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The output of skeletal muscle can be varied by selectively recruiting different

motor units. However, our knowledge of muscle function is largely derived

from muscle in which all motor units are activated. This discrepancy may

limit our understanding of in vivo muscle function. Hence, this study aimed to

characterize the mechanical properties of muscle with different motor unit acti-

vation. We determined the isometric properties and isotonic force–velocity

relationship of rat plantaris muscles in situ with all of the muscle active, 30%

of the muscle containing predominately slower motor units active or 20% of

the muscle containing predominately faster motor units active. There was a sig-

nificant effect of active motor unit type on isometric force rise time ( p , 0.001)

and the force–velocity relationship ( p , 0.001). Surprisingly, force rise time was

longer and maximum shortening velocity higher when all motor units were

active than when either fast or slow motor units were selectively activated. We

propose this is due to the greater relative effects of factors such as series compli-

ance and muscle resistance to shortening during sub-maximal contractions. The

findings presented here suggest that recruitment according to the size principle,

where slow motor units are activated first and faster ones recruited as demand

increases, may not pose a mechanical paradox, as has been previously suggested.
1. Introduction
Skeletal muscle converts metabolic energy into the mechanical output required

for all movement. In order to meet this demand, muscle must be capable of

graded force production with variable force development and strain rates. This

can be achieved by altering motorneuron firing rate [1] and recruiting motor

units with different mechanical and metabolic properties [2]. While much con-

sideration has been given to the effect of motorneuron firing rate [3–9], the

effect of recruiting different motor units has received relatively little attention.

Vertebrate motor units (single motorneurons and associated muscle fibres) vary

from slow to fast. Motorneuron diameter, force rise and relaxation rate, peak

shortening velocity and metabolic energy consumption increase along this gradi-

ent [10–12]. The recruitment of these different motor unit types generally follows

the size principle, whereby motor units are recruited from slow to fast due to

differences in size, and therefore excitability, of motorneurons [13–15]. However,

deviations from the size principle have been reported, with motor units being

recruited in response to mechanical demand, rather than according to motor-

neuron size, in some situations (for review, see [16]). The existence of motor

unit recruitment strategies means that the number and functional characteristics

of active motor units will vary across locomotor tasks.

The number and type of motor units active have major implications for the

mechanical output of a muscle. However, much of our understanding of the prop-

erties of muscle that are key to locomotor performance, such as the rate of force
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Figure 1. Example isometric tetani. Muscle stress (s) in response to a
supra-max (solid), sub-max (dashed) and block (dotted) stimuli. Timing
and duration of the stimulus is denoted by the thick black bar.
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development and the force–velocity relationship, comes from

studies of maximally activated whole muscles and isolated

muscle fibres in vitro [17–21]. Relatively little is known about

muscle performance in response to activation of sub-sets of

motor units. The findings of studies of maximally activated

muscles are commonly used in Hill-type muscle models to pre-

dict in vivo muscle forces [22,23] and mapped to muscle length

changes measured during movement to understand muscle

function [24]. While this approach may often provide useful

information, the disparity between the number and type of

motor units active in vitro and in the relevant locomotor con-

dition may reduce the accuracy of such predictions [25] and

limit the insight into muscle function that can be gained.

The aims of our study were therefore to determine the rate

of force development, defined as the isometric force rise time,

and force–velocity properties of a muscle in response to

activation of all muscle fibres and the selective activation of

sub-populations of either faster or slower motor units. Studies

of single fast and slow fibres, and whole muscles containing

predominantly fast or slow motor units, show that isometric

force rise time is shorter [12,20,21], maximum shortening

velocity higher and the curvature of the force–velocity relation-

ship lower in faster fibres [12,17,18,20]. The implications of a

thought experiment [26] suggested that the maximum shorten-

ing velocity of a whole muscle will reflect that of the fastest

active fibres. Hence, we hypothesized that (i) isometric force

rise time would be longer when slow motor units were selec-

tively activated than when all and faster motor units were

activated, and (ii) shortening velocity would be lower, and

the curvature of the force–velocity relationship greater, when

slow motor units were selectively activated than when all or

fast motor units were activated.
2. Material and methods
Experiments were conducted on the plantaris muscles of male

Sprague Dawley rats (Rattus norvegicus; n ¼ 10; approx. age three

to four months; body mass 403+20 g; Charles River,

Wilmington, MA). The plantaris was chosen as it is the most hetero-

geneous of the rat ankle extensors [27–30] and shows the greatest

variation in recruitment pattern in vivo [31,32]. Estimates of fibre

type composition range from 5 to 9% type I, 11 to 63% type IIa,

31 to 38% IIx and 46 to 47% IIb [27–30].

