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Dietary deficiency of ω3 fatty acid is associated with impaired 
cognitive function. For example, rats on ω3 fatty-acid–deficient 
diet took significantly longer to locate the platform during the 
swimming test in the Morris water-maze (MWM) test.6 Previous 
studies report that dietary ω3 fatty-acid deficiency led to signifi-
cantly shorter latencies in the passive-avoidance test in rats3 and 
increased time in the Barnes circular test in mice.7 However, ω3 
fatty-acid–deficient diet increased the time and number of entries 
in the maze-learning task in a single generation of mice.22 These 
findings may suggest that ω3 fatty-acid–deficient diet influences 
cognitive function in animals by impairing their performance in 
spatial-recognition memory tasks.

Previous studies have shown that rodents raised on an ω3 fatty-ac-
id–deficient diet over 2 or 3 generations have impaired learning per-
formance in the MWM task.17,25 Dietary ω3 fatty-acid deficiency in 
the F2 and F3 rats prolonged the escape latency and delayed acquisi-
tion of the MWM task compared with those of rats fed an ω3 fatty-
acid–sufficient diet for both generations.17 In a subsequent study, 

F3 rats fed on ω3 fatty-acid–deficient diet since birth or at weaning 
had a lower mean swimming speed to locate the platform during 
the MWM task.18 Previous studies show that feeding mice an ω3 
fatty-acid–deficient diet for 3 generations reduced swimming perfor-
mance in the MWM test.25 Interestingly, feeding rats suboptimal lev-
els of docosahexaenoic acid (DHA) for four generations significantly 
prolonged latencies in the MWM task compared those of rats fed 
higher levels of DHA.12 These results suggest that multigenerational 
feeding of an ω3 fatty-acid–deficient diet impairs performance in 
tests of spatial-recognition memory.

Importantly, after several generations of ω3 fatty-acid defi-
ciency, switching rats to a sufficient diet at birth restored their 
performance on the spatial-recognition task to normal.18 Similar-
ly, cognitive impairment in the brightness-discrimination test in 
mice after 2 generations of dietary ω3 fatty-acid deficiency was re-
versed by providing ω3 fatty-acid–sufficient diet after weaning.9 
Cognitive performance in the MWM test did not differ in mice 
provided an ω3 fatty-acid–sufficient diet only and those switched 
at 7 wk of age from an ω3 fatty-acid–deficient diet to a sufficient 
diet.4 Overall, these findings indicate that the cognitive impair-
ments due to ω3 fatty-acid deficiency are reversed by providing a 
diet containing sufficient amounts of ω3 fatty acids.

Previous studies have been shown that the cognitive and mem-
ory deficits of a transgenic mouse model are due to increased 
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arm of the maze. Y-maze testing consisted of 2 trials separated 
by an interval of 1 h. The first trial was 10 min in duration and 
allowed the mouse to explore only 2 arms (the start and familiar 
arms) of the maze, with the third arm (novel arm) blocked. Af-
ter 1 h, the second trial was conducted; mice were placed in the 
same starting arm as in trial 1, with free access to all 3 arms for 
5 min. Trials were recorded by using a ceiling-mounted camera. 
Recordings were then watched to count the number of entries and 
the time spent in each arm. Y-maze performance was favorable 
when the number of entries and time spent in the novel arm were 
greater than those in the other arms. The total number of arm 
entries and time (in seconds) spent in the novel arm are indicator 
of spatial working memory.19

Statistical analysis. Two-way ANOVA with repeated measures 
on one variable followed by a post hoc least significant differ-
ence test (Statistica 7, StatSoft, Tulsa, OK) was used to assess 
performance in the Y-maze test between F3 groups. All data are 
reported as mean ± SEM; statistical significance was defined as a 
P value of less than 0.05.

