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Recent breakthroughs of cell phenotype reprogramming impose theoretical

challenges on unravelling the complexity of large circuits maintaining cell phe-

notypes coupled at many different epigenetic and gene regulation levels, and

quantitatively describing the phenotypic transition dynamics. A popular picture

proposed by Waddington views cell differentiation as a ball sliding down a

landscape with valleys corresponding to different cell types separated by

ridges. Based on theories of dynamical systems, we establish a novel ‘epigenetic

state network’ framework that captures the global architecture of cell pheno-

types, which allows us to translate the metaphorical low-dimensional

Waddington epigenetic landscape concept into a simple-yet-predictive rigorous

mathematical framework of cell phenotypic transitions. Specifically, we simplify

a high-dimensional epigenetic landscape into a collection of discrete states cor-

responding to stable cell phenotypes connected by optimal transition pathways

among them. We then apply the approach to the phenotypic transition processes

among fibroblasts (FBs), pluripotent stem cells (PSCs) and cardiomyocytes

(CMs). The epigenetic state network for this case predicts three major transition

pathways connecting FBs and CMs. One goes by way of PSCs. The other two

pathways involve transdifferentiation either indirectly through cardiac progeni-

tor cells or directly from FB to CM. The predicted pathways and multiple

intermediate states are supported by existing microarray data and other exper-

iments. Our approach provides a theoretical framework for studying cell

phenotypic transitions. Future studies at single-cell levels can directly test the

model predictions.
1. Introduction
How do mammalian cells that share the same genome exist in notably distinct

phenotypes, exhibiting differences in morphology, gene expression patterns

and epigenetic chromatin statuses? Furthermore, how do cells of different

phenotypes differentiate reproducibly from a single fertilized egg? These funda-

mental questions are closely related to a deeply rooted paradigm in

developmental biology that cell differentiation is irreversible. That is, once a

cell differentiates into a terminal phenotype, the cell fate is determined.

Waddington [1] suggested an epigenetic landscape picture for this irreversible

process of establishing cell fates during development. It resembles a ball rolling

down a slanted ‘landscape’ to the point of the lowest local elevation, where the

axes and basins represent molecular concentrations and stable cell phenotypes,

respectively, and decrease in the elevation corresponded to increased extent of

differentiation. The Waddington epigenetic landscape is analogous to the

energy landscape concept widely used in chemistry and physics studies, e.g.

in protein physics each basin represents one stable protein conformation [2,3].

In contrast to this belief, initiated by a pioneering experiment done by

Yamanaka’s group [4], a growing body of research suggests the possibility of

cell reprogramming that offers the potential of converting one type of cell

into another [4–8]. Examples include converting fibroblasts (FBs) to cardio-

myocytes (CMs) through induced pluripotent stem cells (iPSCs); ‘direct
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transdifferentiation’ (DTD) to CMs by overexpressing Gata4,

Tbx5 and Mef2c [8]; and ‘indirect transdifferentiation’ (ITD)

through a non-stem cell precursor by overexpressing stem

cell markers Sox2, Oct4, c-Myc and Klf4, but preventing

cells into iPSC state [6].

The existence of different cell types and the above-men-

tioned fascinating reprogramming experiments triggered

theoretical studies on describing transitions between different

cell phenotypes. In the literature, Waddington’s landscape

concept is again frequently referred to as an intuitive and trans-

parent birds’ eye view on understanding the reprogramming

phenomena. The concept, though, only serves as a pheno-

menological metaphor lacking either mechanistic details or

quantitatively predictive power [9]. Therefore, many efforts

have been made towards quantifying Waddington’s landscape

concept. Using the Boolean network formalism, Kauffmann

argued that each stable attractor of the regulatory network

corresponds to a stable cell phenotype [10,11]. Recently, a

number of theoretical studies have been made to define scalar

quasi-potentials for a general nonlinear dynamic system with

possible multiple attractors [12–18]. These studies start with

the widely used differential equation-based approach towards

modelling cellular processes. This differential equation-based

approach integrates molecular biology details piece-by-piece,

from which the system dynamics can be deduced quantitatively.

Through constructing scalar landscapes, one tries to provide a

global view of the system dynamics, which is necessary for

studying phenotypic transition processes involving a large

number of genes and lineages. However, these studies are

subjected to the ‘curse of dimension’. That is, the computational

cost increases quickly with the dimension of the system. A high-

dimensional landscape is also difficult to visualize and analyse.

