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Abstract

Microorganisms often form multicellular structures such as biofilms and structured colonies that

can influence the organism’s virulence, drug resistance, and adherence to medical devices.

Phenotypic classification of these structures has traditionally relied on qualitative scoring systems

that limit detailed phenotypic comparisons between strains. Automated imaging and quantitative

analysis have the potential to improve the speed and accuracy of experiments designed to study

the genetic and molecular networks underlying different morphological traits. For this reason, we

have developed a platform that uses automated image analysis and pattern recognition to quantify

phenotypic signatures of yeast colonies. Our strategy enables quantitative analysis of individual

colonies, measured at a single time point or over a series of time-lapse images, as well as the

classification of distinct colony shapes based on image-derived features. Phenotypic changes in

colony morphology can be expressed as changes in feature space trajectories over time, thereby

enabling the visualization and quantitative analysis of morphological development. To facilitate

data exploration, results are plotted dynamically through an interactive Yeast Image Analysis web

application (YIMAA; http://yimaa.cs.tut.fi) that integrates the raw and processed images across all

time points, allowing exploration of the image-based features and principal components associated

with morphological development.
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A number of microorganisms, many of them well-known opportunistic pathogens, are able

to form highly structured biofilms and multicellular communities (1–4). The formation of

these complex and well differentiated structures is thought to increase their resistance to

antimicrobial treatments (5) and has been shown to be a key factor in persistent infections

(1). Some strains of Saccharomyces cerevisiae, a non-pathogenic model organism, also

display structured colony morphologies (5) with the characteristics of microbial biofilms,

including the presence of an extracellular matrix composed largely of complex

polysaccharides (6–8), the development of channels in the colony interior (6), and the use of

cell-cell communication in colony development (9). The genetic tractability and availability

of numerous resources (10) not available for other biofilm forming organisms makes S.

cerevisiae an attractive organism in which to study the development of complex

morphologies, with the goal of ultimately uncovering the molecular mechanisms underlying

biofilm formation (11).

While studies aimed at characterizing the variation in colony morphology in S. cerevisiae

have been as objective as possible, qualitative classification schemes, such as having a

single investigator categorize colonies by eye, are still widely used (12–14). Image analysis

tools have also been applied to the automated analysis of yeast colonies. The image analysis

platform ImageJ (15) offers tools for processing and quantifying colony images (16), and the

image analysis tool CellProfiler (17) has been used to segment colonies on agar plates and

group them based on shape, size, and color. Methods and software for quantifying colony

growth combined with statistical analysis have also been presented in the literature (18,19).

Other model organisms have also been subjected to quantitative, image-based

characterization and morphological classification. For example, image analysis has been

applied to the automated screening of a variety of phenotypes (including morphology) in

Caenorhabditis elegans (20), and recently an application similar to ours was applied to the

study of filamentous fungi using a set of over 30 morphological features (21).

Here, we describe an automated image analysis pipeline (Figure 1) that facilitates the

quantitative study of colony morphology dynamics in large, time-lapse data sets. We start

with automated image processing and then extract a large, generic set of quantitative

descriptors. The combination of high-dimensional feature representation together with a

sparse, supervised logistic regression-based classification model is a powerful platform for

the analysis of colony morphology. We have also built a web-based application to facilitate

the intuitive exploration of the original raw and segmented time series images, the results of

Principal Component Analysis (PCA), and hundreds of individual quantitative features. We

test the accuracy of our method by using it to computationally distinguish the complex

(fluffy) and unstructured (smooth) colony phenotypes (6,22) based on image data from both

single time points and fine resolution time-lapses.
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Materials and methods

Yeast strains and growth conditions

Standard media and methods were used for the growth and genetic manipulation of S.

cerevisiae (23). All colonies were grown and imaged in a 30°C warm room on YPD (2%

glucose) agar plates. Strains used in this study are described in Table 1.

