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Abstract

Wildlife data gathered by different monitoring techniques are often combined

to estimate animal density. However, methods to check whether different types

of data provide consistent information (i.e., can information from one data

type be used to predict responses in the other?) before combining them are

lacking. We used generalized linear models and generalized linear mixed-effects

models to relate camera trap probabilities for marked animals to independent

space use from telemetry relocations using 2 years of data for fishers (Pekania

pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating

how camera detection probabilities are related to nearby telemetry relocations

and (2) whether home range utilization density estimated from telemetry data

adequately predicts camera detection probabilities, which would indicate consis-

tency of the two data types. The number of telemetry relocations within 250

and 500 m from camera traps predicted detection probability well. For the

same number of relocations, females were more likely to be detected during the

first year. During the second year, all fishers were more likely to be detected

during the fall/winter season. Models predicting camera detection probability

and photo counts solely from telemetry utilization density had the best or

nearly best Akaike Information Criterion (AIC), suggesting that telemetry and

camera traps provide consistent information on space use. Given the same utili-

zation density, males were more likely to be photo-captured due to larger home

ranges and higher movement rates. Although methods that combine data types

(spatially explicit capture–recapture) make simple assumptions about home

range shapes, it is reasonable to conclude that in our case, camera trap data do

reflect space use in a manner consistent with telemetry data. However, differ-

ences between the 2 years of data suggest that camera efficacy is not fully con-

sistent across ecological conditions and make the case for integrating other

sources of space-use data.

Introduction

Making use of complementary information from different

data sources is a common theme in recent advances in

statistical modeling in ecology. Examples include combin-

ing marked individual data and population surveys to

estimate integrated population models (Besbeas et al.

2002; Johnson et al. 2010), and combining camera trap

data and fecal DNA data (Gopalaswamy et al. 2012) or

mark-resight and telemetry data (Ivan et al. 2013; Royle

et al. 2013; Sollmann et al. 2013a,b) to estimate animal

density using spatial capture–recapture models.
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Estimating abundances and demographic parameters

from camera traps has become prominent in wildlife

research in the past two decades (Karanth and Nichols

1998). However, estimating abundance from camera trap

grids alone is difficult if the movement area of animals is

unknown. Recently developed spatial capture–recapture
models for camera traps with marked animals allow esti-

mation of activity centers under simple assumptions of

home range shapes and detection probabilities (e.g., ani-

mals have isotropic home ranges, and camera detection

probabilities are a function of the Euclidean distance

between camera traps and individual activity centers; Ef-

ford 2004; Royle and Young 2008). Incorporating teleme-

try data into the analysis can allow stronger information

about space use to provide better animal abundance (Ivan

et al. 2013; Sollmann et al. 2013a,b), as well as landscape

connectivity estimates (Royle et al. 2013).

However, what these and other efforts to combine data

types have in common is the assumption that different

data types are inherently consistent with each other (i.e.,

different types of data are measuring the same quantities,

without any biases relative to each other). This assump-

tion has gone largely untested and, in general, it should

not be taken for granted. For example, camera traps are

often baited, which may impact animal space use during

the camera trap deployment. Camera data and telemetry

data may be obtained at different times of day, across dif-

ferent seasons or sampling windows, or may be impacted

by different explanatory variables. In addition, heteroge-

neity between animals and/or cameras in detection proba-

bility may be difficult or impossible to estimate from

camera trap data alone. Thus, there is a need for investi-

gating how different data types are related and testing

whether they can be combined without additional

assumptions. In this study, we take the approach of hold-

ing camera trap capture and telemetry datasets apart from

the each other, and asking whether information from one

can predict responses in the other.

