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Multi-site enzymes, defined as where multiple substrate molecules can bind

simultaneously to the same enzyme molecule, play a key role in a number of

biological networks, with the Escherichia coli protease ClpXP a well-studied

example. These enzymes can form a low latency ‘waiting line’ of substrate

to the enzyme’s catalytic core, such that the enzyme molecule can continue

to collect substrate even when the catalytic core is occupied. To understand

multi-site enzyme kinetics, we study a discrete stochastic model that includes a

single catalytic core fed by a fixed number of substrate binding sites. A natural

queueing systems analogy is found to provide substantial insight into the

dynamics of the model. From this, we derive exact results for the probability

distribution of the enzyme configuration and for the distribution of substrate

departure times in the case of identical but distinguishable classes of substrate

molecules. Comments are also provided for the case when different classes of

substrate molecules are not processed identically.
1. Introduction
The study of rate laws describing enzyme kinetics has a long history, with early

representative works being that of Michaelis and Menten [1] and Monod. Analy-

sis of these enzymatic bottlenecks is often assisted by coarse-graining the enzyme

into a discrete set of states, e.g. a traditional two-state Michaelis–Menten approxi-

mation with distinct states corresponding to enzyme bound or unbound to

substrate. However, even simple deterministic Michaelis–Menten models can

be difficult to properly analyse without some form of approximation [2–4], and

this difficulty is compounded when stochastic dynamics are also considered

[5–12]. Given that the majority of cellular processes are governed by enzymatic

reactions, progress in the development of intuitive but powerful mathematical

approaches to enzymatic kinetics immediately impacts our understanding of

many biological networks.

One recent approach to enzyme–substrate kinetics has been queueing theory.

Queueing theory, which treats the routing of individual ‘customers’ between

different ‘stations’ of ‘servers’, was historically developed for telecommunication

networks and service centres [13]. A cursory glance over the queueing theory lit-

erature suggests that there are several notable strengths of a potential queueing

theory approach to enzyme kinetics. First, queueing theory’s fundamental

assumption of an underlying discrete and stochastic model leads to a focus on

results that are stochastic in origin, which meshes nicely with the realization

that natural cellular networks are often noisy [14]. Second, queueing theory’s

assumption of finite bandwidth for the processing of customers by servers is

entirely analogous to the finite bandwidth of reactions catalysed by enzyme.

Finally, the heavy influence of queueing theory in a variety of disciplines, e.g.

operations research, suggests that some biologically motivated questions tied to

queueing may already have been answered in a different context. Pursuit of

the queueing approach to biological problems has indeed been fruitful thus

far, leading to progress in gene networks [15–19], metabolic networks [20,21],

degradation pathways [22], signalling [23,24] and translational cross talk [25].

In this article, we extend a prior investigation [22] of ClpXP proteolytic kinetics.

ClpXP is a well-studied protease in Escherichia coli that is responsible for degrading

mistranslated proteins and (in healthy conditions) certain stress response factors
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Figure 1. (a) A detailed model for multi-site enzymatic kinetics, e.g. for
ClpXP degradation, with N binding sites for substrate (N ¼ 6 in the
figure). Free substrate of type i is recruited to each unoccupied site of the
protease with rate hi. Substrate bound to these sites can be passed along
to an unoccupied catalytic core at rate j, which we typically assume is
fast. Substrate bound to the catalytic core is processed, e.g. degraded,
with rate m. (b) Since the enzyme treats substrates of different types equally,
by assumption, the enzyme’s behaviour without regard to substrate class is
that of a finite capacity queue feeding into another single unit queue. Then,
the binding propensity of substrate becomes a function h . (N 2 M ), where
M is the number of occupied binding sites. (c) If bound substrate rapidly fills
an empty catalytic core (j large), then the system reduces to a simple finite
capacity queue with a single server. (d ) For reference, a Michaelis – Menten
enzyme (without substrate unbinding) can also be modelled as a queue with
unit capacity. (Online version in colour.)
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[26–28]. ClpXP’s function is greatly enhanced by the presence

of multiple binding sites for substrate via interaction with a

molecular chaperone, SspB [29–35]. Absence or dysfunction

of the SspB molecule is strongly associated with reduced sub-

strate affinity, since SspB bound to ClpX binding sites forms a

‘waiting line’ of substrate for the ClpXP catalytic core, thus pre-

venting the catalytic core of ClpXP from being unoccupied by

substrate for any appreciable duration of time. An appropriate

queueing analogy for a single ClpXP molecule is then a server

(catalytic core) that selects customers (protein substrate) at

random from a finite capacity waiting line (SspB–substrate

complex associated with ClpX binding sites) and processes

(degrades) the customers (substrate). In the following, we ana-

lyse this model in some detail, and we argue that the multi-site

nature of the enzyme drives the model into a regime well

approximated by traditional queueing models. It is also worth

mentioning that our investigation of multi-site enzyme kinetics

is also multi-class, i.e. exactly treating the dynamics of multi-

ple types of substrate competing for the same enzyme. This

analysis is assisted by a new result, independent departure sym-

metry, which generalizes results originally derived for quasi-

reversible queues. These multi-class results rely on the assump-

tion that different classes of substrate are distinguishable but

otherwise identical, but we will comment on why we anticipate

that our results are not particularly sensitive to weakly breaking

this assumption.

