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Cellular quiescence is a reversible non-proliferating state. The reactivation of

‘sleep-like’ quiescent cells (e.g. fibroblasts, lymphocytes and stem cells) into

proliferation is crucial for tissue repair and regeneration and a key to the

growth, development and health of higher multicellular organisms, such

as mammals. Quiescence has been a primarily phenotypic description (i.e.

non-permanent cell cycle arrest) and poorly studied. However, contrary to

the earlier thinking that quiescence is simply a passive and dormant state

lacking proliferating activities, recent studies have revealed that cellular

quiescence is actively maintained in the cell and that it corresponds to a collec-

tion of heterogeneous states. Recent modelling and experimental work have

suggested that an Rb-E2F bistable switch plays a pivotal role in controlling

the quiescence–proliferation balance and the heterogeneous quiescent states.

Other quiescence regulatory activities may crosstalk with and impinge upon

the Rb-E2F bistable switch, forming a gene network that controls the cells’

quiescent states and their dynamic transitions to proliferation in response to

noisy environmental signals. Elucidating the dynamic control mechanisms

underlying quiescence may lead to novel therapeutic strategies that re-establish

normal quiescent states, in a variety of hyper- and hypo-proliferative diseases,

including cancer and ageing.
1. Introduction
There are 1013–1014 cells in our human body. At any given time, the vast

majority of these cells are non-dividing and outside of an active cell cycle.

Some of these non-dividing cells (e.g. senescent or terminally differentiated

cells) are irreversibly arrested; they can no longer re-enter the cell cycle to

proliferate under normal physiological conditions. By contrast, a subset of

non-dividing cells is ‘reactivatable’ and can enter the proliferative cell cycle in

response to physiological growth signals; these cells are called quiescent cells

(figure 1). Examples of quiescent cells include many adult stem cells, progenitor

cells, fibroblasts, lymphocytes, hepatocytes and some epithelial cells. The exact

number of quiescent cells in the body is not well characterized.

Unlike many unicellular organisms in which the cell can reside in either a

quiescent dormant state or a growth state depending on the environment, in

adult multicellular organisms the quiescent cellular state is unique to higher

organisms. In lower multicellular organisms, such as Caenorhabditis elegans,

all cells in the adult body are ‘post-mitotic’ and no longer able to proliferate.

However, in higher multicellular organisms with prolonged lifespans, such as

mammals, reversible quiescent cells are fundamental to forming tissues capable

of renewal and regeneration, which is critical for the tissue homoeostasis of the

adult body. Cellular quiescence also provides protection against stress and toxi-

cities, which is especially important for long-lived cells, such as stem cells [1,2].

On the other hand, the balance between cellular quiescence and proliferation

needs to be carefully regulated in tissues of higher organisms; misregulation

of the quiescence–proliferation balance can lead to a wide range of hypo-

and hyper-proliferative diseases, such as fibrosis, autoimmune diseases,

cancer and ageing.

Regarding the two sides of the quiescence–proliferation balance, while cell

proliferation and its regulation have been well studied, cellular quiescence is

poorly understood. One recent PubMed search with ‘cell proliferation’ returned

over 190 000 articles, while searches for ‘cell quiescence’ and ‘cellular quies-

cence’ returned about 200 hits each. The lack of study of cellular quiescence
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Figure. 1. Cellular quiescence. Quiescence differs from other non-dividing states
in that it can be reverted into proliferation. The molecular mechanisms underlying
quiescence and its reversibility are unknown. (Online version in colour.)
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is at least partially owing to the fact that, for a long time,

quiescence had been simply regarded as a passive and

dormant cellular state lacking proliferation activities.

Studies in the past few years have revealed that, instead of

being a passive state, quiescence is actively maintained in the

cell. Quiescent cells are transcriptionally active: in addition to

the downregulation of proliferation-related genes, quiescent

cells actively express a group of genes that are distinct from

those in proliferating cells or in cell cycle arrested cells forced

by the overexpression of cyclin-dependent kinase inhibitors

(CKIs) p21 or p27 [3–6]. At least some of the actively expressed

genes in quiescent cells contribute to the reversibility of quies-

cence (e.g. by suppressing terminal differentiation and

apoptosis) [3]. As a result, quiescent cells, but not forced cell

cycle arrested cells, are resistant to the inductions of

differentiation and senescence [3,7]. In addition, while many

quiescent cell types exhibit reduced metabolic activities,

quiescent fibroblasts maintain comparable metabolic rates to

their proliferating counterparts [8,9].