Furthermore, quantitative information to constrain model par-

ameters [11,15,19–21] is generally also lacking. There are

proposals of using alternative approaches such as the statistical

graphical models [22]. It may be fruitful to make connections of

these different approaches.

To overcome the above difficulties related to dynamical

system theories, using tools brought from protein and network

sciences, in this paper we present a novel methodology offering

quantitatively predictive power towards the cell reprogram-

ming and cell phenotypic transitions in general, and apply it

productively to an important experimental system, the repro-

gramming of FBs to iPSCs and CMs. With a minimal set of

available biological input, the analysis provides a dynamic

view of the reprogramming processes, leading to a number of

testable predictions, many of which are supported by existing

experimental results.
2. Results
2.1. Epigenetic state network model provides global

and coarse-grained view of network dynamics
Our approach is inspired by studies of protein dynamics and

glass transitions, where a well-defined energy landscape

exists to quantify the interactions as a function of the

atomic coordinates [2,3]. A basin of attraction is around a

minimum on the landscape, which the system will move

back to under a small perturbation (figure 1a). Between two

neighbouring basins, there is a minimum energy path

through a saddle point. Therefore, a landscape can be largely
characterized by a collection of the basins and paths going

through the saddle points. A system spends most of the

time fluctuating within basins, and transitions between

basins are rare events.

To generalize the above approach to describe the repro-

gramming processes, we adopt a set of coupled stochastic

differential equations to describe the molecular interactions

among the involved species (Material and methods),

dx

dt
¼ F(x, l, z)� h(x, t), (2:1)

where each component of x represents the expression level of

each gene, the deterministic term F describes the gene inter-

actions (l specifies the maximum gene expression activity

that is related to the chromatin state as discussed in more

detail in Material and methods, and z reflects the intrinsic

and environmental control parameters), and the stochasticity

term satisfies khil ¼ 0 and khi(t)hj(t
0)l ¼ 2Dijd(t� t0), where

the matrix D characterizes the strength of the stochastic

noise, offering a quantitative description of gene regulation

dynamics [11,23,24].

In the absence of the noise term h, equation (2.1) reduces to

a set of deterministic ordinary differential equations (ODEs),

whose long-term behaviour is largely determined by its

attractors [25]. For cell reprogramming, we are particularly

interested in the fixed-point attractors that represent different

stable cell phenotypes. The fact that the fixed-point attractors

are stable under infinitesimal perturbation implies that the

cell phenotypes are robust most of the time. Indeed, spon-

taneous phenotypic transitions are extremely rare. However,

stochastic noise provides an unbounded perturbative force

that drives the cell from one state to others [9]. A pair of

most probable transition paths between two neighbouring

attractors in general pass around (but not through [23]) a

first-order saddle point (fixed point with only one component

unstable) [26,27]. Therefore, the regulation dynamics described

with differential equations can be approximated by a stochas-

tic walk along a weighted network (epigenetic state network

or ESN) whose nodes correspond to the fixed-point attractors,

and edges (i.e. links between nodes) represent the most prob-

able paths connecting two neighbouring attractors. Each edge

carries a pair of transition rates kab and kba estimated by the

Wentzell–Freidlin theory for sufficiently small noises [27,28]

(electronic supplementary material, text section 1)

kab � exp �min

ðzb

za

X
i

1
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ii
dxi

dt� Fi

� �� �
dxi

 ! !
, (2:2)

and a similar expression for kba, where the integration is per-

formed over the optimal path that minimizes the integral

using the conjugate gradient algorithm. Therefore, equation

(2.1) can be approximated by a master equation describing

the network dynamics

dz

dt
¼ K � z, (2:3)