The coarse-grained models used to derive these results are

sufficiently general that a number of other multi-site enzymes,

e.g. AAAþ proteases other than ClpXP [36], may have similar

waiting line behaviour. For example, the protease ClpAP uses

the chaperone ClpS in much the same way ClpXP uses the cha-

perone SspB. Truly, given the many advantages of a multi-site

motif, we anticipate our results will generalize to a wide array

of enzymes in native and synthetic biological networks.

Despite this, we will typically refer only to ClpXP when dis-

cussing results from our model, since it is one of the best

understood multi-site enzymes.

In line with queueing theory [13], many of our results per-

tain to statistics of the ‘departure’ times of substrate from the

enzyme, i.e. the times when substrate has been processed and

expelled from the catalytic core. Understanding the statistics

of departures is a natural way to characterize the behaviour of

such discrete stochastic processes, e.g. the departures of a tran-

scription process can be used to investigate burstiness of mRNA

production [37]. We find that our multi-site enzyme models are

far from bursty, with the departure process often being well rep-

resented by a Poisson process (independent exponential times

between departures), which incidentally is the same result

found in a variety of classical queueing networks [38].

The article is organized in the following way. In §2, a dis-

crete stochastic model for multi-site enzyme kinetics is

presented. Steady-state analysis in the case of a single class of

substrate appears in §3, while the multi-class case is treated

in §4. Section 5 investigates the influence of time-dependent

substrate levels on single-class and multi-class settings.

Concluding comments appear in §6.
2. Stochastic model definition
We wish to study a coarse-grained model for ClpXP (and simi-

lar enzymes), with a specific emphasis on multi-site dynamics,

where multiple substrate molecules can bind and wait while
another substrate molecule is being processed by the catalytic

core. Illustrated in figure 1a, our queueing-inspired model for

proteolytic degradation by ClpXP is chosen to be a system

with N binding sites for substrate (the waiting line), a single cat-

alytic core (the server) and R total species (classes) of substrate.

When discussing ClpXP specifically, a value N ¼ 6 would be

reasonable based on the sixfold symmetry of ClpX, though

the situation is made slightly more complex owing to SspB–

substrate complexes typically binding to ClpXP as dimers

[34] (we do not include this feature of ClpXP dynamics in the

model). Unoccupied binding sites are occupied by substrate

of class i with rate hi(1 � i � R). An occupied binding site

can deliver substrate of class i to be processed by an unoccu-

pied catalytic core with rate ji, and then the occupied

catalytic core processes substrate of class i with rate mi. For

reference, an analogous Michaelis–Menten system would

only model the catalytic core.

A set of reactions for the model are then

Xn �!
hi XnSi, (2:1)

XnSi þ Y �!ji Xn þ YSi (2:2)

and YSi �!
mi Y, (2:3)

where i is a label for different kinds of substrate, Xn is the

unoccupied nth binding site (1 � n � N ), XnSi is the nth bind-

ing site occupied by substrate type i, Y is an unoccupied

catalytic core and YSi is the catalytic core occupied by sub-

strate type i. The rate constants ji, and mi for passing and

degrading substrate, respectively, can depend on substrate

type i, but we set them to constants (mi ¼ m, ji ¼ j). This sim-

plification in effect assumes that substrates are treated

identically once bound, which will be important in our

multi-class analysis. Furthermore, we suppose that j!1,

i.e. that substrate is rapidly passed from occupied binding

sites to an unoccupied catalytic site.



rsfs.royalsocietypublishing.org
Interface

Focus
4:20130077

3
Free substrate is not treated explicitly in the analysis, but,

instead, the rate constants hi subsume the influence of free

substrate concentration on the binding rate. Thus, we make a

quasi-steady-state (Michaelis–Menten-like) approximation

for the enzyme [10]. In the limit of large substrate count,

where the concentration of substrate does not change appreci-

ably on the time scale of enzyme kinetics, we predict that

this approximation will be valid. It is worth noting that

simpler models for multi-class enzyme kinetics have already

been analysed in detail outside of the quasi-steady-state

assumption [22], in which case free substrate can exhibit

strongly correlated behaviour.

Finally, we neglect premature unbinding of substrate

from the enzyme. This approximation is motivated by a

large effective affinity of substrate to enzyme, e.g. owing to

cooperative binding of the chaperone SspB. In the queueing

interpretation, this is the same as supposing that customers

do not renege, i.e. walk away from the service station

owing to periods of inactivity. Refinement of the model to

include the effects of substrate unbinding is straightforward,

though it complicates analysis of the model.

Subsequent sections make use of the fact that, when analytic

investigation is not easily achievable, the system represented

by equations (2.1)–(2.3) maps precisely to a corresponding

chemical master equation, which can be analysed numerically

to find the probability for any system configuration [39]. For

R substrate types, there are (R þ 1)Nþ1 potential system con-

figurations. Though the system size grows exponentially with

N, the system with two classes of substrate and six binding

sites has only 2187 probabilities to keep track of at any point

in time, and if we also keep track of the last two departures

(two additional virtual sites in the system occupied by the

two substrates previously processed by the catalytic core), the

number of probabilities increases to 8748. A modern computer

can readily handle systems of these sizes, especially given the

fact that the matrix governing evolution of this system is

sparse. We use custom Python programs importing the SciPy

package to perform these calculations [40].
3. Steady-state analysis for a single class
of substrate

We first consider the dynamics of a multi-site enzyme in the case

of a single class of substrate. This treatment reveals some of the

most interesting properties of multi-site enzymes, including

the ability for the binding sites of the enzyme to dramatically

(cooperatively) increase the apparent affinity of the enzyme.