Rats were anaesthetized using 2% isoflurane, and the distal

end of the plantaris was isolated and its tendon connected, via a

stainless steel hook, to the lever arm of a muscle ergometer

(series 305B-LR; Aurora Scientific Inc., Aurora, Ontario, Canada).

The femur was clamped to a rigid frame. The calcaneus was cut

to free the distal end of the muscle, and the sciatic nerve exposed

and transected. A nerve cuff containing a stimulus, ground and

blocking electrode was placed around the nerve, with the blocking

electrode closest to the muscle, and a bipolar silver-wire electrode

[33] implanted into the muscle belly. Rat body temperature was

maintained using a heat pad and lamp. Muscle and nerve were

kept warm and moist by immersing the hind limb in a pool of min-

eral oil, the temperature of which was maintained at 31+18C
using a heat lamp.

Supra-maximal stimuli were applied to the sciatic nerve to gen-

erate isometric tetani (train duration, 320 ms; pulse duration,

0.25 ms; frequency, 80 Hz; amplitude, 3 V). Generation of stimulus

pulse and simultaneous logging (5000 Hz) of force (F), length (L)

and electromyography (EMG) data were done using a custom-

built virtual instrument and A/D board (LABVIEW v. 11 and NI

UBS-6343; National Instruments, Austin, TX) and stimulation

unit (S48; Grass, West Warwick, RI). A force–length curve was
constructed [20,34] and optimal length (L0) defined as the length

corresponding to the right-hand edge of the plateau; all

subsequent contractions were performed at this length.

Isometric tetani were performed using different stimula-

tion condition that aimed to activate different motor unit types

(figure 1). A supra-maximal stimulus (3 V; supra-max) was

used as above to activate all motor units. Selective activation of

different types of motor units exploited the fact that the largest,

lowest-resistance motorneurons innervate the fastest motor

units [10,35]; application of a given voltage will generate a

larger current in the larger motorneurons supplying faster

motor units. A sub-maximal stimulus (approx. 1 V; sub-max)

was used to activate only the fastest motor units as it generated

sufficient current to trigger an action potential only in these

motorneurons [13]. A high-frequency sine wave, of appropriate

amplitude, applied to the nerve will block conduction in motor-

neurons [36–38]. Generation of sufficient current to block

conduction will occur at a lower amplitude in larger motor-

neurons. Application of a supra-maximal stimulus (3 V) and a

high-frequency sine wave of appropriate amplitude (10–

20 kHz, 2–5 V; 3311A, Hewlett Packard, Palo Alto, CA; block),

from the blocking electrode, was used to trigger an action poten-

tial in all motorneurons but then block conduction in larger

motorneurons, so activating only slower motor units. Hence,

supra-max, sub-max and block stimulation conditions aimed to

activate all, predominately faster or predominately slower

motor units, respectively. Peak isometric force (F0) in each con-

dition was recorded and converted to peak isometric stress (s0)

[30,34] and the time taken to reach half F0 (force rise time50%)

was calculated.

After-loaded isotonic contractions, using the above stimulation

conditions, were used to determine muscle force–velocity pro-

perties (see [20,34] for details) of the rat plantaris when all and

predominately faster or predominately slower motor units were

activated. The order of stimulation conditions was randomized

and the experiment terminated once peak isometric force fell

below 80% of its maximum. Relative force (F/F0) was calculated

from the force during a shortening contraction and the peak iso-

metric force generated in that stimulation condition. Length was

converted to strain ((L2L0)/L0) and differentiated with respect to

time to determine shortening velocity (V) in fibre lengths per

second (L0 s21). Relative force was plotted against velocity and a

hyperbolic-linear curve fitted to the data [18] (IGOR Pro

v. 6.1.2.1; Wavemetrics, Lake Oswego, OR). Maximum shortening
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Figure 2. The effect of stimulation condition on peak isometric stress. Peak
isometric stress (s0) varied with stimulation condition ( p , 0.001), with
there being significant differences between all conditions ( p , 0.05;
n ¼ 10, 10, 7 for supra-max, sub-max and block, respectively).
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Figure 3. The effect of stimulation condition on the mean frequency and u.
Stimulation condition has a significant effect on the mean frequency (black;
p ¼ 0.05) and u (grey; p , 0.05). Mean frequency is significantly higher
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velocity (Vmax) was determined by extrapolation of this relation-

