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Fitting models with Bayesian likelihood-based parameter inference is becom-

ing increasingly important in infectious disease epidemiology. Detailed

datasets present the opportunity to identify subsets of these data that capture

important characteristics of the underlying epidemiology. One such dataset

describes the epidemic of bovine tuberculosis (bTB) in British cattle, which is

also an important exemplar of a disease with a wildlife reservoir (the Eurasian

badger). Here, we evaluate a set of nested dynamic models of bTB transmission,

including individual- and herd-level transmission heterogeneity and assuming

minimal prior knowledge of the transmission and diagnostic test parameters.

We performed a likelihood-based bootstrapping operation on the model to

infer parameters based only on the recorded numbers of cattle testing positive

for bTB at the start of each herd outbreak considering high- and low-risk areas

separately. Models without herd heterogeneity are preferred in both areas

though there is some evidence for super-spreading cattle. Similar to previous

studies, we found low test sensitivities and high within-herd basic reproduc-

tion numbers (R0), suggesting that there may be many unobserved infections

in cattle, even though the current testing regime is sufficient to control

within-herd epidemics in most cases. Compared with other, more data-heavy

approaches, the summary data used in our approach are easily collected,

making our approach attractive for other systems.
1. Introduction
Infectious diseases with long generation times are challenging to model, owing to

the uncertainty in identifying the patterns of infectious contacts, a problem that

can be exacerbated by the influence of a wildlife reservoir host. For bovine tuber-

culosis (bTB) in Great Britain (GB), both badgers and cattle contribute to the

epidemiology [1,2], and despite an exceptional record of the history of the disease

in cattle, the relative roles of the two host species remain controversial. As model-

ling the cattle data in their entirety is a considerable computational challenge,

identifying what data are important for understanding the epidemiology is essen-

tial for allowing greater sophistication in model structure, with the availability

of extensive data allowing for comparisons with models that exploit the data

more completely.

The single intradermal comparative cervical tuberculin (SICCT or ‘skin’ test)

test is the standard test for all ante mortem testing in GB. It measures a delayed

type hypersensitivity response to intradermally injected tuberculin [3]. Prior to

2013, herds in GB were routinely tested (routine herd test; RHT) at intervals of

1–4 years, based on local historical prevalence. One or more confirmed reactor

(i.e. positive SICCT test) results in a herd breakdown (now ‘officially Tb-free

withdrawn’ or OTFW) and is subjected to movement restrictions and follow-

up tests. Inconclusive tests leads to follow-up testing (OTF suspended if the

herd had OTFW within the past 3 years) until cleared or confirmation is

made. Once OTFW, all reactors are culled, and restrictions continue until the
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Figure 1. Disease propagation though the infection stages, susceptible,
exposed, test-sensitive and infectious in the age-based SETI model. Individuals
move either into a new infection stage (horizontally) or to the next age
bracket (vertically) as denoted by subscripts. There are two classes of infec-
tious individuals; super-spreaders (when included in the model) are
categorized as super-infectious where the transmission parameter is scaled
by the value z.
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herd passes two successive clear tests not less than 60 days

apart [4] with all tests being interpreted under ‘severe’ cri-

teria that increase test sensitivity, but at the cost of

additional false-positives. In addition, all cattle more than

41 days old moving from a 1 or 2 yearly tested herd are sub-

jected to additional testing requirements [5]. All cattle sent to

slaughter are subjected to a post-mortem inspection. bTB sus-

pect lesions result in samples being sent for culture and

isolation of the causative bacteria Mycobacterium bovis, confir-

mation leads to a breakdown/OTFW, and a whole herd test

(WHT) is applied. Additional testing occurs based on for-

wards and backwards contact tracing from identified

breakdowns. Current sensitivity estimates are low for the

SICCT test (approx. 50%) under the ‘standard interpretation’,

and for post-mortem inspection (approx. 70%) [6]. Both are

considered to have very high specificity.

Diseases such as bTB have long, poorly quantified stages

of disease progression, with estimates of a latent or expo-

sed period, of 0–63 days [3,7–9] and 180 + 20 days for a

test-sensitive stage where infectivity is low, but SICCT test

detection is possible [10].