where the ith element of z is the probability of finding the system

in epigenetic state i, and K ¼ fkabg is the transition matrix

determined by equation (2.2). To apply the ESN approach to

high-dimensional systems where the number of stationary

points may grow exponentially with the dimensionality, we

developed a conditional root-finding algorithm that allows us

to efficiently locate fixed-point attractors and first-order saddles

(Material and methods).
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Figure 1. State network as coarse-graining of the full dynamics. (a) On a real energy landscape, a minimal energy path through an unstable transition point (first-
order saddle) connects two neighbouring basins of attraction. The landscape can be simplified to a network with basins as the nodes and connecting paths going
through first-order saddles as the edges. (b) The vector field of a mutually inhibitive two-gene circuit (inset), where the nodes S1, S2 and S3 represent fixed-point
attractors. The pie diagram of each attractor represents the corresponding expression pattern. The green diamond points correspond to the first-order saddles,
surrounded by forward and backward optimal paths (grey (dark blue online) curves) connecting two neighbouring attractors. Notice that, for open systems,
the optimal paths do not actually go through the saddles. (c) The ESN constructed from (a) by connecting neighbouring attractors. (d ) Tuning the modelling
parameters (see more details in the electronic supplementary material, tables S1 and S2) results in different regulatory dynamics (see nullcline plots), leading
to distinct topologies of the associated ESNs. (Online version in colour.)
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2.2. Epigenetic state network approach on a two-gene
system

Figure 1b–d demonstrates the ESN approach applied to a

two-gene (x1, x2) regulatory circuit, a simple prototype model

sustaining multiple cell reprogramming paths [19,11].

Figure 1b shows a representative vector field in the phase

space, showing that starting from an arbitrary (x1, x2)

concentration the system relaxes to one of the three stable fixed

points: one corresponding to a progenitor state during a
differentiation process with both x1 and x2 high (S1), and

another two differentiated states (with x1 high and x2 low (S2)

or vice versa (S3)); together with three first-order saddle points

and one unstable point. Two curves called separatrices passing

through the saddle and unstable points separate the whole

phase space into three regions centred around the three stable

fixed points, corresponding to three basins in terms of landscape

description. Further optimal path analysis reveals two paths

connecting the two differentiated states S2 and S3: starting

from S2, the first one first passes through the progenitor S1,
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corresponding to a dedifferentiation process, then differentiates

into S3, and another is a direct path connecting the two pheno-

types without going through the progenitor. For transitions

between each pair of states, there is a pair of forward and back-

ward optimal paths passing close to a first-order saddle point.

The corresponding ESN in figure 1c captures all these basic topo-

logical features of this dynamical system in the phase space.

Furthermore, figure 1d and electronic supplementary material,

tables S1–S4 show that both the number of fixed-point attractors

and network topology change with different kinetic parameters.

Additional result can be found in the electronic supplementary

material, text section 2. In this case, ESN provides an alternative

representation of cell differentiation and reprogramming that

captures the major dynamics of the underlying two-dimensional

vector fields (figure 1c), consistent with traditional approaches

such as bifurcation analysis [25]. However, the vector field

of a high-dimensional system is not directly visible and the

corresponding lower dimensional profile offers only partial

information of the underlying landscape. The ESN approach

coarse grains the essential characters of an arbitrary dimensional

dynamic system into a low-dimensional network graph and

thus can reveal the global features transparently. Especially, it

is not straightforward to obtain information about the transition

paths between two states from the bifurcation analysis.
2.3. Epigenetic state network approach on the
fibroblast-induced pluripotent stem cell-
cardiomyocyte system

To demonstrate the practical power of our approach, we next

apply the ESN analysis to the FB-iPSC-CM system. This

system has received much attention within the last few years

[4–8], and experiments have shown FB to CM reprogramming

through iPSCs, as well as DTD/ITD (figure 2a).

In a mammalian system, a fertilized egg first develops

into an embryo. Embryonic stem cells (ESCs) that are pluripo-

tent are derived from the inner cell mass of an early stage

embryo called a blastocyst. Through the three primary

germ layers, ectoderm, endoderm and mesoderm, ESCs can

differentiate into each of the over 220 cell types found in

the adult body. The iPSCs share some basic stemness features

of ESCs, although some subtle differences have also been

reported [29]. CMs are derivatives of the mesoderm germ
line. The origins of FBs are more complex. In related exper-

imental studies [30,31], the FBs are either mouse embryonic

FBs (MEFs) or mouse tail-tip FBs, both of which are deriva-

tives of the mesoderm germ line. Therefore in this work,

we consider only intra-lineage cell reprogramming.

2.3.1. Ensemble averaged epigenetic state networks
In this work, we focus on the main regulatory molecules for

each involved phenotype, constructing the regulatory circuit

from the empirical observations (figure 2b; also see the elec-

tronic supplementary material, text section 3 for more details).