Colony imaging

Colonies used to distinguish the fluffy and smooth phenotype based on a single time point

were generated by manually micro-manipulating individual cells into a gridded pattern

separated by 10 mm in both the x- and y-axis. Colonies were imaged after five days of

growth using a PowerShot SX10IS camera outfitted with a Raynox DCR-250 macro lens

(Yoshida Industry Co., Ltd. Tokyo, Japan).

Colonies used for automated, time-lapse imaging were generated by depositing single cells

12.7 mm apart in a checkerboard pattern with a FACSAria II cell sorter (BD Biosciences,

Franklin Lakes, NJ) (Supplementary Materials). These colonies were imaged every 14 min

for 5 days using a 5d Mark II camera outfitted with a MP-E 65mm 1–5x macro lens

(Cannon, Tokyo, Japan). The camera was attached to a custom built 2-axis gantry that

moves the camera over the entire set of plates (Supplementary Materials). Camera settings

were held constant at an exposure time of 0.2 s and aperture of f/16. White balance was set

using a gray card. Focus was held constant.

Generating quantitative colony phenotype signatures using image features

The first step in our automated pipeline involves segmenting the colony area as the region of

interest (Supplementary Materials) and extracting features that describe the colony shape,

size, intensity, fractal, and texture. We segment using a straightforward intensity-based

global thresholding operation (24) and then apply an additional size constraint to prevent

detecting excessively small or large objects, which can arise from debris on the plate or

camera lens flare. We also perform image border clearing to remove false segmentations

that occur when colonies located close to plate borders have refraction from the edge of the

plate incorrectly assigned to the colony. This first set of segmentation masks (Figure 2A) is

used for the first round of feature extraction. The shape and size categories include basic

descriptors for object morphology (e.g., area, convex area, and roundness). Intensity-based

features provide quantitative measures of the intensity distribution (e.g., intensity percentiles

and deviation), whereas the texture features [e.g., intensity deviations in local area, texture

features from gray-level co-occurrence matrices (25), histogram of oriented gradients (26),

and local binary patterns (27)] take the spatial information into account.

The next step involves an additional round of segmentation to detect shapes inside the

colonies, visible as intensity changes in 2-D projection images and the extraction of a

different set of features from the segmented images. For this segmentation we use a

difference of Gaussians segmentation (28), where the difference of two low-pass filtered

versions of the original image (highly blurred and slightly blurred) is thresholded. The two

low-pass filters serve as a band-pass filter and the resulting binary image contains areas
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where intensity changes exist, but in which sharp variation, such as noise, is suppressed

(Supplementary Materials). Ideally, the resulting segmentation mask would be empty for a

smooth colony and capture the colony shape for a fluffy colony. The features extracted from

these second segmentation masks include descriptors containing information about the

shapes detected inside the colony (e.g., area of the mask relative to the colony size, mask

area in the center and border of the colony, number of objects in the mask, object sizes and

deviations).

The combined feature set serves as a quantitative signature of colony phenotype, with

colonies derived from the same strain or belonging to the same phenotypic class sharing

similar characteristics among many of the features (Figure 2D). A detailed description of all

427 features is given in the Supplementary Materials. The feature list can be extended or

trimmed without changes to the subsequent classification process.

Supervised colony phenotype classification

To transform these quantitative features into biologically meaningful phenotype

information, we used a supervised classification strategy. To circumvent the need to specify

the features used, we chose a classifier model with built-in feature selection, specifically the

l1 regularized logistic regression (29,30), which produces sparse solutions and thus includes

only a subset of the features in the model.

In logistic regression based classification, a feature vector x can be classified based on the

conditional probability of belonging to the fluffy class given by the logistic regression

algorithm as follows:

[Eq. 1]

where p(x) is the probability for the positive class given the feature vector x [i.e., p(x) =

P(fluffy|X = x)], and the parameters β0 and β are estimated by maximizing the l1 penalized

log-likelihood

[Eq. 2]

where F denotes the fluffy class training samples, S is the smooth (non-fluffy) class training

set, and λ is the parameter regularizing the sparsity of the solution. In practice, the solution

is typically very sparse, leading to computationally efficient models (31), with only a small

subset of features receiving a nonzero weight in vector β. Further, the use of logistic

regression enables the extension to multi-class cases with more than two different strains or

phenotypes.