Results
Body weight and food and water intake. Differences in mean 

body weights and food and water intake between the 4 dietary 
groups were not significant (data not shown). Similarly, body 
weights and food and water intake did not differ between the 
naproxen-treated groups (data not shown).

Y-maze test. Effects of diet reversal on cognitive function. Re-
garding the effects of dietary ω3 fatty-acid supplementation, 
two-way ANOVA indicated a significant (F3, 56 = 5.677, P < 0.05) 
interaction between the preweaning and postweaning diets on 
the number of novel arm entries. The total number of novel arm 
entries was significantly (P < 0.05) higher in F3 SUF–SUF mice 
(15.6 ± 0.7 entries) than in F3 DEF–DEF mice (11.8 ± 0.8 entries). 
F3 SUF–DEF mice had significantly (P < 0.05) fewer novel arm 

prostaglandin activity from formation of cyclooxygenase (COX).13 
Dietary ω3 fatty acid deficiency has been suggested to increase 
prostaglandin activity in animals.16 Therefore, the administration 
of a COX inhibitor may protect against cognitive impairment in 
the elevated plus-maze task by inhibiting the synthesis of prosta-
glandin.11 Treatment with a COX inhibitor improved open-field 
exploration in mice by inhibiting the synthesis of prostaglandin.23 
Similarly, COX inhibitors such as celecoxib inhibit prostaglandin 
E2 levels and consequently improve cognitive performance in 
rats as assessed by the elevated plus-maze test.5 In addition, the 
administration of naproxen, another COX inhibitor, was protec-
tive against motor and cognitive impairment in rats by decreasing 
oxidative stress.14 Moreover, naproxen reduced oxidative stress 
levels and prevented neurologic disorders, especially memory 
deficits, in an animal model of excitotoxic neuronal injury.20 Clear-
ly, these findings suggest that COX inhibitors may protect against 
cognitive and memory deficits in animals by inhibiting prosta-
glandin activity.

Clarifying the differences in cognitive function between the 
first and third generations of mice likely would improve our un-
derstanding of the factors contributing to differences in cogni-
tive deficits due to dietary ω3 fatty-acid deficiency. To this end, 
we raised and maintained third-generation mice on a diet either 
sufficient or deficient in ω3 fatty acids or on a cross-over diet. 
Spatial-recognition memory in the F3 mice was tested by using 
the Y-maze. The aim of our transgenerational studies was to de-
termine whether dietary ω3 fatty-acid deficiency causes severe 
cognitive impairment in F3 mice. In addition, these studies exam-
ined the hypothesis that the cognitive impairment of F3 mice on 
an ω3 fatty-acid deficient diet results from increased prostaglan-
din activity due to eicosanoid production from the arachidonic 
acid (AA)–COX pathway. Furthermore, we hypothesized that 
treatment with naproxen, a COX inhibitor, would improve cogni-
tive function as a result of inhibiting prostaglandin activity.

Materials and Methods
Animals and diet. C57BL/6J breeder mice (n = 16, 8 male and 8 

female; age, 10 wk) were purchased from the Australian Resource 
Centre (Western Australia). These mice were bred through 3 gen-
erations in the Central Animal House (La Trobe University, Victo-
ria, Australia) on diets either deficient (DEF) or sufficient (SUF) in 
ω3 fatty acids. All diets were made by Glen Forest Stock Feeders 
(Western Australia, Australia; Table 1). At postnatal day 21, male 
third-generation (F3) offspring were kept on the dam’s diet or 
switched from dam’s diet to the opposite diet, creating 4 groups 
(F3 SUF–SUF, F3 DEF–DEF, F3 SUF–DEF, and F3 DEF–SUF; n = 
15/group). In addition, 2 groups that remained on the dam’s diet 
were treated with a COX inhibitor (naproxen, Sigma-Aldrich, St 
Louis, MO) at 0.07 mg/mL in drinking water (F3 SUF–SUF[+] 
and F3 DEF–DEF[+]; n = 15/group). At 19 wk of age, spatial-
recognition memory was tested in a Y-maze task. All procedures 
related to animal care and handling was approved by the Animal 
Ethics Committees of La Trobe University (approval no. AEC09-
02-P).