The chromatin status determining the accessibility of associated

regulators is the key factor that controls different cell pheno-

types and is modified during the reprogramming process,

possibly through some ‘plastic’ chromatin states [32]. For

example, for the FB-iPSC reprogramming process, the FB regu-

lators change from an open to a closed chromatin form, the PSC

regulators from closed to open, while those of others (CM

regulators here) remain closed. We are particularly interested

in the following processes/chromatin states and the associated

ESNs (see Material and methods and electronic supplementary

material, figure S2): (i) FB-iPSC pluripotent reprogramming

(PR-ESN), for which only the FB and pluripotent stem cell

(PSC) regions are accessible and (ii) FB-CM transdifferentiation

(TD-ESN), for which only the FB and CM regions are accessible.

Note that as quantitative measurements of the reprogramming

processes are largely limited nowadays the model we proposed

here captures only the approximated biological information.

Indeed, our goal here is to demonstrate the power of the pro-

posed ESN methodology, rather than developing a complete

regulatory circuit with a full quantitative description of the

reprogramming process.

Here, we adopt a model ensemble approach [33]. That is,

instead of working with a single set of parameters, we exam-

ine the model behaviours with an ensemble of parameter

sets. The basic idea is that if a certain behaviour is observed

over a broader range of parameters, one has higher confi-

dence that it can be observed experimentally. Biologically,

experimental studies at the single-cell level reveal non-genetic

cellular heterogeneity, indicating an inherent variation of

global gene expression patterns among the cells [34]. This

heterogeneity also justifies that it is more relevant to perform

the ESN analysis over an ensemble of parameters through

Monte Carlo sampling, instead of one fixed set of kinetic
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constants, to reflect this cell-to-cell variation. To achieve

ensemble space appropriate for all the processes considered

we use the following boundary conditions. For PR-ESN, we

set the chromatin region of CM regulators to remain closed

and allow other chromatin parts to change during the process

(i.e. we set l ¼ 0.1 for CM regulator maximum basal

expression, and l ¼ 1 for others involving chromatin open/

close changes). Moreover, both the FB and iPSC states have

to occur within one single connected ESN cluster based on

experimental observations; similarly, for TD-ESN we set

l ¼ 0.1 for ESC regulators, and both the FB and CM states

have to appear within a single connected ESN cluster

(see more details in Material and methods and electronic

supplementary material, text section 2).

2.3.2. Epigenetic state networks predict reprogramming
intermediate states and pathways

Figure 3 shows the PR-ESN and TD-ESN averaged over 105

Monte Carlo realizations (electronic supplementary material,

text section 3, figures S3 and S4), where the node and edge

sizes are proportional to their occurrence probabilities. First,

a large amount of cell states in PR-ESN (figure 3a) share simi-

lar expression patterns, reflecting different parameter sets

used. We want to emphasize that for each parameter set,

the number of possible states calculated from the model is

small (see the electronic supplementary material, figure S4).

TD-ESN also gives a number of states with varying gene

expression levels. Second, there are a small number of

states with high frequency of occurrence. While the states

FB, SC and CM are what we require the model to have

a priori, there are a few new states. For example, a pre-iPSC

(PP) state appears as an intermediate during the reprogram-

ming process, with all the regulators down. Another FC

state appears as an intermediate state during TD with both

FB and CM regulators on. Based on the basic assumption
of the model ensemble idea, these are the predicted states

that one probably observes experimentally.

From an experimental perspective, these groups of cell

states with similar expression patterns would appear as a

cloud of data points forming a small number of clusters in

a single-cell measurement, e.g. multiplex flow cytometry or

single-cell quantitative PCR data. Currently, most existing

measurements are at the bulk level, which have been aver-

aged over a large number of cell patterns. In order to

compare with these bulk measurements, we use the mini-

mum spanning tree algorithm [35] to cluster the states in

each ESN, and then calculate the relative expression level of

each cluster by averaging the expressions over the states

within the same cluster (figure 4a,b). The averaged expression

patterns show that the regulator expressions of different cell

phenotypes are largely exclusive to each other (e.g. FB and

stem cell). This reflects the mutual inhibitions of regulators

representing different cell phenotypes.

