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Occam’s Razor in sensorimotor learning
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A large number of recent studies suggest that the sensorimotor system uses

probabilistic models to predict its environment and makes inferences about

unobserved variables in line with Bayesian statistics. One of the important fea-

tures of Bayesian statistics is Occam’s Razor—an inbuilt preference for simpler

models when comparing competing models that explain some observed data

equally well. Here, we test directly for Occam’s Razor in sensorimotor control.

We designed a sensorimotor task in which participants had to draw lines

through clouds of noisy samples of an unobserved curve generated by one of

two possible probabilistic models—a simple model with a large length scale,

leading to smooth curves, and a complex model with a short length scale, lead-

ing to more wiggly curves. In training trials, participants were informed about

the model that generated the stimulus so that they could learn the statistics of

each model. In probe trials, participants were then exposed to ambiguous

stimuli. In probe trials where the ambiguous stimulus could be fitted equally

well by both models, we found that participants showed a clear preference

for the simpler model. Moreover, we found that participants’ choice behaviour

was quantitatively consistent with Bayesian Occam’s Razor. We also show that

participants’ drawn trajectories were similar to samples from the Bayesian

predictive distribution over trajectories and significantly different from two

non-probabilistic heuristics. In two control experiments, we show that the pre-

ference of the simpler model cannot be simply explained by a difference in

physical effort or by a preference for curve smoothness. Our results suggest

that Occam’s Razor is a general behavioural principle already present during

sensorimotor processing.

1. Introduction
Prediction is a ubiquitous phenomenon in biological systems ranging from basic

motor control in animals to scientific hypothesis formation in humans [1–6].

A fundamental problem of such predictive systems is how to choose between mul-

tiple competing hypotheses that explain observed data equally well, but make

different predictions. A principled way to address this problem is Occam’s Razor,

suggesting that one should accept the simplest explanation requiring the fewest

assumptions. Mathematically, Occam’s Razor can be formalized within the frame-

work of Bayesian inference—known as Bayesian Occam’s Razor [7,8]. In Bayesian

inference, the simplicity or complexity of a model can be illustrated by the distri-

bution over different datasets the model can explain (figure 1a). A simple model

predicts only a small number of specific datasets, whereas a more flexible complex

model can explain a wider range of data. If a particular dataset can be explained by

both models, the more complex model has to assign lower probability to this data-

set than the simpler model, because it has to spread its probability mass over many

different datasets. This naturally embodies Occam’s Razor.

A generic example of Occam’s Razor is depicted in figure 1b. The black dots

represent a number of observed data points and the coloured curves represent

potential underlying processes. This generic depiction could show the flight

path of another animal obscured from vision or a scientist trying to find a law

underlying a few noisy measurements. When trying to fit the observed data

points with a curve, the difficulty lies in trading off the fitting error against the

complexity of the hypothesis [9]. A linear model might be simple, for example,

but will potentially incur large fitting errors. By contrast, a very flexible complex

model will achieve low or even zero fitting error, but carries the danger of
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Figure 1. Bayesian Occam’s Razor. (a) Schematic plot of evidence p(DjM) for a simple model M1 (blue, solid line) and a complex model M2 (red, dashed line) for
different data D, such as different random trajectories. Because both models have to spread unit probability mass over all compatible observations, the simpler
model M1 has a higher evidence in the overlapping region D�: (b) Exemplary polynomials of different degrees fitted to noisy observations (black dots) by minimizing
mean-squared error. The linear model ( purple line) is not flexible enough to capture the underlying function and results in a large fitting error. The most complex
model (red line) is too flexible and passes exactly through each data point, thus achieving a fitting error of zero. A reasonable fit should trade off the complexity of
the model against the goodness of fit. In this example, this is achieved by the quadratic model (blue line). (c) Standard trials. (i) Noisy observations are shown to
the participant as small red spheres. Start position (yellow sphere) and end position (larger red sphere) are noise-free. The yellow colour of the start sphere indicates
that the underlying trajectory was drawn from M1 with the long length scale. (ii) After completion of a standard trial, the underlying trajectory (red) is revealed and
shown along with the participants trajectory (yellow). (iii) Example of a standard trial where the short-length-scale model M2 was the generating model, as
indicated by the green colour of the start position and participants trajectory. Note that the noisy observations are exactly the same in all three panels and
the drawn trajectories were recorded from the same participant.
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overfitting, which will ultimately lead to poor prediction and

generalization. This trade-off between model fit and complex-

ity is considered automatically by Bayesian inference, because

determining the likelihood of a model requires consideration

of not only the best-fitting parameter setting of each model—

as this would virtually always lead to the preference of the

more flexible model—but the average goodness of fit over all

possible parameter settings of the model. A too complex

model that implies many badly fitting parameter settings

will therefore be disfavoured. Well-known approximations

of this Bayesian complexity trade-off include counting the

number of model parameters, as in the case of the Akaike

or the Bayesian information criterion [10,11], but this

simplification does not hold generally [8].