Our analysis of a single class of substrate is applicable to several

situations, including (i) when the enzyme is specific to a single

class of substrate, (ii) when several very similar substrate classes

are labelled as a single substrate class, and (iii) when only a

single substrate class is sufficiently abundant to be relevant.

The last two situations are relevant to ClpXP dynamics, since

ClpXP generally degrades a variety of different substrates.

3.1. Steady-state distribution
At steady state, a multi-site enzyme is almost never fully

depleted of substrate except at very low enzyme count, which

implies that the enzyme is almost always busy processing

bound substrate. We derive this property below by calculating

the steady-state distribution of the enzyme configuration.
Define the occupation number Z, with 0 � Z � N þ 1,

such that the enzyme is devoid of substrate when Z ¼ 0,

while the enzyme possesses an occupied catalytic core and

M ¼ Z 2 1 occupied binding sites for larger Z. Thus, the for-

mula M ¼max(0, Z 2 1) is a uniformly valid expression for

the number of occupied binding sites. Also define the total

rate of substrate binding h ;
P

ihi. The dynamics for Z can

then be specified by the reactions

Z! Zþ 1, propensity h(N �M) (3:1)

and

Z! Z� 1, propensity mQ(Z), (3:2)

where we specify the propensities (i.e. excluding mass action

terms), and where Q(Z) is a Heaviside function (Q(Z ) ¼ 1 for

Z . 0, and Q(Z ) ¼ 0 otherwise).

If Ps(z) is the steady-state distribution Pr(Z ¼ z, t ¼1),

then an elementary calculation for the one-dimensional

master equation shows that the steady state is achieved by

the zero net current (detailed balance) condition:

h (N �max(0, z� 1))Ps(z) ¼ mPs(zþ 1), 0 � z � N: (3:3)

This recursion relationship is simpler when expressed in terms

of the complementary variable ~z ¼ N þ 1� z, i.e. the number

of unoccupied sites. The recursion relationship in the new

variable corresponds to the steady-state distribution for a

complementary system with constant production rate m and

degradation rate (per substrate) h, excepting for a correction

to the dynamics when ~z ¼ N þ 1. It is well known that this

complementary system should have a distribution similar to

a Poisson distribution, and, with this inspiration, it is easy

to find the steady-state distribution in the original variable

Ps(z) ¼ N�1 lNþ1�z

(N þ 1� z)!
, z . 0 (3:4)

and

Ps(0) ¼ N�1 lNþ1

N �N!
, (3:5)

with l ; m/h, and N a normalization factor such thatPNþ1
z¼0 Ps(z) ¼ 1. N can be calculated numerically, but it also

can be expressed in terms of incomplete gamma functions.

One limiting case is when l� N, i.e. m� hN. This limit

corresponds to the saturated regime, where the probability

for the enzyme to be totally unoccupied (Ps(0)) is small.

Since the distribution is then approximately a Poisson distri-

bution (in the variable ~z), the normalization constant can be

accurately approximated by the usual expression N � el.

The important quantity Ps(0) is then estimated to be

Ps(0) � e�l lNþ1

N �N!
, l� N: (3:6)

This value picks up a cooperativity of N þ 1 with respect to the

smallness parameter l. Thus, multi-site enzymes can drasti-

cally increase their effective substrate affinity by leveraging a

‘waiting line’ for substrate. Figure 2a (large hN) illustrates

this effect. In its native context, ClpXP’s multi-site nature

allows it to efficiently degrade even small concentrations of

potentially harmful prematurely terminated proteins.

Multi-site enzymes lose their effectiveness when l� N,

i.e. m� hN. In this case, the enzyme is mostly unoccupied,

and the system tends to have at most one substrate

bound, i.e. Z [ {0, 1}. The situation is then similar to the
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Figure 2. (a) For m ¼ 1 and j!1, the steady-state probability Ps(0) for the multi-site enzyme to be unoccupied as a function of hN is presented (see
equation (3.5)). A strong cooperative effect with increasing N is observed for large hN, but this effect is lost for small hN. (b) Integrated square deviation of
the cumulative FDT distribution from a cumulative exponential distribution with the same mean departure time (see equations (3.14) and (3.15)). Maximal deviation
from a perfect exponential is observed to occur near hN ¼ m, which is where a broad distribution for Ps(z ) is expected. Increasing the number of binding sites N
decreases both typical and maximal deviation. Deviation from the ideal Poisson result tends to be small for all values of hN (compare with a ‘large’ deviation of 1
when m ¼ 1).
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Michaelis–Menten case (figure 1d). We can then estimate

the probability

Ps(0) � l

lþN
¼ m

mþ hN
, l� N: (3:7)

Thus, enzymes with different N parameter values but common

m parameter values act similarly for equal effective substrate

binding rates hN. Figure 2a (small hN) illustrates this effect.

3.2. Enzymatic velocity
The steady-state velocity Vcat of the enzyme, i.e. the number of

substrates processed per unit time, is m times the probability

that a substrate is occupying the catalytic core

Vcat ¼ m
XNþ1

z¼1

Ps(z) ¼ m (1� Ps(0)), (3:8)

or approximately

Vcat � m 1� e�l lNþ1

N �N!