To better quantify such disease parameters, model fitting

using Bayesian likelihood-based approaches are becoming

increasingly important in infectious disease epidemiology,

and have shown particular promise in systems with detailed

population characteristics [11–13]. Previous use of these

approaches for bTB in cattle used detailed longitudinal

life-history data for cattle, and also required either the use

of approximate Bayesian computation (ABC) [14], or are

computationally tractable only for small datasets [15].

Here, we adapt a previous model [16] as the basis for a

less data-heavy approach to inference; although explicit

account is taken of the herd age structure and testing sche-

dules in GB, we use a likelihood function based only on the

number of reactors at first identification to estimate key

epidemiological parameters.
2. Model formulation
We consider a hierarchy of nested model structures, where, in

the simplest case, cattle are either susceptible, exposed, test-
sensitive or infectious. Once an animal becomes infectious,

it remains so until it is detected, at which point the animal

would be culled. Each compartment is further split into NA

separate age groups. Susceptible cattle become exposed
through infectious contact within the herd, and through

external factors that may include for example, inward cattle

movements, contiguous spread from neighbouring herds or

the presence of a wildlife reservoir. These external factors

are incorporated into the model via a single force of infection.

The model is depicted schematically in figure 1.

We allow for heterogeneity in the infectiousness of indi-

viduals by incorporating ‘super-spreaders’, i.e. with some

individuals more likely than average to infect others if, for

example, it excretes more bacteria than average, as suggested

by experimental data [17]. A fraction of the herd, PS, are mod-

elled as super-spreaders, where the transmission term is

scaled by a factor zS.

The average infectiousness of individuals may vary

between herds [18], and this is incorporated into the model

by allowing transmission of the disease for all livestock to

be scaled by a factor zH in a proportion of herds, PH, and
similarly we consider two levels of variability in a, the

transmission rate from the reservoir.

The deterministic model is written as a system of ordinary

differential equations:

dSi

dt
¼ �bSiI � zSbSiIsuper � niSi

þ @i(Si�1 � Si)ji.1 � aSi,

dEi

dt
¼ bSiI þ zSbSiIsuper � sEi � niEi

þ @i(Ei�1 � Ei)ji.1 þ aSi,

dTi

dt
¼ sEi � gTi � niTi þ @i(Ti�1 � Ti)ji.1,

dIi

dt
¼ (1� PS)gTi � niIi þ @i(Ii�1 � Ii)ji.1

and
dIsuper

i

dt
¼ PSgTi � niI

super
i þ @i(I

super
i�1 � Isuper

i )ji.1,

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2:1)

where subscripts denote the age group, infection states with

no subscript means the sum over all groups, e.g. I ¼
P

iIi,

and a is the force of infection external to the herd. The par-

ameter @i is the rate cattle in one age group move up to the

next (older) age group, so that @iSi�1(t) is the number of

cattle entering the Si(t) state and @iSi(t) the number leaving.

Cattle in the oldest age group are removed from the system

at the rate @NA . Cattle are also removed from the herd (via

death or export) at a rate ni, where we allow for age-specific

removal rates giving niSi(t) as the number of susceptible

cattle in the ith age group being removed from the herd at

time t. In each simulated epidemic, we assume a constant

herd size, assuming replacements are drawn from the same

age distribution. We make the simplifying assumption that

replacements are all susceptible; in high-risk areas (HRAs),

the effect of having some infectious replacements is sub-

sumed in a, whereas in low-risk areas (LRAs), where

movements from HRAs are few, the likelihood of multiple

introduction is low owing to the low overall prevalence of

infection in all cattle (of 5 417 573 tests carried out in 2006,

only 20 090 confirmed reactors were found [19]).

As herd size is known to be correlated to infection per-

sistence [20] (figure 2), we assume density-dependent

transmission, with infection occurring at base rate bIS.
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Figure 2. Number of reactors detected to the herd size at breakdown as a
function of herd size (inset shows a detailed view of small herds). The cor-
relation is weak but suggests some density dependence (Spearman’s r-value
of 0.277). (Online version in colour.)
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Exposed cattle become test-sensitive at a rate s and then

infectious at a rate g.