In our study system, extensive camera trap and teleme-

try data were gathered simultaneously for fishers (Pekania

pennanti; Fig. 1), a forest carnivore that is now uncom-

mon and rare in the western part of its range in North

America (Lewis et al. 2012). We asked two specific ques-

tions about the relationship between these types of data:

(1) how does the number of telemetry relocations near

camera traps predict camera detection probability, includ-

ing differences between sexes and seasons (Proximity

analysis)? and (2) does home range utilization density

(space-use frequency) estimated from telemetry data ade-

quately predict camera detection probability (Home range

analysis)? The first objective provides insight into camera

trap efficacy that is directly interpretable in terms of animal

activity near traps, which may be useful for determining

performance of the trapping grid in terms of spacing and

layout. The second objective evaluates whether camera

traps measure space use consistently to telemetry.

For the first objective, we considered several hypotheses

about factors that might shape the relationship between

animal activity near a camera trap and detection at that

trap. Male fishers have significantly larger home ranges

than females and perform more frequent movements in

search of mates and to defend territories (Zhao et al.

2012); thus, males will likely have access to more camera

traps within home ranges. If males and females have a

similar propensity to visit camera traps, we hypothesized

that males are more likely to be detected at camera traps

compared with females given the same number of nearby

telemetry relocations. Because the camera traps were bai-

ted using a combination of scent lures and venison, we

also hypothesize that detection probabilities would be

higher during the winter season, when food is scarcer.

Finally, we hypothesized that there may be heterogeneity

among animals in their propensity to be detected due to

differences in their ability to discover camera traps and/or

habituation to specific traps.

For the second objective, we hypothesized that the

utilization distribution should predict camera trap detec-

tion probability, possibly with differences between sexes.

Alternatively, if animals visit camera stations out of pro-

portion to predictions from home range space use, that

pattern could indicate that traps induce fundamentally dif-

ferent movement behaviors (e.g., avoidance or attraction

Figure 1. Adult female fisher (Pekania pennanti) photographed near

a den tree in the Sierra Nevada Mountains, California USA.
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to camera trap stations). For this objective, we chose a set

of models including the utilization distribution along with

other possible factors and performed model selection

using Akaike Information Criterion (AIC), AICc, and

QAIC. In general, because animals spend more time in

the core areas of their home ranges, they may be dispro-

portionately likely to find a camera trap there. In other

words, animals may know their core area in more detail

than outlying areas and hence they may encounter camera

traps in the core area more often than would be expected,

simply based on its size and the proportion of time spent

there. We evaluated several models representing this idea

using either a categorical variable for core/noncore areas

or a continuous variable for home range isopleths, as can-

didate variables for more complex models to explain cam-

era trap detections. We also considered models with

nonlinear relationships between utilization density and

detection probability. Finally, we considered heterogeneity

between animals in their propensity to be detected by

cameras and/or between individual cameras in their

propensity to attract animals.

Materials and Methods

Study area

The study area was the nonwilderness region of the Bass

Lake Ranger District in the Sierra National Forest, near

Oakhurst, California, and covered approximately

1150 km2. This area is topographically complex with ele-

vations ranging from 758 m to 2652 m. Primary tree spe-

cies include incense cedar (Calocedrus decurrens), white fir

(Abies concolor), ponderosa pine (Pinus ponderosa), sugar

pine (Pinus lambertiana), giant sequoia (Sequoiadendro

giganteum), black oak (Quercus kelloggii), and live oak

(Quercus spp.). The study area is part of the larger project

SNAMP, the Sierra Nevada Adaptive Management Pro-

ject, which was formed to evaluate the impact of strategi-

cally placed forest fuel treatments on wildlife (specifically

the California spotted owl, Strix occidentalis occidentalis,

and the fisher), water resources, forest health, and fire

prevention.

Trapping and radio telemetry

To obtain animals for telemetry, individual fishers were

live-captured in steel mesh traps (Tomahawk Live Trap

Company, Tomahawk, WI) with a plywood cubby box to

provide shelter. Trapping was focused during the fall and

winter seasons between October 2007 and September

2011. Each animal was fitted with a radio-collar (Holohil

Systems Model MI-2M, Ontario, Canada; Advanced

Telemetry Systems Model 1930 or 1940, Isanti, MN). All

radio collars were modified by attaching small bands

(0.5–1.0 cm) of infrared reflective tape (3M� ScotchliteTM,

St. Paul, MN) along the lengths of the antennas, which

were used to identify individual radio-collared fishers

detected at camera traps. Radio-collared fishers were sub-

sequently monitored and relocated 4–6 days/week

throughout the year by fixed-wing airplane (Thompson

et al. 2012). We assessed the accuracy or error associated

with aerial telemetry locations by calculating the distance

between the estimated locations obtained by the biologist

in the airplane and known locations of “test” collars at

fixed positions (n = 501 test collars). Mean error was esti-

mated at 338.9 m (range = 14.6–1219.8 m).