Y-maze test. The spatial-recognition memory of the F3 mice was 
tested by using the Y-maze, which had 3 identical arms of equal 
size: the start arm, in which the mouse is first placed (always 
open); the familiar arm (always open); and the novel arm, which 
was blocked during the first trial but open during the second trial. 
Different visual cues were placed on the wall at the end of each 

Table 1. Composition (g/100 g) of the treatment diets

Sufficient ω3 
fatty acid diet

Deficient ω3 
fatty acid diet

Sucrose 10.692 10.692
Casein (acid) 20.000 20.000
Cellulose 5.000 5.000
Starch 39.750 39.750
Dextrinised starch 13.200 13.200
d-,l methionine 0.300 0.300
Lime (fine calcium carbonate) 1.312 1.312
Salt (fine sodium chloride) 0.259 0.259
Potassium dihydrogen phosphate 0.686 0.686
Potassium sulphate 0.163 0.163
Potassium citrate 0.248 0.248
Choline chloride 50% w/w 0.250 0.250
AIN93G vitamins 1.000 1.000
AIN93G trace minerals 0.140 0.140
Safflower oil (high linoleic) 5.500 7.000
Flax oil 1.000 0
Tuna oil 0.500 0

Total 100 100
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spent in the novel arm compared with the familiar and start arms 
in the Y-maze task. In previous studies, antiinflammatory treat-
ment with COX inhibitors decreased the risk of memory impair-
ment and reduced the number of plaques in neurologic diseases 
such as Alzheimer disease.10,15 Together these findings suggest 
that treatment with a COX inhibitor may protect against memory 
impairment in F3 DEF–DEF(+) mice by inhibiting the production 
of prostaglandins.

However, spatial-recognition memory did not differ between 
F3 SUF–SUF(+) and F3 SUF–SUF mice. This result perhaps can 
be explained the fact that when ω3 fatty acid is sufficient, DHA 
levels accumulate rather than AA levels.8 For example, DHA 
supplementation in mice decreases brain AA levels.24 Previous 
studies have suggested that the fish oil rich in DHA reduces the 
availability of AA.2 Therefore, reduced levels of AA in membrane 
phospholipids leads to in decreased prostaglandin E2 production 
and thus protects against deficits in spatial-recognition memory 
deficits even in F3 SUF–SUF(+) mice.

The current study showed that 16 wk of an ω3 fatty-acid–suf-
ficient diet is sufficient to reestablish spatial-recognition memory 
in F3 DEF–SUF mice. This finding suggests that several weeks 
are needed for ω3 fatty acids, especially DHA, in brain mem-
branes to recover to normal levels. For example, young rats on 
a DHA-deficient diet for 2 generations required 8 wk of feeding 
an ω3-adequate diet for brain DHA levels to normalize.17 This 
result suggests that providing sufficient time is important to re-
store DHA levels in the brain and consequently improve cog-
nitive function. Therefore, large amounts of ω3 fatty acids over 
prolonged periods are necessary for brain DHA levels to recov-
er, given that the recovery of DHA levels in the brain nervous 
system is slow compared with that in other organs.1,26 Clearly, 
strategies to promote the recovery of brain DHA are important to 
prevent cognitive impairments, because as we showed in the cur-
rent study, the F3 DEF–SUF mice demonstrated an improvement 
spatial-recognition–memory performance after 16 wk of receiving 
ω3 fatty-acid–sufficient diet.

Overall our current results suggest that the cognitive impair-
ment caused by ω3 fatty-acid–deficient diet in the F3 DEF mice 
appears to be mediated by products of the AA–COX pathway 
and can be prevented by dietary repletion with ω3 fatty acids or 
by COX inhibition.
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