Variability in zH and a are implicit as herd heterogeneity

is determined before each individual simulation with fitted

probabilities.

(a) Initialization
We assume that outbreaks are initially seeded by a single

randomly chosen infected animal. Similar to others [14],

we assume that the occurrence of breakdowns owing to the

introduction of multiple infections is low; this probably

causes a compensatory increase in the estimated transmission

rate, but we expect this effect to be small (see above on

national prevalence).

(b) Process overview
The model (2.1) was solved by running 2 � 104 independent

simulations using Gillespie’s t-leap method with a fixed time

step of 14 days to balance simulation efficiency and model

accuracy. We used Gillespie’s direct method [21] to validate

the choice of time step in the t-leap method. In each simu-

lation, herd size and age structure are selected from the

observed distributions in GB and run to the random predeter-

mined future date selected from a uniform distribution over

0 to n years, where n is the testing interval. We then perform

an RHT with test sensitivity Vr. The number of reactors at the

time of a test, NB, is therefore

NB ¼ binom(T(t)þ I(t)þ Isuper(t) , Vr). (2:2)

If no infected cattle are detected, then we schedule

another RHT n years later and continue running the simu-

lation. If, at any time, an animal is removed from the herd,

then it is subjected to a post-mortem test with net sensitivity

Vs, considering the combined probability of being inspected

and detected. A positive test triggers a breakdown resulting

in a WHT. Any confirmed breakdown sets the RHT schedule

to every two months until there are no further reactors. When

a breakdown is detected (by either RHT or at abattoir), the
number of reactors is added to a frequency distribution for

routine and triggered WHT tests from which we compare

the distribution with the number of reactors at first detection

as recorded in VetNet. Each simulation is run for a maximum

of 20 years.

The frequency distribution of reactors at first breakdown

is interpreted as a multinomial trial with p1, p2, . . ., pn,

the probability of the number of reactors being detected as

1, 2, . . ., n, and x1, x2, . . ., xn, the number of times we detec-

ted 1, 2, . . ., n reactors in the herd at breakdown in the

simulation. Using the observed (age-independent) break-

down size distribution, we calculate the probabilities p1, p2,

. . ., pn for both the breakdowns detected from routine RHT

and abattoir-triggered WHT giving a likelihood function

L ¼ n!

Pxi!
Ppxi

i , (2:3)

where n is the total number of breakdowns observed in the

simulation and xi are the frequencies of detecting each break-

down size in our simulations. The free parameters in the

described model are b, s, g, Vr, Vs, PS, PH, zS, zH, a. We cal-

culate the basic reproduction number, R0, according to the

‘next-generation matrix’ approach defined by Diekmann

et al. [22] for each parameter set in the posterior.

We use the Metropolis–Hastings algorithm [23] to gener-

ate parameter posterior distributions. Each trial step is

determined by selecting each parameter from a normal distri-

bution whose mean is the parameter value of the current step

and a fixed standard deviation of 2% of the mean. We

decrease the variance by 10% after every 2000 steps. We per-

form several random walks (chains) for each model starting

at different points in parameter space and where each chain

has a length of 10 000 steps. The posterior distribution is

determined by removing the ‘burn-in’ from the chains. The

model was coded in Java. The inference scheme was tested

for self-consistency by running simulated epidemics using

the model structures as defined above and using our infer-

ence approach to estimate the model parameters. These

were shown to recover the input parameters with posterior

distributions of similar width to those identified for our

real data, and with the original parameters lying within the

95% credible intervals of the posteriors (results not shown).
(c) Input
Cattle test data were obtained from the VetNet and Vebus

databases obtained from the Animal Health and Veterinary

Laboratories Agency (AHVLA). The cattle distribution

throughout GB was obtained from the cattle tracing system

database from the Department for Environment, Food and

Rural Affairs (DEFRA). We use RHT and WHT records from

2006, because they were sufficiently long after the 2001 foot

and mouth disease outbreak for the resultant perturbations

in bTB incidence to have disappeared and because quadrennial

testing areas expanded rapidly before that year. This dataset

was filtered to consider only breakdowns triggered by RHTs

or through tracing from abattoir detection in parishes exclu-

sively tested annually (long-term HRAs) or quadrennially

(long-term LRAs) from 1998 to 2006. In addition, we consider

only breakdowns where there had not been a previous positive

test in the herd and do not consider the results of follow-up

tests; this minimizes the impact of possible infections missed

from previous outbreaks, and mitigates against possibly



Table 1. Summary of the priors used in the model.