ship to zero force. The power ratio, a dimensionless measure of

the curvature of the force–velocity relationship, was calculated as

P
Vmax � F0

,

where P is the maximum power taken from the force–velocity

curve [18].

EMG signals were recorded simultaneously with force and

length, amplified (500�) and filtered (band-pass 30–3000 Hz;

P5 series pre-amplifier; Grass). In order to confirm activation of

desired fibre type, wavelet analysis and principal component

analysis were performed on EMG signals, and mean frequency

and angle u calculated (see [31–33,37,39–41] for details). As

the frequency characteristics of the myoelectric signal are indica-

tive of active motor unit type [37,42,43], a higher mean frequency

and lower u reflect a greater contribution of faster motor units

[31,32,37,41].

One-way ANOVAs or generalized linear models (GLMs) were

used, as appropriate (Fligner–Killeen tests used to assess the hom-

ogeneity of variances), to determine whether there were significant

differences in s0, force rise time50%, mean EMG frequency and u

with the activation of different motor unit types (supra-max,

sub-max and block conditions). Tukey’s honest significant dif-

ference tests or multiple comparisons of means using Tukey’s

contrasts were used, as appropriate, to determine where significant

differences between conditions arose. All force–velocity data were

combined and a single curve fitted for each stimulation condition.

Generalized linear models were used to determine whether there

were significant effects of stimulation condition on the relationship

between force and velocity. Mixed-effect models were used to

determine the effect of the level of activation of the muscle, inde-

pendent of stimulation condition, on force rise time50% and the

force–velocity relationship [44].
( p , 0.05) and u significantly lower ( p , 0.05) in the sub-max condition
than in the blocked condition (n ¼ 9, 5 and 4 for supra-max, sub-max and
block conditions, respectively).
3. Results and discussion

This study aimed to characterize the mechanical properties of

the rat plantaris muscle in response to selective activation

of different motor unit types using different stimulation

conditions. Stimulation condition has a significant effect on

maximum isometric stress ( p , 0.001), with the muscle produ-

cing 20.0+3.1% and 30.4+5.7% of s0 obtained using

the supra-max condition in the sub-max and block conditions,

respectively (figure 2; all data are presented as mean+ s.e.m.;

raw values for each individual can be seen in the electronic

supplementary material). However, in order to interpret

whether these lower stresses reflect selective activation of the

desired motor units, we must consider the frequency content

of the EMG signal. There was a significant effect of stimulation

condition on mean frequency ( p ¼ 0.05) and u ( p , 0.05).

Mean frequency was highest in the sub-max condition and

lowest in the block condition, and u lowest in the sub-max

condition and highest in the block condition (figure 3).

Higher mean frequency and lower u reflect a greater contri-

bution of high-frequency components in the EMG signal,

indicative of a relatively higher number of faster motor units

activated [31,32,37,41]. Therefore, if we define the level of acti-

vation of the muscle as the isometric stress relative to isometric

stress in the supra-maximal conditions; the combined stress

and EMG data suggest that the sub-max condition activates

20% of the muscle containing predominately faster motor

units and the block condition activates 30% of the muscle con-

taining predominately slower motor units. It should be noted

that, given the fibre type composition of the muscle and level
of activation, some faster (probably type IIa) motor units

must be activated in the block condition. However, the fre-

quency content of the EMG signal demonstrates that there

are relatively more slow motor units active in the block than

the supra-max condition, indicating that this condition does

achieve some degree of selective recruitment. The difference

in u observed between sub-max and block conditions is com-

parable with the range observed over the course of a stride in

a running rat [32], suggesting that the level of selectivity in

activation of fast and slow motor units achieved here, while

undoubtedly not absolute, is representative of the level of

selective recruitment used in vivo.