The goal of our study is to test whether Occam’s Razor can

be found in human sensorimotor control. This question is

especially compelling, as recent studies have found evidence

that the sensorimotor system integrates prior knowledge with

new incoming information to make inferences about unobser-

ved latent variables in a way that is consistent with Bayesian
statistics [12–21]. We designed a sensorimotor task similar to

the problem depicted in figure 1b, where participants were

exposed to noisy observations similar to the black dots and

had to guess and draw the curve they believed to be underlying

the observations. Participants were trained on two different

models: a simple model M1 generating smooth trajectories

and a complex model M2 that could also explain more wiggly

trajectories. They were then exposed to ambiguous stimuli to

see whether they showed a preference for the simpler model.
2. Methods overview
In our virtual reality experiment, participants were shown noisy

observation stimuli on a head-mounted display and could draw

regression trajectories through these observation clouds with a

manipulandum to indicate the presumed noiseless trajectory as

shown in figure 1c. In standard training trials, participants were

informed by a colour cue about the model (M1 or M2) that gener-

ated the observation stimulus so that they could learn the statistics
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of each model. Figure 1c(ii) shows an example of a simple model

M1 trajectory, where the red curve shows the underlying function

the participant is supposed to guess, and the yellow curve shows

the participant’s actually drawn trajectory. Figure 1c(iii) shows an

example of a complex model M2 trajectory that could explain the

same observations. Participants were instructed to try and match

the underlying functions as closely as possible. In standard train-

ing trials, the underlying curve (red) was revealed to participants

after they had drawn their guessed trajectory. In probe trials, sub-

jects were exposed to a stimulus of noisy observations sampled

from one of the two models, but without giving them any

additional cues or feedback about the model class or underlying

curve. Participants were instructed that the observations were

generated by one of the two models that they experienced

during the standard training trials and that they should match

the underlying curve as closely as possible, even though it was

never revealed to them in probe trials.

To synthetically generate M1 and M2 trajectories, we used

Gaussian Process (GP) models [22] that allow manipulating

the trajectory smoothness with a single length-scale parameter.

Simple M1 trajectories could therefore be characterized by a

long length scale l1, and complex M2 trajectories could be

characterized by a short length scale l2. To illustrate the com-

plexity of the two models, we generated artificial observation

datasets and ordered them according to the probability of the

datasets under model M1 (see [8] for a discussion on how to

illustrate the hypothetical plot on real data). In the simulation

results shown in electronic supplementary material, figure S1,

it can be seen that the simpler model M1 concentrates its prob-

ability mass on a smaller subset of data than model M2, which

corresponds in essence to the schematic plot in figure 1a.

Another advantage of using GP models (with a Gaussian like-

lihood model) is that the log-probability of the model under

uninformative prior can be expressed in closed form as

log p(Mijy)/� 1
2y

TS
�1
li

y
|fflfflfflfflffl{zfflfflfflfflffl}

goodness of fit

� 1
2 log jSli j
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

model complexity

, (2:1)

where Sli is a covariance matrix associated with model i and y

are the noisy observations. The first term is a data-driven good-

ness-of-fit error term. The second term is a data-independent

complexity penalization and instantiates Occam’s Razor. A

more complex model, which is a model with shorter length

scale l and therefore more flexibility, is always associated

with a higher complexity penalization. In physics, the complex-

ity term is a log partition function that measures the effective

number of possible states, which can also be interpreted in

terms of the complexity of decision-making processes [23,24].

The complexity penalization term also has an information-the-

oretic interpretation within the framework of minimum

description length [25] that specifies the minimum amount of

information needed in a message that encodes the recorded

data. The total message length L ¼ � log p(D, Mi) can be

decomposed into message length LD ¼ � log p(DjMi) needed

to record the data under a given model Mi and the message

length LM ¼ � log p(Mi) required to specify the model itself.