Recent studies including ours have further shown that quies-

cence is not a unique state but rather a collection of

heterogeneous states. Quiescence has traditionally been

considered a single non-proliferating state (also called ‘G0’

[10–13]) outside of the cell cycle. However, cells induced to

quiescence by different signals (e.g. serum starvation, loss of

adhesion and cell contact inhibition at high cell density) exhibit

overlapping yet distinct gene expression profiles, suggesting that

cells may enter different quiescent states depending on the

initiating signals [3]. We found that fibroblasts that are serum

starved for longer periods of time appear to access ‘deeper’

states of quiescence: the longer serum-starved cells (e.g. those

starved for 6 versus 2 days) were less likely to exit quiescence

in response to growth signals at non-saturating levels (e.g. 1%

serum; Kwon & Yao 2014, unpublished data); furthermore,

among those cells that exited quiescence, longer serum-starved

cells did so at a slower speed than shorter serum-starved cells

(similar to earlier observations [14,15]). Yet, the longer starved

cells could still re-enter the cell cycle to proliferate under

normal growth conditions (e.g. 10% serum), demonstrating

that they reside in a reversible quiescent state, not an irreversi-

bly arrested state, such as senescence. Together, accumulating

evidence indicates that quiescence goes beyond a single

homogeneous state.

What mechanisms underlie the actively maintained, het-

erogeneous quiescent states? Answers to this question will

help in uncovering a currently underappreciated layer of

complexity in growth control and provide novel insights

into the cause and treatment of hyper- and hypo-proliferative

diseases. High-throughput studies in the past few years have
suggested a long list of cellular activities associated with

quiescence, particularly in fibroblasts and adult stem cells,

such as haematopoietic stem cells (HSCs) [3–6]. Meanwhile,

recent computational modelling studies have begun to pro-

vide an effective framework to integrate descriptive ‘parts

lists’ into a mechanistic understanding of the basic controls

of cellular quiescence, which will be reviewed below.
2. Phenotypic quiescence – proliferation
transition

2.1. Restriction point
The proliferation of normal, untransformed mammalian cells

in culture requires serum, which contains a combination of

growth factors. Specifically, cells are sensitive to extracellular

serum signals in the G1 phase of the cell cycle prior to a criti-

cal time point, namely the ‘restriction point’ or ‘R-point’ [16].

If serum starvation occurs in the G1 phase before the R-point,

cells will withdraw from the cell cycle and enter quiescence.

After passing the R-point, however, the cell cycle becomes

autonomous—even when serum is removed, the cell cycle

will continue until it is completed. Therefore, it appears

that the R-point is a ‘point of no return’ at which a cell com-

mits to proliferation. In actively growing Swiss 3T3 cells,

whose average cycle time is 16 h with an average 7 h G1

phase, the R-point is approximately 3.5 h after cell birth [17].

There are two key characteristics of the R-point: first, it sets

a high threshold that separates quiescence from proliferation,

serving as a noise filter against uncontrolled and accidental

cell growth; second, it provides a low-maintenance mechanism

to ensure that, once initiated, the cell cycle will be completed

regardless of later fluctuations in the extracellular environment,

which is fundamental to maintaining genome integrity.

2.2. G0 versus G1: two non-proliferating phases before
DNA replication

There is an R-point in every cell cycle before the start of cell

proliferation. However, the first R-point that cells encounter

when they exit quiescence is distinct from the other R-points

in actively growing cells. Despite a historical debate regarding

whether quiescent cells reside in an extended G1 phase at pos-

itions where they last see growth signals [18–20], quiescence is

typically considered a distinct G0 state outside of the cell cycle.

Quiescent G0 cells are similar to the cells in the G1 phase of a

proliferative cell cycle (G1 cells): they both reside between

M- and S-phases and contain non-replicated 2n DNA content.