� �
, l� N (3:9)

and

Vcat �
mN

lþN
¼ mhN

mþ hN
, l� N, (3:10)

leading as before to highly cooperative behaviour for m� hN,

and non-cooperative (hyperbolic) behaviour for m� hN. It is

worth reiterating that the strongly unsaturated case m� hN
leads to kinetics of the usual Michaelis–Menten form.

3.3. First departure time and next departure time
Knowledge of the functional form for the steady-state vel-

ocity Vcat would be largely sufficient for a deterministic

approximation, but the stochastic nature of our model begs

for an analysis that quantifies the probabilistic nature of enzy-

matic activity (this is a key feature of queueing models).

Specifically, we desire to understand the stochastic process

for the duration of time between successful enzymatic reac-

tions, or, in queueing parlance, the departure process. A

convenient measurement in this regard is that of the first

departure time (FDT) T1, which is the duration of time to

the next departure at steady state. A higher order statistic is
the next departure time (NDT) DT ¼ T2 2 T1, which is the

interval of time between the first and the second observed

departures at steady state. When the steady-state departure

process is a Poisson process, as occurs for a wide variety of

queueing networks at steady state [41–43], then knowledge

of the mean FDT or NDT is sufficient to define the depar-

ture process. For a renewal process, the NDT distribution is

sufficient to define the dynamics of the system [44–46].

Consider first the cumulative probability function

PFDT(t1) ; Pr(T1 . t1) for the FDT. Though this distribution

can be difficult to obtain in general, the structure of our

multi-site enzyme allows for a closed form solution in the

limit j! 1. If the enzyme is initially in a state Z � 1, such

that the catalytic core is occupied by substrate, then a single

degradation reaction (rate m) is sufficient to produce a

departure. For initial state Z ¼ 0, the FDT is instead the

convolution of binding at least one substrate (rate hN since

Z ¼ 0) followed by degradation (rate m). A straightforward

calculation reveals the conditional probabilities

Pr(T1 . t1jZ ¼ 0, t ¼ 0) ¼ hNe�mt1 � me�hN t1

hN � m
(3:11)

and

Pr(T1 . t1jZ � 1, t ¼ 0) ¼ e�mt1 : (3:12)

The full FDT distribution is then the weighted sum

PFDT(t1) ¼ Pr(T1 . t1)

¼ e�mt1 (1� Ps(0))

þ hNe�mt1 � me�hN t1

hN � m

� �
Ps(0), (3:13)

with Ps(0) obtained from equation (3.5).

As already mentioned, the departure process for a wide

variety of queueing networks is Poisson, which has an

exponential distribution, Pr(T1 .t1) ¼ e�rt1 , for some r . 0.

Our multi-site enzyme model does not generally satisfy the

conditions for this simple departure distribution; however,

the cumulative distribution equation (3.13) can approximate

an exponential function arbitrarily well depending on the

value of l ¼ m/h. This can be shown by calculating the integral

squared deviation between the FDT cumulative distribution
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Figure 3. The independent departure symmetry can be intuitively under-
stood. Suppose that we package boxes with either a red or blue ball
according to fixed probabilities, e.g. a 40% chance of choosing a red ball
(depicted as red/blue boxes). We place these boxes into a system (cloud
shape) that can move the boxes around (shuffling), remove boxes from
the system (rejection) or eject a box to be observed (selection). As long
as all of these processes do not depend on the hidden information within
the boxes, then since all boxes are independent but statistically identical,
these actions do not entangle the probabilities of the boxes. Thus, upon
peeking inside the selected box (realization), the colour of the ball inside
will be independently distributed with the probabilities of inserted boxes.
(Online version in colour.)
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and a cumulative exponential distribution with the same mean

departure time (r21 ¼ (1/m) þ (1/(hN))Ps(0)), which after a

straightforward calculation is

DFDT2 ¼
ð1

0

(PFDT(t1)� e�rt1 )2 dt1 (3:14)

¼ (hN þ (Ps(0)� 1)m)2 mPs(0)2

2hN (2hN þ Ps(0)m)(hN þ (Ps(0)þ 1)m)(hN þ m)
: (3:15)

Equation (3.15) approaches zero for both l� N andl� N
(figure 2b), suggesting these limits recover aspects of a Poisson

departure process. The saturated regime, where Ps(0) is very

small owing to cooperative effects, can lead to a particularly

good approximation of the departure process by a Poisson pro-

cess. An intuitive explanation for this is that if the catalytic core

is always occupied, then departures occur with a constant rate

m, thus generating a Poisson process.

It is an interesting fact for our multi-site enzyme model

that the NDT distribution Pr(DT . Dt), describing the dur-

ation of time between the first and the second departures

from a steady-state condition, is precisely the same functional

form (swapping t1 for Dt) as the FDT distribution. A sketch

for this calculation is relegated to appendix A. One can

show in an entirely analogous manner that a queue with con-

stant arrival rate and constant service rate has this same

property [13], though this queue also satisfies this identity

for higher order departures, while our multi-site model gen-

erally does not. This deviation from the queueing prediction

is related to arrivals (substrate binding events) in our system

not being Poisson, unlike the queueing case.
4. Steady-state analysis for multiple identical
but distinguishable classes of substrate

Suppose that multiple classes of substrate are handled identi-

cally by the enzyme once bound. Then, as we will show, the

analysis of the model at steady state in the case of multiple dis-

tinguishable but otherwise identical substrates follows almost

immediately from the single-class case. In the biological con-

text, this analysis is an idealization of the case where several

similar classes of substrate compete for common processing,

e.g. when fluorescent proteins YFP and CFP compete for degra-

dation by ClpXP. We do not anticipate that our results are

fragile to weakly breaking our underlying assumptions, as

we briefly discuss in this section.