parameter description sampling distribution

b transmission rate uniform (1 � 1025, 1 � 1022)

s rate of exposed cattle becoming test-sensitive uniform (6 h2100 days)

g rate of test-sensitive cattle becoming infectious uniform (four to nine months)

Vr probability that a test-sensitive or infectious animal is detected by the SICCT test uniform (40280%)

Vs probability that a test-sensitive or infectious animal is detected at abattoir uniform (50299%)

zS increased infectiousness of super-spreaders uniform (1, 1000)

PS proportion of individuals that are super-spreaders uniform (1 � 1023, 0.4)

zH increase of b in herds with high b uniform (1, 1000)

PH proportion of herds with high b uniform (1 � 1023, 0.4)

a external force of infection uniform (1 � 10210, 5 � 1023)
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Figure 3. Comparison of the distribution of breakdown sizes for the models investigated for HRAs (top) and LRAs (bottom). The number of reactors found when a
herd breaks down is determined over several simulations for each model and the distribution converted to a likelihood value that is used in the Markov chain Monte
Carlo chain. We have grouped those breakdowns with 10þ reactors in HRA and 8þ reactors in LRA together.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140248

4

epidemiologically significant changes in farmer behaviour

after an outbreak begins. This leaves 1533 incidents with 4498

reactors in HRAs, and 78 incidents with 138 reactors in

LRAs. Only herd breakdowns with confirmed reactors (i.e.

where visible lesions have been identified) are included;

unconfirmed reactors are statistically more likely so show up

as reactors later [24]. Inconclusive unconfirmed reactors that

never test positive are excluded from the analysis; although

there is a statistically significant risk of transmission indirectly

associated with them, the absolute risk is slight [25], and there-

fore likely to be dominated by the transmission from confirmed

reactors.

The distribution of the number of reactors at first break-

down is recorded then defines the likelihood function

(equation (2.3)). We calculate the distribution of herd sizes

based on the recorded number of cattle when it first suffered

a breakdown (i.e. using the same criteria used to obtain the

breakdown size distribution to define our likelihood). We

use the age structure as found in VetNet, the age distribution

of reactors and the age distribution of cattle sent to slaugh-

ter, identifying 14 age groups with lengths from two to

24 months. Uniformly distributed priors based on field and

experimental data were used where found (table 1) [6,26]

with non-informative priors where no estimates existed.
For s, g, Vr, Vs, the priors were chosen on the basis of exist-

ing field and experimental estimates [6,26], non-informative

priors were used for all other parameters. The rate-exposed

cattle become test-sensitive, and test-sensitive cattle become

infectious is the inverse of the exposed and test-sensitive

periods (6 h2100 days and four to nine months), respectively.
3. Results
Multiple chains were run for each model, and only chains

reaching the same posterior-likelihood distribution (as

measured by the Gelman–Rubin statistic [27]) were retai-

ned. Some multi-modal behaviour in parameter posteriors

was observed which is the result of correlations between

the parameters in the model (confirmed using principal com-

ponent analysis and discussed further in the electronic

supplementary material).

