¼ cos �Eþ sin �B,

B! B 0 ¼ cos �B� sin �E, ð23Þ

for any angle �. It is also manifestly the case that the

densities of energy, linear momentum and angular

momentum (3) are all invariant under this transfor-

mation. Given these observations, it would indeed be

bizarre if the spin and orbital components of the

optical angular momentum did not also respect

the symmetry.

Let us consider the spin part of the angular
momentum. It is tempting to infer from the total spin
part, S, a spin density

s ¼ E� A: ð24Þ

In order to determine whether or not this is acceptable,
we need to extend the symmetry (23) to the potentials.
We can do this by introducing a new potential C in
analogy with the usual vector potential A [20]. Like the
usual vector potential it is transverse (r �C¼ 0) and it
is related to the electric and magnetic fields by the
equations

E ¼ �r � C,

B ¼ � _C: ð25Þ

Note that in contrast to (2) it is the electric field that is
represented as a curl and the magnetic field that is a
time derivative. These definitions will be compatible
with our Heaviside–Larmor symmetry (23) if we
require invariance of physically important quantities
under the analogous transformation

A! A0 ¼ cos �Aþ sin �C,

C! C 0 ¼ cos �C� sin �A: ð26Þ

It is now clear that the proposed density for the spin
component of the angular momentum that it does not
respect the Heaviside–Larmor symmetry. For this
reason we can reject the form (24) as the density for
the spin component of the angular momentum.

At this stage we should question whether the spin
part of the total angular momentum, S, is a physically
acceptable quantity. To see that it is, we note that we
can use integration by parts to rewrite it in the form

S ¼ �

ð
dV r � Cð Þ � A

¼ �

ð
dV C� rð Þ � A

¼ �

ð
dV C� r � Að Þ þ

X
i

riðCiAÞ � Cðr � AÞ

" #
:

ð27Þ

Integration of the penultimate term is zero (by Gauss’s
theorem) and the last term is zero because the vector
potential is transverse. It follows that

S ¼ �

ð
dVC� ðr � AÞ ¼

ð
dVB� C: ð28Þ

Clearly, we can combine this expression with our
original form in terms of E and A to write the total spin
part in the form

S ¼
1

2

ð
dV E� Aþ B� Cð Þ, ð29Þ
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which clearly respects the Heaviside–Larmor symme-
try. Hence, the expression for the total spin angular
momentum is a physically acceptable one in that S
respects the Heaviside–Larmor symmetry. We can
infer, however, that the seemingly natural guess for
the density of spin, given in (24), is not because it
does not.

Similar considerations show that
P

iEi(r�r)Ai is
not the physically relevant density of the orbital part of
the angular momentum, but that the total orbital part,
L, is acceptable, at least in the sense that it respects the
Heaviside–Larmor symmetry.

5. Discussion

We have traced the problem in obtaining satisfactory
spin and orbital angular momenta for the electromag-
netic field to the impossibility of performing, indepen-
dently, a rotation of the directions of the field vectors
and a rotation of the spatial dependence without
changing the directions of the fields. It is possible to
break the field into spin and orbital parts [6], but
neither of these is a true angular momentum [12,13],
although they do generate the closest allowed trans-
formation to independent rotations.

The question of identifying densities for the spin
and angular parts of the angular momentum remains a
problem. We have seen that the Heaviside–Larmor
symmetry is sufficient to argue that the ‘obvious’
candidate for a density of spin, E�A, is not accept-
able. It is true that we can overcome this objection by
adopting instead 1

2 ðE� Aþ B� C Þ, but merely sat-
isfying the symmetry seems to be an insufficient
justification for identifying this as the density for the
spin part of the angular momentum.

It is well known that the Dirac equation does not
conserve, separately, the spin and angular momenta of
an electron [21]. There is, nevertheless, an important
limit in which well-defined and separately conserved
spin and orbital angular momenta arise, and this is the
non-relativistic limit. It is possible that similar ideas
might determine the necessary conditions for
well-behaved, approximate, spin and orbital angular
momenta of light to arise. We shall return to this idea
elsewhere.
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Note

1. Heaviside even went as far as to acknowledge the
possibility of magnetic charges and currents so as
to impose a full symmetry on Maxwell’s equations
[22,23].

References

[1] Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.;
Woerdman, J.P. Phys. Rev. A 1992, 45, 8185–8189.

[2] Allen, L.; Barnett, S.M.; Padgett, M.J. Optical Angular

Momentum; Institute of Physics: Bristol, 2003.
[3] Barnett, S.M.; Allen, L. Opt. Commun. 1994, 110,

670–678.

[4] Barnett, S.M. J. Opt. B: Quantum Semiclass. Opt. 2002,
4, S7–16.

[5] Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley:
New York, 1999.

[6] Darwin, C.G. Proc. R. Soc. Lond. A 1932, 136, 36–52.
[7] Jauch, J.M.; Rohrlich, F. The Theory of Photons and

Electrons; Addison-Wesley: Cambridge, MA, 1955.

[8] Barut, A.O. Electrodynamics and Classical Theory of
Fields and Particles; Dover: New York, 1980.

[9] Yilmaz, H. Introduction to the Theory of Relativity and

the Principles of Modern Physics; Blaisdell: New York,
1965.

[10] Simmons, J.W.; Guttman, M.J. States, Waves and
Photons; Addison-Wesley: Reading, MA, 1970.

[11] Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G.
Photons and Atoms; Wiley: New York, 1989.

[12] van Enk, S.; Nienhuis, G. Europhys. Lett. 1994, 25,

497–501.
[13] van Enk, S.; Nienhuis, G. J. Mod. Opt. 1994, 41,

963–977.

[14] van Enk, S.; Nienhuis, G. Opt. Commun. 1992, 94,
147–158.

[15] Biedenharn, L.C.; Louck, J.D. Angular Momentum in

Quantum Mechanics; Cambridge University Press:
Cambridge, UK, 1985.

[16] Power, E.A. Introductory Quantum Electrodynamics;
Longmans: London, 1964.

[17] Milonni, P.W. The Quantum Vacuum; Academic Press:
Boston, 1994.

[18] Heaviside, O. Phil. Trans. R. Soc. Lond. A 1892, 183,

423–480.
[19] Larmor, J. Phil. Trans. R. Soc. Lond. A 1897, 190,

205–493.

[20] Bateman, H. The Mathematical Analysis of Electrical
and Optical Wave-Motion; Cambridge University Press:
Cambridge, UK, 1915. Reprinted Dover: New York,
1955.

[21] Rose, M.E. Relativistic Quantum Mechanics;
McGraw-Hill: New York, 1964.

[22] Heaviside, O. Electromagnetic Theory; AMS Chelsea

Publishing: Providence, 1971.
[23] Mahon, B. Oliver Heaviside: Maverick Mastermind of

Electricity; The Institution of Engineering and

Technology: London, 2009.

Journal of Modern Optics 1343