However, compared with G1 cells, G0 cells experience a sig-

nificant delay in re-entering S-phase. In Swiss 3T3 cells, such

a delay lasts about 8 h [17]. The reasons behind this delay in

quiescent cells are not entirely clear, but may be owing to

the fact that proteins (e.g. CDC6) required for creating the

DNA replication origins are removed from chromatin in G0

(but not G1) cells [21].

2.3. Historical models on the quiescence – proliferation
transition

In the 1970s and 1980s, a number of mathematical models were

proposed to describe the transition between cellular quiescence

and proliferation and the apparent cell-to-cell variations in this
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Figure 2. The Rb-E2F bistable switch. A simplified view of the Rb-E2F pathway is
shown (at the top). The Rb-E2F pathway functions as a bistable switch, rep-
resented by the double-well potential wave (at the bottom). The two wells
represent the two stable steady states of the bistable system (E2F-Off and E2F-
On), which underlie cellular quiescence and proliferation, respectively. The
‘energy barrier’ that separates the two wells corresponds to the R-point, which
is an unstable steady state of the Rb-E2F bistable system. (Online version in colour.)
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process within a mammalian cell population. One class of

models, ‘transition probability’ (TP) models [22–25], assume

that a cell has two distinct phases: non-replication

(NR-phase) and replication (R-phase). Cells leave the NR-

phase randomly but with a constant probability; they then

enter the R-phase in which replicative activities are determinis-

tic. In TP models, it is the random transition from the NR-phase

to the R-phase that is thought to create the variations in growth

rates of cells in a population. The NR-phase in original TP

models referred primarily to the G1 phase of actively proli-

ferating cells; it was soon extended to the quiescent state (the

G0 state) in serum-starved cells (and, correspondingly, an

additional random transition from the G0 to G1 phase was

proposed) [26].

Another class of models, ‘growth controlled’ (GC) models

[27,28] or ‘continuum’ models [18,29], proposed that the

different growth rates (i.e. different cell cycle durations) of

cells in a population do not result from the probabilistic tran-

sition from the NR-phase to the R-phase, but rather from the

cell-to-cell variations in biomass and cell metabolism as well

as the related time required to complete essential steps in

the cell cycle. Integrating TP and GC models, the hybrid

‘sloppy size control’ (SSC) model [30,31] proposed that the

quiescence–proliferation transition is a random process

with cell-size-dependent probability. Interestingly, all of

these different models (TP, GC and SSC) fit well with various

types of experimental data; however, they are all descriptive

only at the population distribution level. Interest in these

models gradually faded but was later reinvigorated by find-

ings in molecular and cell biology, particularly in the genes

that regulate the quiescence–proliferation transition.
3. Rb-E2F bistable switch: a mechanistic
framework underlying quiescence

3.1. Rb-E2F pathway
Among cellular activities that regulate the quiescence–

proliferation transition in mammalian cells, the Rb-E2F

pathway plays a pivotal role (figure 2). Rb (retinoblastoma)

was the first identified tumour suppressor gene [32]. The

Rb protein family also contains p130 and p107; these so-

called pocket proteins (pRb, p107 and p130) regulate prolifer-

ation in most, if not all, cell types [33]. E2F refers to a family

of transcription factors (E2F1–8), among which E2F1, 2, 3a

are considered ‘E2F activators’ and E2F3b–8 are ‘E2F repres-

sors’ [34]. E2F proteins regulate a large battery of target genes

involved in DNA replication and cell cycle progression

[34–38]. In quiescent cells, E2F activators (which we will

refer to as ‘E2F’ below for simplicity) are bound to and

repressed by Rb family proteins. In addition, E2F repressors

form complexes with Rb family members, which recruit chro-

matin modification factors and actively repress E2F target

genes [36,39–43]. With sufficient growth stimulation, the

levels of Myc and cyclin D (CycD) increase. Myc activates

E2F expression [44]. CycD activates cyclin-dependent kinases

(Cdks) 4 and 6 [45–48]. Cdk4,6 activities phosphorylate Rb

family proteins and remove their repression of E2F. Sub-

sequently, E2F transactivates CycE, which forms a complex

with Cdk2 to further remove Rb repression by phosphoryl-

ation [49], establishing a positive-feedback loop. E2F also

activates its own transcription, forming another positive-
feedback loop. E2F is a master regulator of mammalian cell-

cycle entry and has been shown both necessary and sufficient

for this process [50,51]. Because of its critical role in cell

growth control, the Rb-E2F pathway is frequently mutated

in most, if not all, cancers [52].