From our prior understanding of the properties of single

fast and slow fibres, and muscle containing predominately

faster or slower motor units, we expected isometric force to

rise more slowly when slow motor units were activated than

when all or fast motor units were activated [12,20,21]. However,

while there was a significant effect of stimulation condition (and

therefore motor unit type activated) on isometric force rise

time50% ( p , 0.001), the differences are not in the direction we

predicted (figure 4). Force rise time was longest when all

motor units were active (supra-max), and shorter when both

predominately faster (sub-max) and slower (block) motor

units were selectively activated (figure 4). It could be suggested

that the inclusion of some faster motor units in the block con-

dition could account for the similarity of the rate of force rise

time between sub-max and block conditions. However, were
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active motor unit type the only factor altering force rise time, we

would expect the inclusion of increasing numbers of faster

motor units in the block condition to decrease force rise time

to a minimum of that seen in the supra-max condition. The

lower force rise time seen in the block condition compared

with the supra-max condition suggests that there is an effect

obscuring that of active motor unit type. We propose that this

could be an effect of the absolute level of activation. This is sup-

ported by the finding that there is a significant effect of the level

of activation of the muscle on force rise time independent of

stimulation condition used, and so motor unit type activated

( p , 0.001). We propose that the effect of the level of muscle

activation on force rise time may be explained by the effects

of series compliance. While external tendon was removed

from the preparation, significant internal tendon [30] and

other compliant elements remained. Hence, when force was

generated, muscle fibres will have shortened as compliant

elements stretched despite the entire preparation remaining iso-

metric. Assuming linear elastic properties and constant

shortening velocity, higher activation levels will have meant

that muscle fibres shortened more and so took a longer time

to reach an isometric state where peak force could be generated.

From our prior understanding of the force–velocity prop-

erties of single fibres and muscle containing predominately

fast or slow motor units, we predicted that the force–velocity

relationship would be the same when all motor units were acti-

vated and fast motor units were selectively activated, but that

shortening velocity would be lower and curvature of the

force–velocity relationship greater when slower motor units

were selectively activated [12,17,18,20]. However, while there

was a significant effect of stimulation condition on the force–

velocity relationship ( p , 0.001; figure 5), it was not in the

direction we predicted. Maximum shortening velocity was

greatest (3.52 L0 s21) and power ratio the lowest (0.11), reflect-

ing the highest degree of curvature, when all motor units

(supra-max) were active. Maximum shortening velocity was

lower and power ratio higher when both predominately

faster (sub-max; 1.34 L0 s21 and 0.21, respectively) and

slower (block; 1.87 L0 s21 and 0.15, respectively) motor units

were selectively activated (figure 5). As with force rise time,

there was a significant effect of the level of muscle activation

on the whole muscle force–velocity relationship independent

of stimulation condition used, and therefore motor unit type
activated ( p , 0.001). This suggests that, under these con-

ditions, the level of muscle activation also has a considerable

effect on the force–velocity relationship, to the extent that it

masks any potential effect of active motor unit type. This

reduction in maximum shortening velocity and curvature

appears to have been observed previously in the isotonic, but

interestingly not isovelocity [3,4], force–velocity relationships

where muscle is sub-maximally activated using reduced

stimulation frequency [5,6].

We propose that the dependence of the force–velocity

relationship on the level of activation may be explained by

the resistance of the muscle to deformation. When muscle is

activated, contractile elements develop longitudinal force that

can cause muscle to shorten. However, in order to shorten,

work must be done to overcome the elastic, viscous and inertial

resistance to shortening resulting from factors such as the

radial expansion of connective tissue layers and myofilament

lattice, movement of intracellular fluid, and acceleration of

the muscle mass. This may result in a depression of shortening

velocity. This effect is likely to be greatest when contractile

element force is low, as occurs with sub-maximal activation

and at low relative forces, and resistance to shortening is

high, as occurs at higher shortening velocities. Hence, we

would expect the depression of shortening velocity to increase

with decreasing activation level, decreasing relative force and

increasing shortening velocity during isotonic contractions,

but to be absent during isovelocity contractions where external

work is done to overcome resistance to shortening. This is con-

sistent with our findings (figure 5) and in comparison with

previous studies [3–6].