Complex models can encode data efficiently (low LD), but

require detailed model specifications (high LM). Bayesian

Occam’s Razor consists in finding the model Mi with the short-

est total message length L ¼ LD þ LM. It is important to note

that the strength of the Razor crucially depends on the available

class of models. For further details on the methods, see the elec-

tronic supplementary material.
3. Results
(a) Standard trials
Two example trajectories drawn by participants in standard

trials can be seen in figure 1c. In both examples, the partici-

pant was shown the same noisy stimulus, but they drew

different trajectories corresponding to the colour cue that

informed them about the model (i.e. whether to expect a

smooth or wiggly trajectory). To have a model-independent

check of whether participants were able to distinguish the

two model classes, we performed a Fourier analysis of their

trajectories and found that in model M2 trials trajectories

had significantly increased higher-frequency components in

their spectrum compared with model M1 trials (cf. electronic

supplementary material, figure S2). To further assess how

well participants were able to learn the two model classes,

we compared participants’ trajectories with three different

generation mechanisms: (i) samples from the posterior pre-

dictive GP with the correct length scale conditioned on the

actual observations, (ii) a straight line connecting the first

and last sample, and (iii) a connect-all trajectory that simply

connects all the shown samples with straight lines. In particu-

lar, we computed the length scales of participants’ trajectories

by maximizing the marginal likelihood of the predictive dis-

tribution and compared these fitted length scales against the

true model length scales. We found that the length scales

inferred from participants’ trajectories roughly match the true

length scale, especially in the later part of the experiment,

but, importantly, none of the non-probabilistic strategies—

the straight-line (ii) or connect-all strategy (iii)—could generate

length scales that were compatible with both trajectory types

(cf. electronic supplementary material, figure S4). The fact

that some of the estimated length scales were slightly lower

than the length scales of the stimuli, especially in the early

part of the experiment, does not necessarily imply that partici-

pants actually underestimated the length scale systematically,

but could also be a consequence of a slight estimation bias

towards lower length scales resulting from samples with

mixed length scales (both too high and too low) (cf. electronic

supplementary material, figure S5).

(b) Model choice in equal-error probe trials
To test for Occam’s Razor directly, we introduced equal-error

probe trials where the presented stimulus was ambiguous

and could be explained by both models equally well. In these

trials, the goodness-of-fit values in equation (2.1) were equal

under both models. Importantly, in these trials, a decision-

maker who does not care about model complexity would

choose between the two models with 50 : 50 probability. We

tested ambiguous stimuli with three different goodness-of-fit

values (small, medium, large). Figure 2a shows subjects’

actual choice behaviour in these trials. Subjects’ choice prob-

abilities were obtained by classifying their drawn trajectories

into the two model classes. For all three error levels, we

found that subjects significantly preferred the simpler model

M1 ( p , 0.001, sign test against median of 0.5).

An alternative explanation for the preference for the sim-

pler model could be the lower physical effort of drawing a

smooth trajectory as opposed to a wiggly one. To control for

this effect, we designed a control experiment in which partici-

pants did not draw the trajectory, but they clicked mouse

buttons to indicate the model class. We randomly assigned
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Figure 2. (a,d) Occam’s Razor observed in the experiment. The plots show the choice probability for the simple model M1 when presented with a stimulus that has
equal goodness of fit for both models. Each bar corresponds to the choice behaviour of one participant in a particular error condition—error bars show the 95% CI.
(a) Results for the group that performed the drawing session first and then the clicking session. (d ) Results for the clicking first, then drawing group. Both groups
show a clear bias towards the simpler model M1. (b,c,e,f ) Pooled group choice probabilities. Circles represent individual participants median choice probability, the
thick line (dash-dotted in the first session and dotted in the second session) shows the median using pooled data of all participants along with 95% CIs. The dashed
black line illustrates the ideal case, where theoretical choice probabilities and observed choice behaviour match exactly. (b,c) Results for the group that performed the
drawing session first. (e,f ) Results for the group that performed the clicking session first. The individually fitted choice probabilities are shown in the electronic
supplementary material, figure S6.
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subjects into two groups, one of them performing the drawing
session before the clicking session—and the second one per-

forming the two sessions in reverse order. In terms of the

observed choice behaviour in ambiguous trials, we found no

systematic difference between the two groups (figure 2d ).
(c) Model choice in general probe trials
While ambiguous stimulus trials directly demonstrate Occam’s

Razor, the framework of Bayesian modelling allows for more

general quantitative predictions. In particular, Bayesian

models weight goodness of fit and model complexity for arbi-

trary stimuli, including the ambiguous ones just described.