First note that since different classes of substrate are trea-

ted identically by the enzyme in our model, owing to ji ¼ j

and mi ¼ m being class-independent constants (see equations

(2.1)–(2.3)), the dynamics without regard to substrate class

are the same as in §3. Recovery of the substrate class infor-

mation from the single-class results is possible at steady

state owing to a symmetry preserved by the system, where

the class of each substrate within the system remains identi-

cally but independently distributed with respect to all other

substrate molecules in the system. Because the statistics for

a set of substrate molecules can be derived from a list of iden-

tical but independent random variables, we term this an

‘independent list symmetry’. Proof of this result can be

done in a manner entirely analogous to the proof in Mather

et al. [24]. We have included an intuitive explanation in

figure 3, with further comments in appendix B.
The probabilities for substrate class are entirely determined

by the rate at which each class arrives into the system. Define

the probabilities for arrivals of substrate class i

ri ;
hiPR
j¼1 hj

: (4:1)

These probabilities are normalized,
PR

i¼1 ri ¼ 1. Given that the

enzyme treats different classes identically, it can be shown that

independent list symmetry follows (perhaps after a short

transient) if each ri is constant in time. In principle, hi values

can then be time-dependent while keeping each ri constant in

time, but we only pursue steady-state results in this section.

The steady-state distribution can be written in the follow-

ing way. Define the random variable Q to be the state

descriptor of the system. The component Qn (with 0 � n � N )

describes the state of the catalytic site when n ¼ 0 and the

state of a particular binding site when n . 0. The value of Qn

is an integer in the range 0 . . . R, with Qn ¼ 0 indicating the

site does not contain substrate, and with Qn . 0 indicating

the class of substrate bound. Define a dependent random vari-

able M describing the occupancy, with Mn ¼ 0 if Qn ¼ 0, and

Mn ¼ 1 if Qn . 0. Thus, Mn ¼ Q(Qn). For simplicity, define

r0 ¼ 1, which can be interpreted as that there is only one

way to have an empty site. A system with independent list

symmetry then has the probability distribution

Pr(Q ¼ q) ¼ Pr({Mn ¼ Q(qn), n ¼ 0 . . . N})
YN
n¼0

rqn
: (4:2)

The term Pr(Mn ¼ Q(qn), n ¼ 0 . . . N) is precisely the prob-

ability distribution for substrate to be bound to certain sites

without regard to substrate class, which was explored pre-

viously in §3. The product Pnrqn then provides all the

information pertaining to substrate class. In short, equation

(4.2) corresponds to the class of each substrate for occupied

sites being independently but identically distributed con-

ditional on knowing which sites on the enzyme are occupied.

Another way to interpret equation (4.2) is that the indepen-

dent list distribution maximizes entropy of the distribution

given minimal constraints (appendix C). In short, the mean

probabilities ri provide all of the information relating to sub-

strate class, and there exists no additional information

on the substrate class for any particular site or sites in the

queueing system. We anticipate but do not prove that this
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optimization principle leads to robustness, such that sys-

tems weakly breaking our independence assumption should

have probability distributions close to maximal entropy dis-

tributions. Investigation of this hypothesis will be left for

future work.

Given the distribution in equation (4.2), many results

follow [22,24]. For example, it is easy to show that, for a definite

number of substrate molecules, the frequency of substrate

classes is multi-nomial. Now, we find that another significant

consequence of independent list symmetry is independent

departure symmetry. Intuitively, since the class of substrate

located on the catalytic core is always identically but indepen-

dently distributed relative to other substrate molecules, the

probability distribution describing the class of each departure

should also be independently distributed for each depar-

ture (appendix B). The full departure process can then be

described by the probability distribution for the departures

Pr(T1 . t1, Q1 ¼ q1; . . . ; Tm . tm, Qm ¼ qm)

¼ Pr(T1 . t1; . . . ; Tm . tm)
Ym
n¼1

rqn
, (4:3)

where Tn and Qn are the departure time and substrate class,

respectively, at the nth departure. The function Pr(T1 . t1; . . . ;

Tm . tm) encodes all of the information for the single substrate

class system (e.g. from §3.3), and Pnrqn encodes the multi-class

information.

We can compare equation (4.3) to classical results in

queueing theory. For example, in quasi-reversible multi-

class queueing networks [38,43,47,48], the departure process

is equivalent to the superposition of independent Poisson

processes for each substrate class. Quasi-reversibility then

implies exponentially distributed times between each sub-

sequent departure of a given class (or for all classes). The

result in equation (4.3) includes the quasi-reversible result

as a special case, but (4.3) can be much more general, allow-

ing potentially complex statistical dependence between the

times of different departures, but preserving independence

for the class of different departures.