Quantitative analysis of colony spatiotemporal dynamics

Time-lapse image sequences are processed frame by frame as individual colony images once

the colonies are large enough to be visible in the image (approximately one day of growth).

The most obvious effect of colony growth is colony size, which also affects the
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quantification process. All features are extracted in the same manner from both small and

large colonies. Feature trajectories are visualized by reducing the dimensionality with

principal component analysis. Finally, a spatiotemporal profile of the yeast colony’s

development is built in which the spatial locations of the colony shapes are visualized over

time by taking a cumulative sum of the colony shape segmentation masks. Details can be

found in the Supplementary Materials.

Web application for data browsing

We have developed the Yeast Image Analysis (YIMAA) web application that serves as an

interface for the original and binary segmentation images together with the time-lapsed

plotting of quantitative phenotypic results. YIMAA is built using the open source

components Highcharts. js, jQuery, and jQuery plugins. The design of YIMAA focuses on

interactivity and integration of images with dynamic time series plotting. Quantitative

results are retrieved using AJAX. Image data are stored as assets organized by experiment

and fetched on demand. The YIMAA web application is available at http://yimaa.cs.tut.fi.

The source code for the project, including the implementation of the image analysis pipeline

can be found at http://code.google.com/p/yimaa/.

Results and discussion

Our aim was to develop a generalized method for quantitatively representing the properties

of microbial colonies. To accomplish this, we selected a general feature set that is not

tailored to a single strain or classification task. Extracting a large set of image-derived

features that measure different characteristics of the colony also helps ensure that changes in

the experiment or objects being studied (e.g., different magnifications, illumination settings,

or strains) do not require significant alterations to the computational framework. Such

generalization will facilitate its use in a variety of applications.

Our own research on yeast colony morphology has two experimental designs in which this

general framework could be applied. First, the classification of colonies into smooth and

fluffy classes at a single time point, which was performed manually in our previous work

(22), could be performed more objectively and in higher throughput using image-derived

features. Second, an automated image analysis pipeline could be used to extract quantitative

features for many individual colonies as they grow and change shape over a series of time-

lapsed images. In this framework, features extracted from the images form a vector of

numerical values for each colony, where an element of the vector represents a feature value

at the time point sampled. Both descriptions of colony morphology could be used to inform

the genetic analysis of a relatively large number of yeast strains under a variety of

environmental conditions.

To assess the discriminating power of our morphological signatures, we first tested whether

the method could distinguish the smooth and fluffy morphologies using static images

acquired at a single time point (Figure 2). Smooth (YPG339, YPG 344, YPG348, YPG352,

YPG356 and YPG360) and fluffy (F7, F11, F18, F25, F29, F31, F45, F47 and F49) yeast

strains (Table 1) were grown on solid YPD medium. Twenty replicates (colonies) of each

strain were photographed daily, and day five was selected as the static time point. Colonies
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that failed to grow were removed from subsequent analysis, yielding a data set of 251

colony images. This data set was analyzed and uploaded to the YIMAA web application.

Representative images are shown in Figure 2A, with a fluffy colony in the upper left and a

smooth colony in the upper right. The ternary-valued segmentation images (below the

colony images) illustrate the region-of-interest identified by two rounds of segmentation,

with the gray area corresponding to the intra-colony shapes (Methods). Quantitative features

were then extracted from the images and normalized to zero-mean and unit variance.

We determined the average classification accuracy (98.79%) by performing a 4-fold cross

validation for 5000 repetitions with Monte Carlo random sampling on the 251 colony

images described above. The upper panel of Figure 2B illustrates the distribution of

classification accuracies for the validation partitions in the 5000 loop trials. The lower panel

of Figure 2B shows the distribution of probability values (also obtained from the 5000 cross

validation repetitions), where the probability of a sample x belonging to the fluffy class,

p(x), is given by the logistic regression classifier. Classification is performed by dividing the

probability space into two classes. In practice, p(x) < 0.5 corresponds to a smooth

classification. Since the classifier is learned using 3/4 of the samples chosen randomly at

each repetition, the actual classification model varies between the trials and the values of

model weight vector β change within the validation loop. To analyze the model behavior

and learn which features are most informative, we collected the model parameter values in

all 5000 trials. As expected, only a small number of features were used in the classifier

model during the cross validation, with six features receiving a nonzero weight value in the

model weight vector β (Supplementary Materials).