Quiescent cells typically feature lower levels of Rb-E2F

pathway activators (e.g. CycD [53–55], Cdk2 [56]) and

high levels of pathway repressors, such as Cdk inhibitors

(e.g. p21 [57], p27 [58,59]), Rb family proteins (especially

p130 [43,60,61]) and E2F repressors that are either dependent

(e.g. E2F4 [43,62]) or independent (e.g. E2F6 [63]) of Rb

family proteins to silence E2F target genes. Downregulation

of Cdk inhibitor activities (e.g. p27 [59,64], p21 [55,57,65,66])

can lead to quiescence exit and cell cycle re-entry. Similarly,

the disruption of all three Rb family proteins [67–69] and the

acute loss of the Rb function in quiescent cells lead to cell pro-

liferation [70]. Very recently, it was shown that a low versus

increasing Cdk2 activity (as directly controlled by p21) at mito-

tic exit marks the bifurcation of a cell population into quiescent

versus continual proliferating cells [56].
3.2. Rb-E2F bistable switch
The ‘high-threshold, low-maintenance’ transition between

quiescence and proliferation at the R-point is reminiscent of a

bistable switch, as seen in several decision-making processes

[71–74]. Regulation by positive feedback is a hallmark of a bi-

stable switch [75,76]. Despite the fact that positive-feedback

loops are under-represented in biological networks [77], they

are enriched in the Rb-E2F pathway, suggesting functional

non-randomness (e.g. the mutual inhibition between Rb and

E2F and the E2F self-activation mentioned above and others,
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including the mutual inhibition between CycE/Cdk2 and p27

[78]). Several mathematical models of the Rb-E2F-cyclin/Cdk

network were proposed and they suggested the theoretical

possibility that the mammalian R-point is controlled by a

bistable mechanism [79–83].

By coupling single-cell experiments (measuring E2F

expression dynamics in individual cells using a destabilized

GFP reporter) with a simplified Rb-E2F model, we have

recently shown that the Rb-E2F pathway indeed functions as

a bistable switch [84]. This Rb-E2F bistable switch converts

graded and transient serum growth signals into a binary

(Off and On) and hysteretic E2F activity in individual cells

(figure 2). Once turned ‘On’ by strong growth simulation,

E2F remains On even when the serum simulation is dimin-

ished [84]. The all-or-none E2F activation directly underlies

the all-or-none transition between quiescence and proliferation.

At the single-cell level, the very cells that re-entered the cell

cycle in response to serum growth signals were those that

switched On E2F [84]. Importantly, the Rb-E2F bistable

switch is resettable: if the serum concentration drops below a

‘deactivation threshold’ (corresponding to a serum concen-

tration that is lower than the switch’s activation threshold;

see fig. 1 in [84]), the final E2F level eventually returns to the

monostable Off state after a time delay [84,85]. By creating

a wide hysteresis loop, the resettable Rb-E2F switch (in

the steady-state domain) drives the irreversible cell cycle

progression after the R-point (in the temporal domain) [85].

Using a computational search of all possible topologies

derived from a simplified Rb-E2F circuit, a 3-node module

(containing coarse-grained nodes EE, RP and MD, which cor-

respond to the E2F activators, the Rb family proteins and the

linear signalling cascade from Myc to CycD, respectively; figs

1 and 2 in [85]) has been identified as the minimal module

responsible for creating the Rb-E2F bistable switch. This

core module contains a mutual inhibition loop between Rb

and E2F and a feed-forward motif from Myc to E2F (figure

2). Experimental disruption of this core motif (by a small

chemical inhibitor of Cdk2) abolishes the bistability in the

Rb-E2F circuit [85].