The comparison between the experimentally observed choice

probabilities and the fitted theoretical choice probabilities for

all probe trials is shown in figure 2b,c,e,f using the pooled

data across all subjects both for drawing and clicking

trials. Theoretical and empirical choice probabilities are in

good agreement, as the 95% CIs mostly overlap with the iden-

tity line. The corresponding comparison of theoretical and

empirical choice behaviour of individual participants can be

seen in the electronic supplementary material, figure S6. To

obtain the theoretical choice probabilities, we fitted psycho-

metric sigmoid functions to subjects’ model choice in probe

trials, where we used the difference in model log-evidence

from equation (2.1) as the discrimination variable [26]. The psy-

chometric sigmoid function has a single parameter a to tune

the sensitivity of the decision boundary. The a-values were

fitted by maximizing the likelihood and are shown in the elec-

tronic supplementary material, table S1. The experimental

choice probabilities for different stimuli were obtained by

first discretizing the theoretical choice probabilities into five

equidistant bins, and then determining the choice frequency
of model M1 for all five bins. To quantitatively assess the expla-

natory power of the individual fits, we performed linear

regression on the individually observed choice patterns. For

all participants and all conditions, the ideal slope of 1 lies

within the 95% CIs of the fitted slope. The ideal intercept of 0

lies within the 95% CIs for all subjects, except for subject 2

in the first session (cf. electronic supplementary material,

figure S7).
(d) Control experiment: spatial frequency
Finally, we tested for trajectory smoothness as a confounding

variable. In the choice trials considered so far, the simple

model was always the model with less spatial frequency. To

test whether subjects really cared about model complexity

rather than spatial frequency, we designed a control exper-

iment where the simpler model had a higher spatial

frequency than the more complex model. This unusual scen-

ario can be created by modulating the noise and signal

variability of the two models. If model M2 generates wiggly

trajectories that are highly reproducible across trials (i.e.

with low variability), it constitutes a simple model, because

it cannot explain many different datasets. If, by contrast,

model M1 generates smooth trajectories with low spatial fre-

quency, but with high noise and signal variability, it might be

able to explain more datasets than the wiggly model. To test

whether the critical variable was indeed trajectory smooth-

ness or model complexity, we therefore trained a group of

participants on these two models and exposed them to

probe trials in which the goodness-of-fit values were equal

under both models (see the electronic supplementary

material for details). If participants cared about smoothness,

they should prefer the more complex model M1 in these
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trials. If, however, participants cared about model complexity

as the critical variable, they should prefer the simpler, but

more wiggly model M2. Participants’ choice probabilities

can be seen in figure 3a. For all three error levels, we found

that subjects significantly preferred the simpler model M1

( p , 0.001, sign test against median of 0.5). Compared with

figure 2a,d, it can be seen that the choice probabilities indicate

a more stochastic choice behaviour, because the discrimi-

nation in the probe trials was more difficult owing to the

different noise and signal variances of the two models. This

is also reflected in more shallow psychometric curves in the

probe trials and the associated lower a-values quantifying

their reduced steepness (cf. electronic supplementary material,

table S2). The choice probabilities in all probe trials are

shown in figure 3b. To quantitatively assess the fitted choice

probabilities, we performed linear regression on the individu-

ally observed choice patterns (cf. electronic supplementary

material, figure S8). For all participants and all conditions,

the ideal slope of 1 lies within the 95% CIs of the fitted slope.

The ideal intercept of 0 lies within the 95% CIs for 5 out of 10

subjects (cf. electronic supplementary material, figure S9).

While these results cannot completely rule out a weak smooth-

ness bias, they clearly show that participants’ choices are

modulated by Bayesian model complexity, and that partici-

pants tend to prefer the simpler model and not the smoother

model when both fit the observations equally well (cf.

figure 3a).
4. Discussion
To test whether Occam’s Razor plays a role in human sensori-

motor learning, we designed a visuomotor experiment where

participants had to produce a regression trajectory from noisy

observations generated by one of two possible models with

different complexity. Participants were trained on both genera-

tive models and were then presented with ambiguous stimuli

where both models were able to explain the observed data

equally well. We considered five different hypotheses: (1) sub-

jects prefer the simpler model (Occam’s Razor); (2) subjects are

indifferent between the two models; (3) subjects ignore both

models and either follow a straight-line or connect-all strategy;

(4) subjects decide based on physical effort; and (5) subjects
decide based on trajectory smoothness (spatial frequency). In

accordance with Occam’s Razor, we found that participants

showed preference for the simpler model in ambiguous trials.

Over all trials, we found that their behaviour was quantitatively

consistent with Bayesian Occam’s Razor trading off goodness

of fit and model complexity. To control for the influence of

physical effort required for drawing regression trajectories,

we designed a control experiment where the indication of

either model required the same physical effort. We found that

subjects’ preferences were essentially unaltered, suggesting

that the difference in effort required for drawing the two differ-

ent trajectory types was negligible and that their choices

were indeed affected by the underlying trajectory complexity.