Given that we previously found that departures in our

model are in a certain fashion well approximated by a Poisson

process with appropriate mean rate (recall the discussion in

§3.3), especially when m� hN, and given that we now find

independence of classes at each departure, then the departure

process for multiple substrates strongly resembles independent

Poisson processes for each class, as is found for many quasi-

reversible queueing systems. Apparently, the multi-site

nature of our model makes its departure process very much

like a classical queueing process, which greatly simplifies our

understanding of the model’s behaviour. This tantalizing

evidence begs for further enquiry but is left for future studies.
5. Time-dependent substrate binding rates
We can expect that the rates hi vary as a function of time in a real

system, e.g. owing to depletion of substrate through enzymatic

activity. The probability distribution for the enzyme configur-

ation in this case will not necessarily be well approximated by

quasi-steady-state results. A reasonable question to ask therefore

is how sensitive our multi-site enzymatic system is to fluctu-

ations in hi. We find numerically that multi-site enzymes tend

to buffer fluctuations and thus remain close to certain

quasi-steady-state assumptions, thus providing hope that the
behaviour of multi-site enzymes in biological networks can be

simplified using quasi-steady-state approaches.

Variation of the time-dependent rates hi(t) can occur in at

least two different ways. The simplest is in-phase variation,

such that the substrate probabilities ri from equation (4.1) are

constant in time. In this case, the independent list symmetry

can be maintained, and analysis of the single-class system

with time-dependent h(t) ¼
P

ihi(t) is sufficient to analyse

the full system. A central variable when studying the departure

process is the probability P(0, t) ; Pr(Z ¼ 0, t) for the enzyme

to be unoccupied at a given time t (see §3). Analytical treatment

of this situation is beyond the scope of this article, and so we

numerically investigate how variation of the input rate leads

to subsequent variation in the departure rate by measuring

the variation in P(0, t) owing to periodic variation of h(t). We

find that the multi-site structure leads to improved buffering

of fluctuations in the saturated regime (figure 4).

The alternative variation in the rates hi(t) is balanced vari-

ation, where h ¼
P

ihi(t) is constant, but each hi(t) can be

time dependent. The corresponding single-class version of

the multi-class system has constant binding rate h and

simply approaches steady state. Hence, all interesting non-

stationary phenomena after a short transient are multi-class

in origin. We attempt to distil such phenomena by measuring

statistical dependence between the substrate classes of the

first and the second most recent departures from the

enzyme. Correlation between these departures is presented

in figure 5. We find that, even in the worst case, deviations

from the zero correlation limits are small. Similar results

were found when we investigated the mutual information

between the substrate classes for subsequent departures.

The present investigation suggests that the multi-site struc-

ture of the enzyme may effectively buffer both single-class and

multi-class variation. Buffering in the single-class case is

indeed reasonable, since an enzyme with many binding sites

more rapidly becomes saturated (figure 2a). Buffering of fluctu-

ations in the multi-class case is more interesting, since

perturbation of the probability distribution can occur (in prin-

ciple) even for saturated systems. A full analysis of this

situation is beyond the scope of this article, but we attempt to

provide an explanation in the limit where h!1 and N is

very large. The system then requires a time greater than the natu-

ral time scale N/m to significantly affect the abundance of each

substrate class on the enzyme. Since this time scale is much

larger than the time scale 2/m to sample two departures, and

since the class of departures is directly determined by the rela-

tive class abundance on the binding sites, then the system may

remain in a quasi-steady state with respect to departures. Note

that this result does not necessarily imply that the system is in

quasi-steady state with respect to the instantaneous rates hi(t).
6. Discussion
Development of a coherent biological queueing theory is

ongoing, and many questions relating to its ultimate usefulness

remain unanswered. Among these questions is just how often

can a queueing formalism bring quantitative insight to a particu-

lar real biological system? In this article, we studied a model that

was motivated by the known properties of the ‘waiting line’

structure of the E. coli protease ClpXP and related proteases.

We found that not only does a waiting line structure lead to

a strong cooperative increase in the effective affinity of substrate
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to the enzyme, but the waiting line can also push the model

deeply into a queueing regime, where the stochastic process

describing the completion of enzymatic reactions at steady

state is very similar to the departure process for traditional

queueing models, i.e. Poisson processes. In the case of multiple

classes of substrate, an apparently new queueing-inspired

result, independent departure symmetry, was determined to

hold for the departure processes of a wide range of enzyme

models, even when traditional queueing theory does not

apply. Finally, we numerically investigated the response of

our enzyme to time-dependent perturbation, and we found pre-

liminary evidence that the waiting line structure can effectively

buffer the system from fluctuations.

Further investigation of multi-site enzyme kinetics is

certainly warranted for a number of reasons. Especially, a funda-

mental assumption in our analysis was that different classes of

substrate are treated identically by enzyme, i.e. ji and mi

did not depend on substrate class i. Breaking this assumption

can be expected to break the independent list symmetry and

independent departure symmetry discussed in this article,

which greatly complicates the analysis of the model. The situation

is not hopeless, however, as the theory for priority queues (pre-

emptive and non-preemptive) itself has a long history and may

assist in the analysis of enzymes with strong asymmetry in

their processing rates. Preliminary investigation suggests that
for these more general multi-site enzyme models in certain

parameter regimes, such as saturated regimes (large hi), the

resulting departure process may be sufficiently simple to analyse.