The ESNs also predict a number of dominant, thus exper-

imentally likely occurring, pathways. The PR-ESN consists of

pathways connecting mostly the FB and the stem cell states

(iPSC1 and iPSC2), dominated by a major path through a

pre-iPSC (PP) state. The TD-ESN instead shows major paral-

lel paths between the FB and CM states passing through the

PP state, intermediate states with CM progenitor regulators

on (cardiac progenitor, CP), or FC state (an intermediate

state with both FB and CM regulators on). Counterintuitively,

despite the FB and CM transcription factors interacting

indirectly through progenitor regulators (electronic sup-

plementary material, figure S2), TD-ESN shows a pathway

connecting the FB and CM states through the FC state with-

out passing through the upstream PP or CP states and is

confirmed by experimental observations of direct TD [8].

This dynamic feature is only implicitly contained in the orig-

inal regulatory circuit, but is revealed by the ESN explicitly.
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2.3.3. Microarray data confirm predicted states and pathways
To facilitate comparison with experiments, we examine the

published microarray data in [30,31,36] (see the electronic

supplementary material, text section 3 for details). For pluri-

potent reprogramming, experimental observations show that

the dynamical evolution from mouse embryonic FB (MEF, FB

regulators turning on, all regulators turning off ), to pre-iPSC

(PP, silencing FB regulators without expressing PSC regula-

tors) then mouse iPSC (MiPSC, PSC regulators turning on)

states sequentially (figure 4c), confirming the prediction

from the PR-ESN (figure 4a). Figure 4d reports the gene

expression patterns measured in the differentiation exper-

iments from human-induced pluripotent stem cell (HiPSC)

into CM, showing clear expression patterns corresponding

to the SC and CM states, respectively. For TD (figure 3), the

TD-ESN predicts an intermediate state (FC) in which both

the FB and CM regulators are turned on. The FB regulators

are not monitored in existing experiments. Interestingly, we

find reports on the mouse embryo cardio FB cells, which

exist in vivo, have very similar expression pattern to the FC

state [31]. This observation, while not confirming, suggests

that existence of such intermediate state (FC) in the TD pro-

cess is possible. Furthermore, recently Pereira et al. [37]

actually reported intermediate states with mixed expression

features during the progress of reprogramming mouse
FBs into haematopoietic stem cells. Figure 5a summarizes a

complete set of experimental agreements with the predicted

cell states.

The ESN predictions are supported by not only the exper-

imentally observed cell states, but also more importantly, the

major reprogramming pathways (figure 3). Figure 5b sum-

marizes the predicted major pathways along with the

supporting experimental results. For example, previous

experiments found that the FB-to-iPSC reprogramming path-

ways are very likely to undergo the PP state, but it has also

been observed that some cells bypass the PP state [38–40].
3. Discussion
3.1. Transitions among attractors describe cell

reprogramming
Our ESN analysis provides a rigorous description of cell phe-

notypic transitions based on the dynamical systems theory. A

cell regulatory network may have multiple attractors corre-

sponding to different cell phenotypes. Here, we may

quantitatively relate a cell phenotype to a certain gene

expression pattern. Owing to stochasticity cells with the

same phenotype show non-genetic cell-to-cell variations



descriptions GEO accession no.

GSE28191
GSE19023
GSE32598

GSE28191

GSE28191
GSE14414

GSE19023
GSE32598

induced pluripotent stem 
cell (iPSC)

mesoderm cell (ME)

fibroblast (FB)

cardiomyocyte (CM)

cell state
(a)

GSE32598 

GSE32598

GSE14414
FB-CM double-positive 
cell (FC); mouse embronic 
cardiac fibroblast (MECF)

sub-phenotypes of iPSC 
with different epigenetic
memories

descriptionscell state

GSE28191 cardiac progenitor (CP)

GSE19023 pre-iPSC (PP) 

descriptions reference

direct transdifferentiation
from FB to CM without 
passing through CP

major pathway of 
reprogramming 
FB to iPSC by passing 
through PP state

pathway

Takahashi & Yamanaka [4] 
Plath & Lowry [39]

(b)

Stadtfeld & Hochedlinger [54]

Ieda et al. [8]

Efe et al. [6]

GEO accession no.