We also designed a control experiment where the simpler

model implied underlying curves with a high spatial frequency

but low variability across trials, and found that participants’

choices were mainly governed by model complexity and not

trajectory smoothness.

In our study, we made a number of simplifying modelling

assumptions that might limit the generalizability of our

results: we assumed that trajectories can be well described

by a Gaussian Process (GP) model, we assumed a squared

exponential kernel for the GP, and we assumed a fixed obser-

vation noise set by the experimenter. First, the reasons for

choosing a GP model in our experiment include their math-

ematical tractability, their clear distinction between model

complexity and data complexity, they allow modelling very

general smooth trajectories since GPs are non-parametric,

and they have been previously shown to adequately capture

human motion [27]. Second, we assumed that trajectories

generated with a squared exponential kernel can be ade-

quately mimicked by human motion. Our assumption is

based on the close relationship between squared exponential

kernels and radial basis function networks that have been

previously suggested for modelling human sensorimotor

processing [28]. To test the appropriateness of this modelling

assumption, we also fitted a neural network kernel [22,29] to

participants’ motion trajectories and found that the squared

exponential kernel provided a better explanation for all sub-

jects in all conditions (cf. electronic supplementary material,

figure S10). The reason for this could simply be that the

synthetic trajectories were generated from the squared

exponential kernel and that participants were able to learn this.
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Third, in our fits we assumed that subjects learned the

variance of the observation noise that enters as an additive con-

stant on the diagonal of the covariance matrix Sli in equation

(2.1). This assumption was motivated by the fact that the obser-

vation noise stayed the same throughout the experiment and

was set by the experimenter. The magnitude of this obser-

vation noise was on the order of centimetres, and thus far

larger than perceptual noise owing to natural limitations of

visual acuity. We also evaluated the predictive likelihood of a

range of length scales and observation noise values for partici-

pants’ movement trajectories, and found that the likelihoods

were sharply peaked within the neighbourhoods of the exper-

imentally induced values, suggesting that our assumption

regarding the observation noise was reasonable (cf. electronic

supplementary material, figure S11).

The problem of disambiguating competing explanatory

hypotheses when faced with ambiguous stimuli has been pre-

viously investigated. In fact, the human sensorimotor system

is frequently confronted with such decision-making situations,

for instance when perceiving a visual or motion illusion [30,31].

Interestingly, the emergence of many illusions can be explained

within the Bayesian framework by using priors that reflect

environmental statistics [32–35], including priors for light-

from-above illumination in object perception [36,37], priors

for low number of categories in object categorization [38]

and priors for lower speed in motion perception [30,39]. Decid-

ing for a particular hypothesis can also be thought of as

choosing the simpler explanation, which highlights the impor-

tant role of the prior in defining what is simple or difficult. As

the prior is subjective, it can encode information about the stat-

istics of the stimulus, but also subject-specific features like

cognitive difficulty.

The problem of model selection has been recently addressed

in a number of studies. Körding et al. [40] investigated inte-

gration versus segregation of audio-visual stimuli in human

subjects, which can be cast as selecting between two different

models: in one model, there was only one source explaining

both stimuli (auditory and visual), and in the other model

there were two different sources at different locations explain-

ing both stimuli. When subjects reported their perception of
unity [41], they were effectively doing inference over the two

different models. Another recent study [42] introduced a sen-

sorimotor paradigm for Bayesian model selection. In their

task, subjects had to point to one of two targets (representing

two models) after observing a cursor shift (representing the

model parameter) drawn from one of two possible distributions

(the prior over the model parameters given either model).

When facing ambiguous visual feedback of the shift parameter,

participants had to ‘integrate out’ the compatible range of par-

ameter values. It was found that their choice behaviour was

consistent with Bayesian model selection. In motor control,

selecting between different models is relevant in the context

of structure learning [43–49], where abstract invariants form

structures or abstract models that are applicable to a range of

motor tasks.

In contrast to these previous studies on model selection, our

current study explicitly investigates the trade-off between fit-

ting error and model complexity. We therefore designed a

sensorimotor regression task based on GP models that allowed

for an analytic expression of the model complexity, which we

could exploit for the design of ambiguous probe trials. Thus,

we could perform a quantitative analysis of the preference

for simpler models in probe trials and compare against

human behaviour. The main contribution of this study is the

illustration of Occam’s Razor as it is depicted in figure 1a in

the human sensorimotor system. Constructing tasks that

allow this interpretation of model complexity is not trivial

[8]. Our study thus adds a new angle to the growing number

of psychophysical experiments where participants’ behaviour

was successfully modelled within a Bayesian framework.
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