The Rb-E2F bistable switch model provides a mechanistic

explanation for the R-point transition between quiescence

and proliferation. Interestingly, the historical TP and GC

models can be reconciled into the same Rb-E2F bistable

switch model: the simulated stochastic E2F activation based

on a stochastic Rb-E2F model with a given set of parameters

(e.g. parameters related to protein synthesis, turnover and

modification as well as the degree of stochasticity) can be

uniquely mapped to coarse-grained parameters defining the

TP and GC models, respectively [86]. Therefore, the stochastic

Rb-E2F model can be considered as a common mechanistic

basis for the seemingly different TP and GC models, each

of which holds true in describing particular aspects of the

cell cycle transition.
4. Activation threshold of the Rb-E2F switch
defines heterogeneous quiescent states

4.1. An analogue-to-digital convertor
Extracellular quiescence and growth signals are ‘analogue’ as

they can vary continuously in degrees and durations. By

contrast, the final quiescence–proliferation decision of each
individual cell is ‘digital’ (all or none) because otherwise

incomplete cell proliferation would disrupt genome integrity.

A bistable system provides a necessary analogue-to-digital

conversion mechanism allowing cells to respond to a complex

environment yet still have a discrete cell-fate output. Along

these lines, the Rb-E2F bistable switch is the only experimen-

tally verified bistable system in mammalian cell cycle entry; it

serves as a ‘core’ control system enabling the necessary ana-

logue-to-digital conversion in the cell. Consistent with this

notion, the few genes whose exogenous expression alone is

sufficient to drive quiescent cells into proliferation (e.g. Myc,

E2F, CycE) [51,87,88] are all part of the Rb-E2F bistable

switch (figure 2).

4.2. E2F activation threshold underlies heterogeneous
quiescent states

The E2F-Off state of the Rb-E2F bistable switch defines cellular

quiescence versus proliferation. Between the different quies-

cent states induced by different durations of serum

starvation (e.g. 2 versus 6 days), there is little difference in

the E2F-Off state (i.e. the basal E2F expression level); yet, the

serum strength required to turn On the Rb-E2F bistable

switch varies (Kwon & Yao 2014, unpublished data). We

define the minimum serum concentration required to turn

On the Rb-E2F bistable switch in over half of a cell population

within a time frame (e.g. 48 h) as the ‘E2F activation threshold’.

A deeper quiescent state (e.g. in longer starved cells) features a

higher E2F activation threshold (figure 3a), which can also be

illustrated from computer simulations based on the Rb-E2F

bistable switch model (figure 3b,c). Therefore, an emerging

model is that a unique E2F activation threshold (in terms of

minimal serum stimulation) defines each quiescent state.

This model also predicts that, given the same growth stimu-

lation, cells at a deeper quiescent state will exhibit a slower

speed of switching E2F from the Off to On state (figure 3b),

consistent with earlier observations that longer serum-starved

cells are slower to re-enter the cell cycle [14,15].

In our Rb-E2F bistable switch model, the E2F activation

threshold and the switch’s resettability (discussed in the pre-

vious section) are dynamic properties intrinsic to the Rb-E2F

pathway, determined by the balance between the pathway’s

activators (e.g. cyclin/Cdks) and inhibitors (e.g. Cdk inhibitors

and Rb family proteins). Cells under different environmental

conditions or with different cell types are likely to display differ-

ent profiles of these activators and inhibitors (e.g. in terms of

their abundance as well as their synthesis and turnover rates),

which will affect the parameter values in the Rb-E2F model

that determine the final E2F activation threshold. Future studies

are needed to further test the multi-state quiescence model and

its underlying control mechanisms (e.g. potentially on the gene

regulatory, epigenetic or metabolic level), as well as to character-

ize the Rb-E2F switch behaviours that are likely to be

qualitatively identical but quantitatively different in different set-

tings (e.g. in stem cells versus fibroblasts, in tissues in vivo versus

under culture conditions in vitro).