CM
FB

CP

CM

FB
FC

iPSC1

FB

iPSC2

iPSC1

FB

PP

iPSC2

indirect transdifferentiation
from FB to CM through CP

low-efficiency pathway
from FB to iPSC avoiding 
passing through or
becoming trapped 
in the PP cell stage

Figure 5. List of experimental supports of predicted states (a) and pathways (b) of reprogramming and TD. (Online version in colour.)
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around a deterministic attractor. However, spontaneous fluc-

tuations rarely result in transitions between different stable

phenotypes. Similarly, a cell can often maintain its phenotype

despite change of environment. This robust phenotypic stab-

ility is likely the consequence of natural selection, which is

metaphorically represented by Waddington as basins separ-

ated by high barriers. However, for a cell with finite size,

the ‘barrier height’ can only be finite, which opens the possi-

bility of inducing phenotypic transitions with sufficiently

large perturbations. Experimentally researchers have induced

elevated intracellular protein levels of certain genes tempor-

arily, through lentivirus transfection, mRNA or polypeptide

injection [6,41]. These perturbations lift the system away

from the attracting basins and allow it to relax to a different

basin, resulting in changes of cell phenotypes.

Recently, Ferrell used bifurcation analysis to examine the

Waddington landscape [42]. Our results also support the pro-

posal of Ferrell that cell differentiation may take place

through saddle node bifurcation, where undifferentiated and

differentiated states may coexist, besides the pitchfork bifur-

cation illustrated in the original Waddington picture, where

two differentiated states appear suddenly. Our approach

shares some basic ideas and is applicable to systems of multiple

degrees of freedom. A remarkable feature is that our approach
goes beyond the conventional one and two parameter bifur-

cation analysis and provides a global view of the dynamic

features of the system.

Our analysis not only reveals the possibility of cell repro-

gramming, but also implies how one can improve the

processes. The optimal paths are the easiest paths for tran-

sitions from one phenotype to another one. Intuitively, the

transition is more efficient if the external perturbation is

applied along the optimal path than the perpendicular case.

To be specific, consider the model system shown in figure 1a.

To reprogram the phenotype from S2 to S3, one strategy

is to suppress x1 and activate x2 simultaneously. However,

a better strategy may be activating x2 first, driving the

system to S1, then suppressing x1. Furthermore, a reverse

procedure of suppressing x1 first then activating x2 may

direct the system to take another reprogramming pathway

bypassing S1. Therefore, in principle, one may control the

reprogramming pathways by adopting different procedures.

For a more complex reprogramming process such as the

FB-iPSC-CM system, involvement of a number of intermedi-

ate states suggests time-dependent reprogramming strategies.

Clearly, one requires more qualitative and quantitative

information about the regulatory network and the dynamics

to optimize the reprogramming processes.
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As mentioned earlier, to induce cell reprogramming and TD,

one typically over-expresses certain genes, or introduces the cor-

responding mRNAs or proteins synthesized extracellularly to

the cells [6,41]. These externally induced perturbations are

only temporal perturbations to cells and disappear eventually.

On the other hand, the landscapes and the corresponding epige-

netic states are defined by the intrinsic cellular steady states

[12–15,43]. These perturbations therefore do not affect the land-

scape (and ESN here), but can be viewed as analogous to

external force pushing the system out of the attractor. Knowl-

edge of the landscape and ESN provide guidance on how to

‘exert’ the force to efficiently induce the transitions.

3.2. Proposed experimental tests
A gene regulatory circuit is reconstructed indirectly from var-

ious experimental results. On the other hand, the nodes of an

ESN are direct experimental observables. Each node rep-

resents the expression (i.e. protein or mRNA) levels of

genes under study at an attractive state. Therefore, we pro-

pose to measure the single-cell expression levels of selected

genes during the course of reprogramming. We predict that

these single-cell data form clusters corresponding to attrac-

tors. For example, we propose an experiment tracking both

FB and CM regulators during the TD process to confirm

our predicted FC state. Our analysis predicts that a repro-

gramming process may take place through a number of

parallel pathways. This can also be tested experimentally by

tracking the time courses at the single-cell level. We note

some recent single-cell studies [40,44], which can serve as

input for further theoretical studies.

3.3. Future development and application to general
dynamical systems

In summary, tying with complex network analysis [45], the

ESN approach provides a comprehensive mathematical fra-

mework of describing the cell reprogramming process from

a global point of view, incorporating different cell types

and collective changes of regulatory molecules coupled at

both transcription and epigenetic levels.