A proper stochastic analysis of the accuracy of the Michaelis–

Menten (quasi-steady-state) approximation for multi-site

enzymes would also be welcomed. For substrate count

sufficiently large, it is sensible that the quasi-steady-state

approximation is valid. However, for small free substrate

count, a number of details may have to be treated more care-

fully, e.g. competition for free substrate between enzymes,

and the diffusion-limited dynamics of substrate binding to

enzyme. Such details are outside the scope of this article, but

we anticipate that queueing theory will also offer insight into

this biophysical problem.
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Appendix A. Formalism for next departure
time calculation
Calculation of the NDT cumulative distribution Pr(DT . Dt)

can be done in the following way (see §3.3 for context).
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Define the joint probabilities Wn(t1) that the FDT (labelled T1)

exceeds t1, and that Z has a certain value or range of values

at t1

W0(t1) ¼ Pr(T1 . t1, Z(t1) ¼ 0), (A 1)

W1(t1) ¼ Pr(T1 . t1, Z(t1) ¼ 1) (A 2)

and W2(t1) ¼ Pr(T1 . t1, Z(t1) � 2): (A 3)

It is straightforward to show that these quantities satisfy

the ODEs

dW0

dt1
¼ �hN W0, (A 4)

dW1

dt1
¼ hN W0 � hN W1 � mW1 (A 5)

and
dW2

dt1
¼ hN W1 � mW2: (A 6)

Equations (A 4)–(A 6) can be solved iteratively, starting

from W0(t1). With these solutions, define the infinitesi-

mal joint probability dFn(t1) that the FDT is precisely in

a time dt1 about t1 and the state Z ¼ 0 (n ¼ 0) or Z � 1

(n ¼ 1) immediately after a departure (see, for example, [49]

for a discussion of revising probabilities after a particular

reaction). Then

dF0(t1) ¼ mW1(t1) dt1 (A 7)

and dF1(t1) ¼ mW2(t1) dt1: (A 8)

Supposing these infinitesimal probabilities, the density (in t1)

for the cumulative probability for the next departure to be a

time DT . Dt can be derived in the same way as equation

(3.13), leading to the equation

dPr(DT . Dt, T1 ¼ t1)

¼ e�mDt dF1(t1)

þ hNe�mDt � me�hN Dt

hN � m

� �
dF0(t1), (A 9)

which can be integrated over t1 to provide the full cumulative

distribution

PNDT(Dt) ¼
ð1

t1¼0

dPr(DT . Dt, T1 ¼ t1): (A 10)

Once this calculation has been done starting from the steady-state

distribution for the multi-site model in equations (2.1)–(2.3)

(with j! 1), it is straightforward to show that the single-class

FDT and NDT cumulative distributions have precisely the

same functional form, i.e.

PF DT(x) ¼ PN DT(x), x � 0, (A 11)

though we do not provide the details of this calculation here.
Appendix B. Independent list symmetry and
independent departure symmetry
We here provide a few additional details regarding the

independent list symmetry and independent departure

symmetry discussed in §4.

First, the preservation of independent list symmetry by a

variety of queueing-associated operations can be demon-

strated with minimal difficulty. Once this is done, it then is

a trivial matter to extend the argument to time-continuous

evolution [24]. We begin with an independent list probability
distribution (see equation (4.2))

Pr(Q ¼ q) ¼ Pr(M ¼ Q(q))
YN
n¼0

rqn
: (B 1)

One of the most fundamental operations in queueing theory is

the act of moving customers from location to location. Such

operations can rather generally be represented by a permu-

tation of the current state of the queueing network. Define an

operator Ŝ and associated matrix ŝ that perform a permutation

on the state vector,

Ŝ � Pr(Q ¼ q) ¼ Pr(Q ¼ ŝ � q) (B 2)

¼ Pr(M ¼ Q(̂s � q))
YN
n¼0

rpn
(B 3)

¼ Pr(M ¼ Q(̂s � q))
YN
n¼0

rqn
, (B 4)

where p ; ŝ � q is a permutation of q. Equation (B 4) consists of

two pieces, with Pr(M ¼ Q(̂s � q)) only relating to information

on substrate occupancy in the permuted state, and
Q

n rqn
con-

taining all information for the multi-class distribution.

Equation (B 4) is precisely the same form as the independent

list distribution in equation (B 1), and, thus, permutations of

enzyme sites preserve the independent list symmetry.

Another extremely important operation in queueing

theory is the addition of a new customer to the network.

Define an operation Âh that adds a customer to site h, with

an independently distributed random class determined

according to the probabilities ri in equation (4.1). Define an

associated matrix âhj that converts the value at index h to

value j. Then, operation of the arrival operator on an indepen-

dent list distribution leads to the following equations

(the notation Pr(Mh ¼ z) is shorthand for the probability

that M ¼Q(q) for all indices except h, where Mh ¼ z):

Âh � Pr(Q ¼ q) ¼ Q(qh) rqh

XR

j¼0

Pr(Q ¼ âhj �q) (B 5)

¼ Q(qh) rqh

XR

j¼0

Pr(M ¼ Q( âhj �q))
Y
n=h

rqn

 !
rj (B 6)

¼ Q(qh) rqh
Pr(Mh ¼ 1)

Y
n=h

rqn

 !XR

j¼1

rj

þQ(qh) rqh
Pr(Mh ¼ 0)

Y
n=h

rqn

 !
(B 7)

¼ Q(qh) Pr(Mh ¼ 1)
YN
n¼0

rqn
þQ(qh) Pr(Mh ¼ 0)

YN
n¼0

rqn
(B 8)