4.3. E2f activation threshold may define the reversibility
of quiescence

Under senescence and terminal differentiation, the expression

of Cdk inhibitors (e.g. p16 and p21) is greatly increased

[88–92], which raises the E2F activation threshold. When the
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E2F activation threshold increases above physiological serum

levels, the Rb-E2F switch becomes irreversible under normal

growth conditions. However, such ‘irreversible’ states can be

reverted by decreasing the E2F activation threshold, which

can be accomplished by reducing the high level of Cdk inhibi-

tors [55] or their activators, such as p53 and oncogenic Ras [93],

or by the forced expression of exogenous cyclin/Cdks [94].

Therefore, an E2F activation threshold within the physiological

range is likely to distinguish reversible quiescent states from

irreversibly arrested non-proliferating states, such as senescence

and terminal differentiation.
5. Other quiescence regulators
Besides the Rb-E2F pathway, several other cellular pathways

have been reported to regulate cellular quiescence and the

quiescence–proliferation transition. Such quiescence regulators

include Notch-HES1, p53, and stress and metabolic response

pathways, as well as autophagy, microRNA (miRNA) and epi-

genetic mechanisms. These quiescence regulators crosstalk

with the Rb-E2F pathway: some directly impinge on the

Rb-E2F pathway and affect its bistable switch dynamics (and

thus the final E2F activation threshold); some are regulated
by the Rb-E2F bistable switch and serve as its ‘effectors’ to

regulate cellular quiescence.

5.1. Notch-HES1 pathway
The Notch signalling pathway is an important regulator in

tissue maintenance and regeneration during development

[95]. Notch is also involved in the regulation of cellular quies-

cence through its effector proteins, transcriptional regulators

RBPJ and HES1. The deletion of RBPJ leads to spontaneous

cell cycle re-entry and eventually the depletion of quiescent

muscle stem cells [96,97]. The expression of HES1 is upregu-

lated in quiescent fibroblasts, but not in the same cell type

that undergoes cell cycle arrest by ectopic p21 [3]. HES1

has been shown to be required for maintaining the reversible

quiescent states by preventing premature senescence and

differentiation [7,98]. Interestingly, HES1 is a transcriptional

repressor of several key players in the Rb-E2F pathway,

including E2F1 [99], p21 [100] and p27 [101].

5.2. P53 pathway
P53 is a master regulator of many cellular responses, most

notably DNA damage response and apoptosis. P53 is
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important for quiescence maintenance of human fibroblasts

and HSCs; p53 disruption can lead to quiescence exit in

these cells [102,103]. The role of p53 in quiescence mainten-

ance may involve its target genes, Gfi-1 and Necdin

[103,104], and such a role is negatively regulated by the

transcription factor MEF/ELF4 [105]. Notably, p53 activates

p21, a Cdk inhibitor and critical component of the

Rb-E2F pathway.

5.3. Stress and metabolic response pathways
As quiescent cells may stay in the non-proliferating state for a

prolonged time under suboptimal conditions, they need to

cope with accumulated cellular stresses and metabolic

changes. Cellular activities such as those of the FOXO

[106,107] and ATM-BID [108] pathways protect quiescent

cells from the oxidative stress caused by the accumulation

of reactive oxygen species (ROS); depletion of these cellular

activities leads to quiescence exit in HSCs and an increase

in their proliferation and apoptosis. Quiescent cells often

exhibit low metabolic activities characterized by a decrease

in glucose uptake and glycolysis, reduced translation rates,

as well as reduced PI3K and mTOR pathway activities [9].

The PI3K-Akt pathway crosstalks with the Rb-E2F pathway

by inhibiting p21 activity through phosphorylation

[109,110]. Similarly, the deletion of HIF1a [111] (involved in

hypoxia regulation), LKB1 [112–114] (a regulator of AMPK

that is an mTOR and FOXO pathway target) and negative

regulators of mTOR (such as Fbxw7 [115], PTEN [116,117],

PML [118] and TSC [119]) leads to the depletion of HSCs,

suggesting the importance of metabolic response pathways

in maintaining cell quiescence. Interestingly, E2F was recently

found acting as a regulatory switch coordinating proliferation

and metabolic pathways by repressing key genes involved in

oxidative metabolism [120].