In this work, our main focus is development of the method-

ology. Our application to the FB-iPSC-CM reprogramming

system should be viewed as a first proof-of-principle test. We

mainly use the requirement that the model should reproduce

both the pluripotent reprogramming and TD phenomena to

constrain the model parameters. Despite very limited inputs

from experiments, we obtain a series of qualitative and

semi-quantitative predictions confirmed by experimental

observations, shedding a light on understanding these funda-

mentally important but complex processes through theoretical

modelling. Once more data from experiments becomes avail-

able further detailed predictions from the ESN approach are

promising. In particular, with the help of single-cell transcrip-

tome and proteome time course measurement, the model

aims to analyse the coupling among regulation mechanisms at

different levels, providing the hope of optimizing transition

dynamics in the cell phenotypic regulation. Epigenetic modifi-

cation is a major part of a reprogramming process. In this

work, we treat epigenetic modifications on the chromatins

and gene expressions compositely. It will be more predictive

to develop a model incorporating the molecular details of

these processes. While for illustrative purposes in this work
we only analyse a system with 10 degrees of freedom, the

method can be readily applied to systems with higher dimen-

sions. For a large network with multiple attractors, the rate

limiting steps are transitions among the attractors. The ESN

approach coarse grains the dynamics of a network to Marko-

vian dynamics, thus permitting description of long time

dynamics not feasible for direct simulations with stochastic

differential equations.

The developed approach can be applied to study the

dynamics of general stochastic nonlinear systems. It became

a main theme in the past decade or so to study numerous

complex systems in nature and social systems. A prominent

finding is that most networks are not randomly organized,

but repetitively show some scale-free or small-world topolo-

gical features. These observations suggest strong correlation

between network structures and functions. A clear new fron-

tier for the field is adding the domain of dynamics for a full

theory for complex systems [45]. Major obstacles, however,

exist. For a large complex network, it is challenging to con-

struct a mathematical description and analyse its dynamics.

Without data of sufficient detail to determine the usually

large number of model parameters, the prediction power of

a model is questionable. The present coarse-grained state net-

work approach provides an efficient way of studying long

time dynamics of large-scale networks, similar to that in

protein and glass studies. Future studies may expand the

current approach to attractors beyond the fixed points.
4. Material and methods
4.1. Mathematical formalism
We use the following rate equation describing the gene expression

dynamics of a species (see the electronic supplementary material,

text section 1 for more discussions):

dxj

dt
¼ gj(ljG(sjwj)� xj), (4:1)

where G(y) ¼ 1/(1þ exp (�y)) is the Wilson–Cowan function that

has been widely used on modelling gene regulation dynamics

[46–48] and wj ¼ v j0 þ
PN

i¼1 v jixi. The expression of G is a generic

sigmoidal function with steepness (slope at wj ¼ 0) that increases

with sj. Each vji is a real number in [21, 1]; positive for the ‘activa-

tors’ and negative for the ‘inhibitors’ of node j. The sum, wj, is the

net activation or inhibition on node j, and vj0 determines whether

node j is ‘on’ or ‘off’ when all input signals are 0. The sign pattern

(2, 0, þ) of the weight matrix vji correlates with the network

topology. The parameters gj’s here, with values within [0,1],

determine how quickly each variable approaches its goal value.

Values of gj’s do not affect the steady-state behaviour but the

system dynamics. The parameters lj’s reflect the maximum gene

expression level determined by the chromatin status. l is a constant

with a maximum value equalling 1 indicating the chromatin region

can be fully open and accessible to regulatory proteins and RNA

polymerases. A reprogramming process involves changes at differ-

ent levels including epigenetic and transcription levels. In general,

one can treat the chromatin dynamics as stochastic transitions

between discrete states, thus treat the overall reprogramming

dynamics with a mixed continuum-discrete formalism, as in studies

of other problems [49–52]. In this work, we treat the dynamics at

epigenetic and transcription/translational levels compositely by

the function G. Theoretically, it corresponds to the adiabatic

representation as in quantum chemical dynamics [50].

For the FB-iPSC-CM system analysed in this work, each

variable xi represents the concentration (relative to its maximum)

of one of the 10 chemical components: x1 ¼ [NANOG],
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x2 ¼ [OCT4], x3 ¼ [SOX2], x4 ¼ [KLF4], x5 ¼ [brachyury], x6 ¼

[MESP1], x7 ¼ [Ripply2], x8 ¼ [FB], x9 ¼ [ISL1] and x10¼ [CM].

4.2. Algorithm of searching fixed-point attractors and
first-order saddles

The stationary points x0 of equation (4.1) satisfy F(x0) ¼ 0. The

traditional algorithm of searching the stationary points is based

on the optimization of the auxiliary energy jFj1=2: The conven-

tional Newton–Raphson (NR) method constructs a trajectory

from an initial guess that converges towards a stationary point.