The distribution of the number of reactors in the herd at

first detection for all models is shown in figure 3. The maxi-

mum-likelihoods were compared using Akaike information

criterion (AIC) scores (table 2) for purposes of model selec-

tion. In LRAs, no heterogeneity in transmission is favoured,

whereas in HRAs, there is a slight improvement in AIC for
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Table 2. AIC scores for the models. (Individual level heterogeneity provides
a small improvement over a model without heterogeneity in high-risk areas
(annually tested) but no such heterogeneity is required for low-risk areas
(quadrennially tested).)

model AIC score

1 year 61.8

1 year with individual transmission heterogeneity 60.6

1 year with herd transmission heterogeneity 64.3

1 year with individual and herd transmission

heterogeneity

65.3

1 year with individual and reservoir heterogeneity 75.8

1 year with reservoir heterogeneity 86.6

4 year 33.0

4 year with individual transmission heterogeneity 37.7

4 year with herd transmission heterogeneity 37.5

4 year with individual and herd transmission

heterogeneity

41.4
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the ‘super-spreader’ model. Both were substantially better

than models with herd heterogeneity.

Posterior distributions for comparable epidemiological par-

ameters for this model and one using detailed cattle life

histories [15] are notably similar (figure 4). Although other par-

ameters cannot be directly compared owing to differences in

model and data structures, the two approaches also give similar

estimates of R0 (1.321.9 in HRAs and 0.621.4 in LRAs).

In HRAs, the length of the exposed stage (i.e. 1/s) was esti-

mated to be approximately 100 days (with lower and upper

quartiles 14–100 days), whereas in LRAs, it was estimated to

be lower at approximately 60 h (lower and upper quartiles

28 h–10 days). These differences do not appear to be due to

the differences in the mechanism of introduction, for example,

if introduction in HRAs is more likely to be owing to infection

of resident cattle and in LRAs owing to movement of already

infected and potentially infectious cattle (see the electronic sup-

plementary material for a test of this). Both estimates do

overlap with previously published data [3,7–9,15].

The length of the test-sensitive stage (i.e. 1/g) in HRAs

was estimated to be approximately 190 days (with lower

and upper quartiles 150 and 220 days, respectively) and in

LRAs estimated to be approximately 180 days (with lower

and upper quartiles of 150 and 200 days). The estimates for

this stage also agree with previously published estimates of

180 days +20 days [10,14,15] (figure 5).

Estimates for the sensitivities of the SICCT tests are con-

sistent with previous observations [6,8,26] in both annual

and quadrennial year testing areas with a mean value of

approximately 55% (with quartile range of approx. 45% and

approx. 65%). The posterior distribution for the sensitivity

of the abattoir tests is approximately 67% (quartile range
60–80%) consistent with the 70% value suggested by

Downs et al. [6] (figure 6).

In both HRAs and LRAs, there may be a considerable

time before infection is detected. After breakdown, many

undetected, infected cattle may remain in the herd. Our simu-

lations show that only approximately 45% of detectable

infection is detected within 12 months of infection (i.e. by

the first test after introduction) in annual testing areas and
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approximately 60% is detected in quadrennial testing areas

within 48 months. In both areas, approximately 25% are

missed by routine surveillance. Once a herd is OTFW, it is

subjected to movement restriction and follow-up tests until

the herd is deemed clear of infection. The duration of these

restrictions or ‘episode length’ was calculated in our model

and compared with the data held in the national testing data-

base. Our simulations show a consistency between HRA and

LRAs with approximately 80% of episodes lasting 12 months

or less. The longest recorded outbreak is shorter than

approximately 30% of simulated epidemics; this may be

owing to changes in farm management post-breakdown

that are not reflected in the model, but are effective in

reducing the overall episode length.

The posterior estimate for a, the external force of infection,

is approximately 5 � 1027 new infections per susceptible

animal per day. This rate is lower than the cattle-to-cattle trans-

mission; however, the overall impact of a remains high, as a is

active over the entire residence time of a susceptible animal in
HRAs, whereas an infectious animal is only active over its

infectious period until removal owing to death or export.

Thus, both internal and external factors appear to be important

in driving the observed breakdown patterns.