5.4. Autophagy
Quiescent cells are associated with activation of autophagy

pathways [121]. Autophagy is a process of ‘self-eating’ that

recycles organelles and removes damaged components

through a lysosomal degradation pathway. Autophagy pro-

vides nutrients for cell survival under suboptimal growth

conditions [122–124] and is essential for maintaining HSC

quiescence [125]. Autophagy is actively repressed by mTOR

[126–128] and is regulated by the Rb-E2F pathway [129,130].

5.5. MicroRNAs
miRNAs have also been implicated in the regulation of quies-

cence at the post-translational level. The miRNA profiles of

quiescent stem cells and fibroblasts are different from their

proliferative or differentiated progenies [131–134]. Several

miRNAs, such as miR-126 [135] and miR-489 [131], are

important for maintaining quiescent stem cells, while let-7,

miR-125 and miR-29 regulate key aspects of fibroblast quies-

cence [134]. Knockout of Dicer, the miRNA processing factor,

leads to quiescence exit of muscle stem cells [131]. There is

also recent evidence showing that cellular quiescence is regu-

lated by mechanisms that alter the length of the 3’

untranslated region (UTR) of mRNA and thus the potential

miRNA susceptibility [1,136–138]. The miRNA pathways

crosstalk with the Rb-E2F pathway: for example, miR-221

and miR-222 that regulate the quiescence–proliferation
transition are known to target Cdk inhibitors p27 and

p57 [139,140]; the let-7 family of miRNAs antagonizes

Myc [141]; the miR-17–92 cluster that is induced by Myc

negatively regulates E2F1 [142–145].
5.6. Epigenetic regulators
Epigenetic regulations including DNA methylation and

histone modifications modify the chromatin states (e.g. accessi-

ble or repressed) and the corresponding cellular gene

expressions [146–148]. Quiescence may be associated with a

unique epigenetic state and chromatin structure that help in

maintaining the reversibility of quiescence against terminal

differentiation or senescence [98,149]. For example, polycomb

group genes EZH1 and EZH2—methyltransferases for histone

H3 lysine 27 (H3K27)—are essential for the maintenance

of quiescent haematopoietic and hair follicle stem cells

[150–152]; specific methylation states of histone H4 lysine 20

(H4K20me2 and H4K20me3) are found to promote chromatin

compaction and quiescence entry in primary human fibroblasts

[153]. The Rb-E2F pathway also plays an important role in epi-

genetic modifications [154]. For example, the RB/E2F family

proteins interact with various chromatin-modifying complexes

that are involved in stable transcription repressions [36,39–42].

The E2F proteins also interact with HCF-1, which recruits the

MLL family of histone H3 lysine 4 (H3K4) methyltransferases

to induce transcriptional activation [155,156].
6. Conclusion
Cellular quiescence and its reversible transition into prolifer-

ation in response to environmental signals are critical to the

physiological functions of many important cell types in our

body (e.g. stem and progenitor cells). A model is emerging

from recent studies that the Rb-E2F bistable switch serves as

a core analogue-to-digital converter between environmental

signals and quiescence–proliferation decisions. Meanwhile,

other quiescence regulatory pathways crosstalk with the Rb-

E2F bistable switch: some modulate the activation/inhibition

balance of the Rb-E2F switch and thus the final E2F activation

threshold, and others are regulated by the Rb-E2F switch and

serve as its ‘effectors’ to regulate cellular quiescence. The cross-

talk between the Rb-E2F bistable switch and these quiescence

regulatory pathways (and possibly between these pathways

themselves) forms a gene network. This gene network inte-

grates environmental signals into the final control of cellular

quiescence and its heterogeneous, reversible state. Integrating

quantitative modelling and detailed experimentation (e.g.

single-cell measurements) holds the promise to dissect and

reconstruct the quiescence regulatory gene network. Elucidat-

ing this quiescence regulatory network is fundamental to

understanding the accurate control of cellular quiescence.

This new knowledge could profoundly impact therapeutic

strategies by suggesting how to re-establish normal quiescent

states in a variety of hyper- and hypo-proliferative diseases,

such as cancer and ageing.
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