At each step, the NR method adopts a moving step satisfying

dxNR ¼ �F�1F, (4:2)

obtained by optimizing the energy change

DE(dx) ¼ FTdxþ 1
2dxTJdx, (4:3)

where J is the Jacobian matrix with its element defined as

Jij ¼ @Fi/@xj. Yet, the NR method often converges to a stationary

point other than a fixed-point attractor. The latter requires a

negative definite Jacobian. To achieve this, instead of equation

(4.2) we use a quasi-Newton updating step

dxQN ¼ �J�1
QNF, (4:4)

where to-be-defined JQN is the quasi-Newton Jacobian that is

negative definite everywhere. We first diagonalize J ¼ QTDQ,

where D ¼ diag{hi} with the eigenvalues fhig as its diagonal

elements. We next construct JQN ¼ QTDQNQ, where

DQN ¼ diag{� Sign(Re(hi))hi}. (4:5)

A similar quasi-Newton step known as eigenmode method [53]

was previously developed in the chemistry community to seek

energy minima in a potential energy landscape, in which J (the

Hessian matrix) is symmetric and hence both Q and D are

real-valued matrices. Our case is more general in the sense that

the Jacobian J is not necessary to be symmetric and thus both

Q and D may be complex valued. However, it can be proved

that the constructed JQN is a real matrix and thus the quasi-

Newton step (equation (4.4)) is well defined. If J is a symmetric

matrix, equation (4.5) leads to the same formula in Tsai et al.
[53]. In addition, when the searching trajectory falls into the

basin (the region where the Jacobian is negative definite),

equation (4.4) is consistent with the traditional NR step.

To search the first-order saddles, instead of applying

equation (4.5) to all the eigen-directions at each step we pick

one maximization direction i, and set

DQN,ii ¼ Sign(Re(hi))hi (4:6)

only for the diagonal component i, forcing the quasi-Newton

steps to converge to a saddle point. We initially select the

maximization direction i at random, and at each step calculate

the overlap/correlation between the maximization direction at
the previous step with all eigen-directions and choose the most

overlapped eigen-direction to be maximized at this iteration.

4.3. Constructing the epigenetic state network
To construct the ESN, we enumerate first-order saddles using the

above conditional root-finding algorithm. For each saddle, we

seek two fixed-point attractors (basins) connected to it through

the saddle’s unstable direction. To do this, we apply a small

random perturbation on the saddle and track the dynamic flow

followed by the vector field. By connecting two neighbouring

basins (nodes) through their common saddle (links), we obtain

the ESN of the underling dynamic system. Finally, we apply the

Wentzell–Freidlin theory (equation (2.2)) to assign appropriate

transition rate (weight) to each link. Note that the network is bi-

directional and the weight matrix will be asymmetric in general.

The 10 ODEs we use to describe the FB-iPSC-CM system

have 62 unknown parameters that lack sufficient experimental

input to determine their values. As a common problem on study-

ing complex biological systems, our strategy here is, instead of

using a single set of parameters, to analyse an ensemble of

models [33] with different parameter sets that are related to the

cell-to-cell non-genetic variation rooted in intrinsic and extrinsic

stochasticity [9,34]. These model parameter sets, however, are

required to satisfy some biological constraints (electronic sup-

plementary material, text 2). The cell-to-cell variation justifies

modelling the cellular systems with a distribution of parameter

sets. Here in this work, we treat these parameters as frozen

during the process, with the implicit assumption that variation

of these parameters is slow. In physics, it corresponds to

quenched disorder.

The overall Monte Carlo numerical procedure of obtaining

the ensemble averaged ESN for the FB-iPSC-CM system is sum-

marized in the electronic supplementary material, figure S3 and

text section 3.

4.4. Coarse-graining epigenetic state networks
We measure for all three ESNs the transition rates for each pair of

neighbouring states. The fact that the transition rate distribution

is highly uneven indicates that the reprogramming dynamics is

mostly dominated by those paths with large transition rates (or

equivalently, small passage times; electronic supplementary

material, figure S5). Therefore, we calculate the minimum

spanning tree that captures the ‘backbone’ of the ESN by

minimizing the average passage time (defined as the reciprocal

of the transition rate).
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