Next, we hierarchically clustered (in feature space) the colony image samples using the

subset of six features shown to contribute to the classifier model during cross validation. The

clustering (Figure 2C) showed a clear separation between the fluffy and smooth strains, and

the heat map reveals that colonies with the same phenotype share similar feature values. The

selection counts confirm that, as expected based on the applied regularization, the logistic

regression classifier produced a sparse model using only a small subset of the features. Thus,

the classification results obtained with the regularized logistic regression classifier show that

the features comprising phenotypic signatures can be used as a basis of classifying complex

phenotypes in an automated manner when training samples are available.

Interestingly, the histogram of probability values in Figure 2B appeared to consist of two

main distributions (large peaks on both the smooth and fluffy side) with additional, smaller

peaks on each side. Such behavior suggested the existence of phenotypic subclasses or

outlier samples. To explore this possibility, we analyzed the images that comprised these

small peaks manually and discovered that they corresponded to cases of respiratory deficient

mutants (RDM) that had arisen spontaneously from the corresponding parental strain. Since

the ability to respire drastically affects colony size as well as the ability to form fluffy

colonies (22), we removed all images from RDM samples. Repeating the classification

procedure described above on the remaining 238 images resulted in a near perfect average

classification accuracy (Figure 2D), with only 5 false predictions out of 300,000

classifications during cross validation. These probability distributions included only two

modes, and together with the improved classification accuracy, suggested that the
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respiratory deficient mutants were indeed not covered by the two-class model. Finally, we

tested whether the logistic regression classification framework could be used to define a

third class consisting of respiratory deficient mutants (13 samples). With a limited sample

size, we chose a simple leave-one-out cross validation, yielding 96.41% overall accuracy,

with all fluffy and smooth samples classified correctly but only 4/13 RDM samples

classified correctly. Thus, in this data set considering the RDM samples separately gives

improved classification accuracy for the fluffy and smooth phenotypes, but evaluating the

applicability of the proposed framework for automated classification of RDM samples

would require a larger data set.

To test the ability of the method to analyze the spatiotemporal dynamics of colonies as they

grow and change shape, we acquired a set of 18 time-lapse image sequences of 4 different

strains (FY4, F29, F45 and YO779), where each sequence contained between 1 and 3

colonies. Features were then extracted over the course of the time-lapse, providing a

quantitative representation (in feature space) of the morphological dynamics of colonies

over time (Figure 3A). Examples of fluffy and smooth colonies at different times during

development are shown in Figure 3B. We also generated strain summaries for each strain at

each time point by taking the median value for each feature across all replicates. Both the

feature profiles of each individual replicate (colony) and these strain summaries were then

analyzed by principal component analysis, allowing the trajectories in feature space as the

colony develops to be visualized in reduced dimensions (Figure 3C). The time-lapse results

(Figure 3) demonstrate that the feature dynamics quantified for fluffy and smooth colonies

differ in the two example features, and the PCA plots reveal different feature trajectories for

different phenotype.

In addition to the image analysis software, we also developed a web application (YIMAA,

Supplementary Materials) that allows investigators to easily explore the results of the

quantitative analysis alongside the raw input images from their experiment. The default page

plots the PCA analysis results for an example from this study (strain F29). Users can also

select multiple strains from the drop down list and their PCA results are plotted instantly.

The plot can be animated to display points in order across the time series, allowing the user

to explore the PCA values over time. This animation has pause and play functions. As the

plotting advances, the gallery container shows the raw and segmented image of the most

recently plotted point. YIMAA can also plot a time series of any of the several hundred

individual features captured by the image analysis pipeline, and clicking on any time point

brings up the associated images. Within the gallery panels, choosing a second strain permits

side-by-side image comparison. A user guide and screen shots of the YIMAA web

application are included in the Supplementary Materials.