¼ Q(qh) (Pr(Mh ¼ 1)þ Pr(Mh ¼ 0))
YN
n¼0

rqn
, (B 9)

which is of the independent list form. Similarly for a deletion

operator B̂h that replaces site h with an unoccupied site

(d(Z) ¼ 1 if Z ¼ 0, and d(Z ) ¼ 0 otherwise)

B̂h � Pr(Q ¼ q) ¼ d(qh)
XR

j¼0

Pr(Q ¼ âhj �q) (B 10)

¼ d(qh)
XR

j¼0

Pr(M ¼ Q( âhj �q))
Y
n=h

rqn

 !
rj (B 11)

¼ d(qh) Pr(Mh ¼ 1)
Y
n=h

rqn

 ! XR

j¼1

rj



departure queue

mxhi

system

Figure 6. Independent departure symmetry follows from independent list
symmetry. Consider a system with independent list symmetry (within the
dashed box). Departures of single jobs from this system can be placed
into an auxiliary departure queue that keeps track of the last several depar-
tures. Independent list symmetry is also preserved in the departure queue,
owing to the arguments figure 3 and appendix B. Since this queue is an
independent list, it is reasonable to believe that the probabilistic process
for the substrate class of departures is a sequence of independently but iden-
tically distributed random variables. (Online version in colour.)
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þ d(qh) Pr(Mh ¼ 0)
Y
n=h

rqn

 !
(B 12)

¼ d(qh) Pr(Mh ¼ 1)
YN
n¼0

rqn
þ d(qh) Pr(Mh ¼ 0)

YN
n¼0

rqn
(B 13)

¼ d(qh) (Pr(Mh ¼ 1)þ Pr(Mh ¼ 0))
YN
n¼0

rqn
, (B 14)

which is again of the independent list form. Note that the

step between equations (B 12) and (B 13) used our convention

that r0 ¼ 1.

In this manner, it can be demonstrated that any compo-

sition of these shuffling, addition and removal operations

leads to another independent list. An approach similar to

that in Mather et al. [24] then extends the above results to

the time-continuous case.

Once independent list symmetry has been shown to exist for

a system, independent departures follow when the rule for

selecting departures is independent of the class of customers

in the system. To show this, we introduce an auxiliary queue

that keeps track of the last several departures (figure 6). The

method to prove independent list symmetry can then be

applied to the joint system (departure queue plus the original

system), since departures are simply customers moving from

the original system to the departure queue. Thus, the departure

queue maintains independent list symmetry, implying that

adjacent departures are statistically independent from one

another. We do not provide a full derivation here.
Appendix C. Independent list symmetry as a
consequence of maximum entropy
The independent list distributions discussed in appendix B

can be understood also through an entropy maximization

principle. Intuitively, independent list distributions are the

distributions of the greatest uncertainty conditional on

known mean abundance for each substrate class in the queue-

ing system. The fact that independent list distributions are in

this way optimal suggests that small perturbations of the

queueing system away from identical treatment of substrate

will generate steady-state distributions near maximum entropy

(deviation from maximum entropy is anticipated to be the

second order in the perturbation strength, by optimality). We
anticipate but do not prove then that maximum entropy distri-

butions thus robustly predict steady-state distributions for a

neighbourhood of systems approximated by identical but

distinguishable substrate systems.

To demonstrate that independent list distributions satisfy

maximum entropy, assume a queue (length N þ 1) of a simi-

lar type as the above, but only allow non-empty queue sites.

The more general case with both filled and empty sites is a

straightforward generalization. Label for shorthand P(q) ¼

Pr(Q ¼ q), and define mk(q) to be the count of substrate

class k in q, where k � 1 for this discussion. We can define

the entropy as the sum over all possible states of the queue

S ¼ �
X

q

P(q) ln P(q): (C 1)

We maximize the entropy subjected to several constraints.

First, we constrain the distribution to be normalized

1 ¼
X

q

P(q): (C 2)

We also constrain the mean count of each class k to be rk,

rk ¼
X

q

mk(q)

N

� �
P(q), (C 3)

where mk(q)/N can be interpreted as the probability of finding

a given substrate of class k in a particular queue q. It can be

shown as a consequence of the above two constraints that

1 ¼
X

k

rk, (C 4)

but this is not an independent constraint. Using the method of

Lagrange multipliers, we maximize a function

L ¼ Sþ l0

X
q

P(q)� 1

 !

þ
X

k

lk

X
q

mk(q)

N

� �
P(q)� rk

 !
, (C 5)

with respect to P(q) (for all possible q), l0, and each lk. Max-

imization of L with respect to P(q) provides

0 ¼ � ln P(q)� 1þ l0 þ
X

k

lkmk(q)

N
, (C 6)

which implies

P(q) ¼ exp (l0 � 1)þ
X

k

lk

N
mk(q)

" #
(C 7)

or

P(q) ¼ el0�1
Y

k

(elk=N)
mk(q)

: (C 8)

We can adjust the parameters l0 and each lk to fix this

probability distribution in the form

P(q) ¼
Y

k

r
mk(q)
k , (C 9)

which can be shown to satisfy the two constraints of our

maximization. Equation (C 9) can be rewritten as

P(q) ¼
YN
n¼0

rqn
, (C 10)

which is precisely the independent list distribution from before.
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The more general case of queueing systems with un-

occupied sites can be done by also constraining known
probabilities Pr(M ¼Q(q)) for occupancy (equation (B 1)). We

do not perform these steps here.
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