The 95% credible intervals for the posterior predictive esti-

mates for R0 in HRAs and LRAs are 1.321.9 and 0.621.4,

respectively. This is similar to previous estimates of R0, but as

it directly incorporates the distribution of herd sizes in each

area, differs from the estimates of high R0 for large herds

found in a previous analysis [14]. This difference may be due

to our consideration of a timeframe after the rapid expansion

of annual testing areas (see the electronic supplementary

material, figure S2), and bears further investigation.
4. Discussion
Our fitting approach derives from the principle of ergodicity,

i.e. the distribution of outcomes across multiple outbreaks
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provides the same information as the distribution of obser-

vations of a single system if we could observe it over all

time. It effectively assumes a stationary outbreak distribution

even though the national epidemic itself is expanding.

Despite the individual differences between herds, our com-

parison shows that there is sufficient information in this

one statistic to reproduce key outputs consistent with

models that use more detailed outbreak data. This approach

also has some advantages over ABC, where model selection

has known technical challenges [28]; here, the calculation of

an explicit likelihood simplifies model selection, albeit at

the cost of a simplified comparison.

Our analysis shows that, broadly speaking, in both areas

simple models fit well, with only a slight preference for grea-

ter heterogeneity in HRAs and herd-level heterogeneity

strongly rejected. These small differences imply that our

model selection outcomes are indicative only rather than

conclusive statements in themselves. Differences in the
transmission rates associated with super-spreaders do suggest

that, should these results be supported by further evi-

dence, there may be considerable value in identifying these

individuals in controlling the disease.

The relative efficacy of abattoir inspection and routine

testing has previously been directly estimated using more

extensive data on the time course of the epidemic [14], and

our estimates using a more compact summary of the data

are similar. While our estimate of net abattoir testing sensi-

tivity is based both on the probability of inspection (i.e.

proportion of removed cattle moving to slaughter) and detec-

tion, it is likely that it is dominated by the latter—the most

common cattle life history involves direct move to slaughter

from the birth premises [29,30] and of those that move

more frequently, many are younger animals moving to low-

risk finishing units [31]. Significant savings can be made by

reducing the extent of routine herd testing in LRAs as the

risk of onward transmission is low, and therefore missed
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infections are likely to have little impact, consistent with

other findings [26]. However, while the sensitivity of the

SICCT test is poor, it is likely to result in more rapid identifi-

cation of breakdown herds, reducing the risk of onward

transmission. The impact of rapid identification on between

herd transmission must be explored more thoroughly,

especially in HRAs. Despite dramatic differences across the

model tested, estimates of the sensitivities of testing and

the role of external infections remains broadly and encoura-

gingly similar, suggesting that further model refinements

coming at higher computational cost are unlikely to change

our estimates of these important parameters.

While it is not possible to attribute the source of the exter-

nal force of infection based on the model alone, badgers are

likely to be at least partially involved. At introduction, in

most herds, the force of infection owing to external causes

is considerably lower than the within-herd force of infection

suggesting cattle-to-cattle transmission is usually dominant.

Previous low estimates for the role of interherd transmission

in sustaining the national epidemic [32] support the view that

only a few herds are responsible for onward transmission to

LRAs, and a self-sustaining cattle epidemic unlikely. Thus,

the balance of internal and external factors would suggest

that any control programme must consider both mammalian

hosts in order to succeed. These, however, are better addressed

by integrated models that consider both within-herd and

between-herd transmission.

In this paper, we used a constant value for the external force

of infection, because the outbreak size has a weak dependence
only on the size of the herd (figure 2). However, external factors

may also vary with herd size; for example, nose-to-nose contact

with other herds may also increase with fence length, as might

the total grazing area and therefore potential exposure to

infected badgers. Exploring these relationships could be done

through examination of land-use data as has been done for

foot and mouth disease [33] and badger density estimates

[34]. Another consideration that stands out is the difference

in exposed period across the two areas: one possible expla-

nation may be that differences in infecting route and dose

influence the duration of the exposed state.

Simple models such as presented here are of course a car-

icature of the true epidemiological situation; individual herds

will vary in structure and composition, and explicit herd out-

break histories could be exploited in more detailed studies.

Despite the partial nature of the likelihood that we adopt,

we have shown that it captures essential elements of the

transmission process. As such data as we use here (outbreak

size and age structure) are much more likely to be collected

for other disease systems, the approach outlined in this

paper has the potential for application across a wide range

of infectious diseases.
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