Thus, we have developed a platform for the quantitative analysis of yeast colony

morphology and demonstrated its use for visualizing changes in colony morphology in

feature space. We have also shown that these quantitative colony morphology signatures can

be used for supervised classification of colony phenotypes. These methods add statistical

rigor to the analysis of colony morphology and will enable the use of a variety of

computational tools, such as the classification and visualization tools described here, for the

automated analysis of colony shapes. The automated aspect of the software can also enable
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studies at scales not possible using manual scoring (i.e., extremely large numbers of

images). Finally, a web application has been built for easy and rapid sharing of results. This

integrative environment for data exploration can be extended to other large-scale image

analysis projects and to other colonyforming microorganisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Method summary

Our platform enables the automated, quantitative analysis of yeast colony morphology by

extracting a relatively large number of features from colony images followed by

supervised classification in feature space. This computational approach provides an

alternative to subjective scoring of colonies, is compatible with high-throughput and

time-lapse experimental designs, and provides a web-based application for data

exploration.
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Figure 1. The components of the platform for automated quantitative analysis of yeast colonies

Ruusuvuori et al. Page 11

Biotechniques. Author manuscript; available in PMC 2014 April 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Phenotype analysis of colonies from static images
(A) Example images of fluffy and smooth phenotypes and the corresponding segmentation results. (B) Classification accuracies

(top) and probability values (bottom) for class representing the complex phenotypes during the 5000 repetitions. (C)

Hierarchical clustering of the selected feature subspace shows how the features chosen by the logistic regression classifier

separate the phenotypes and how the colonies within a phenotype show similar feature patterns. (D) Classification accuracies

(top) and probability values (bottom) for class representing the complex phenotypes during 5000 repetitions of hold-out error

estimation after excluding respiratory deficient mutants.
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Figure 3. Analysis of spatiotemporal dynamics of yeast colonies extracted from time course data
(A) Examples of the features mean intensity and energy during a time-lapse measurement; green lines are for three replicates of

the complex F29 strain and blue for the smooth strain YO779. (B) Snapshots of colonies of F29 (top) and YO779 (bottom) at

three times during development (indicated by bold vertical lines in (A). (C) Dimensionality reduction of time-lapse feature

trajectories using principal component analysis. The trajectories shown are for strain summaries, which are obtained by taking

median across all individual colonies at each time point. Strains F29 and F45 are fluffy, while strains S1 (FY4, Table 1) and S2

(YO779, Table 1) are smooth.
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Table 1

S. cerevisiae strains used in this study.

Name Genotype Source

FY4 MATa, Prototroph F. Winston (32)

F7 (YPG385) MATa hoD::HphMX6, SPS2:EGFP:KanMX4 This study1

F11 (YPG407) MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

F18 (YPG490) MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

F25 (YPG542) MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

F29 (YPG586) MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

F31 (YPG583) MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

F45 (YPG725) MATa hoD::HphMX6, SPS2:EGFP:NatMX4, unmapped serine
auxotrophy

A. Dudley (22) 1

F47 (YPG746) MATa hoD::HphMX6, SPS2:EGFP:KanMX4 This study1

F49 (YPG755) MATa hoD::HphMX6, SPS2:EGFP:KanMX4 This study1

YPG339 MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

YPG344 MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

YPG348 MATa hoD::HphMX6, SPS2:EGFP:KanMX4 This study1

YPG352 MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

YPG356 MATa hoD::HphMX6, SPS2:EGFP:KanMX4 This study1

YPG360 MATa hoD::HphMX6, SPS2:EGFP:NatMX4 This study1

YO779 MATa hoD::HphMX6, SPS2:EGFP:NatMX4, unmapped serine
auxotrophy, r- or r0

This study; a respiratory deficient isolate of
F45

1
Haploid segregant of a cross between UC5 (33) and DBVPG1853 (34)
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