Our interpretation of the effects of selective activation of

different motor unit types on force rise time and muscle

force–velocity properties suggests that the physical properties

of the muscle, such as resistance to shortening and compliance,

can have substantial effects on the mechanical output of the

muscle. We propose that they can obscure differences in the

contractile element properties of active motor unit type

during sub-maximal contractions. While these results are

specific to this muscle, which contains a high proportion of

fast twitch motor units [27–30], stimulated at a tetanic
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frequency, we do not feel that either of these factors can explain

the results presented here. It is conceivable that in a muscle

with a larger proportion of slow twitch fibres, thereby allowing

recruitment of only these motor units, there would be a slight

difference between sub-max and block conditions. However,

given the predominance of slow motor units recruited in the

block condition, we feel that differences due to this would be

small compared with the large differences seen between maxi-

mally and partially activated conditions. Given the similar

effect of partial activation due to low stimulation frequency

on muscle force–velocity properties observed, it seems unli-

kely that altering stimulus frequency would have significant

effects beyond increasing the differences between maximally

and partially activated muscle due to greater differences in acti-

vation level. Hence, we believe the dominance of the effect of

the level of activation over that of fibre type is likely to be

seen across muscles and has relevance to in vivo conditions.

This effect of partial activation of the muscle is crucial to

our understanding of muscle function; much of our current

understanding comes from the maximally activated muscle

or isolated single fibres, and muscle models typically con-

sider muscle fibres to be massless, independent actuators.

These results highlight that the mechanical properties of

maximally activated muscle are not necessarily representative

of sub-maximally activated muscle, reiterate the presence [7]

and functional consequences [8,9] of mechanical coupling

between fibres, and suggest that the physical properties of

muscle may have significant effects on muscle mechanical

output, modifying and potentially obscuring any effect of

activating different motor unit types. These results suggest

that an understanding of the interaction between contractile

element properties, level of activation and the physical prop-

erties of muscle is likely to be essential if we are to

understand whole-muscle function during physiologically

relevant, sub-maximal contractions. The presence of this

interaction may also help to explain observed principles of

motor unit recruitment [13–15].

Motor unit recruitment appears to have its basis in the

size principle. Slow motor units, with higher post-synaptic

motorneuron excitability, are activated first, and faster motor

units recruited as activation intensity increases [13–15]. This

is an inherently appealing theory as it suggests that smooth,

graded force production may be achieved as a consequence
of the basic properties of the motorneurons with no require-

ment for higher-level control. However, it has been suggested

that it presents a mechanical [45,46], and potentially also an

energetic, paradox. Slow motor units will be active during

rapid sub-maximal contractions, thus consuming metabolic

energy without significantly contributing to mechanical

output. This may be somewhat avoided by the potential to

deviate from the size principle to better meet the mechanical

demands of a task [16,31,32,40,41,47–49]. However, despite

the apparent paradox, the size principle does seem to be

broadly adhered to in the majority of cases [14,15,48,50–55].

The results of our study may help to explain this discre-

pancy. We have demonstrated that activating predominately

faster motor units does not necessarily result in faster rates of

force development or higher shortening velocities. Hence, at

low activation levels, an animal is likely to achieve a similar

mechanical output regardless of whether fast or slow motor

units are activated (figures 4 and 5). However, the selective

activation of fast motor units would require the animal to use

a more complex control strategy and would incur a higher

metabolic cost, increasing the energy consumed to complete

a given task. This is not to say that adherence to the size prin-

ciple necessarily provides the best mechanical output in all

situations; factors such as the proportion of different motor

unit types within the muscle, the level of activation and the

existence of any compartmentalization of motor unit type

may mean that deviation from the size principle can sometimes

offer mechanical and energetic advantages. However, our find-

ings indicate that adherence to the size principle may provide

not only a simple control strategy but also the best mechanical

and energetic performance, helping to explain why it is so

often adhered to.

Animals were housed and handled in accordance with U.S. Public
Health Service Policy for the humane care and use of laboratory ani-
mals, and all protocols were approved by Harvard Animal Care and
Use Committee.
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