For this analysis, we only used 2 years of telemetry data

from the larger study: October 1, 2008–September 30,

2009 (Year 1) and October 1, 2009–September 30, 2010

(Year 2). During this period, 52 fishers (32 females and

20 males) were radio-tracked, of which 19 females and 7

males were tracked during both years.

Camera trap deployment

Automatic cameras (Silent Image Professional and Rapid-

fire PC85 series; RECONYX Inc., Holmen, WI) were sys-

tematically deployed near the center of 1 9 1-km grid

cells overlain on the study area (Year 1 = 341 locations;

Year 2 = 403 locations). It was not possible to survey all

1-km2-grid cells at the same time; the maximum number

of cameras deployed at one time was 60 (Year 1) and 85

(Year 2), and the patterns of camera deployment were

closely related to ease of access (e.g., snowpack during

winter). Placement of camera stations within 1-km2-grid

cells was determined based on the presence of habitat ele-

ments known important for fishers including presence of

mature or large diameter trees, moderate to steep slopes,

relatively high canopy cover (≥60%), and proximity to

permanent streams (Zielinski et al. 2004).

Camera trap stations were baited with a combination

of meat and scent lures. On each bait tree, the following

were attached: (1) a dark colored sock stuffed with veni-

son (140–250 g) and (2) 8–10 hard-shell pecans strung

onto wire. Peanut butter and Hawbaker’s Fisher Scent

Lure (Fort Loudon, PA) were smeared on the nut ring

and bait sock, respectively, and Caven’s “Gusto” long dis-

tance call lure (Minnesota Trapline Products, Pennock,

MN) was applied near the base of the bait trees and on

several nearby trees. Camera survey stations were visited

every 8–10 days over 32–40 days to refresh scent lures

and bait and to maintain camera units (Slauson et al.

2009).

Detections of collared fishers were extracted from

images based on the antennal pattern of bands of infrared

reflective tape. Camera detections of fishers were
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identified based on groups of fisher images separated by

at least 15 min, and not all radio-collared fishers detected

at camera survey stations could be unambiguously identi-

fied due to occasional loss of bands and breakage/loss of

collar antennas.

Home ranges

We built annual (October–September) and seasonal (Fall/

Winter: 1 October–15 March, and Summer: 1 June–30
September) home ranges for each individual fisher using

the fixed kernel density method in Home Range Tools for

ArcGIS 9.3 (Rodgers et al. 2007). We omitted the period

16 March–31 May from the seasonal home ranges because

it roughly encompasses the reproductive season when

males expand their movements in search of reproductive

females, and reproductive females concentrate their move-

ments around tree den used to produce and nurture their

offspring (Weir et al. 2012). For each individual home

range, we extracted the isopleth (to 1% accuracy) and uti-

lization density for each camera location. For all analyses,

we only used home range data up to the 90% isopleth

because few locations occurred beyond this region and

kernel smoothing is less accurate in the tails. Using the

reference bandwidth tends to oversmooth the home range

contours (Wand and Jones 1995), so we manually selected

the bandwidths among values of 0.6, 0.7, 0.8, 0.9 times

the reference bandwidth. The main criteria for bandwidth

selection were isopleth interval cohesion (intervals did not

break up into small polygons), and the extent of the 90th

and 95th isopleth (isopleths did not extend well beyond

the location data extremes). In most cases, the band-

widths chosen were within the 0.6–0.9 range, with 2

(1.7%) seasonal home ranges and 20 (25%) yearly home

ranges being assigned the reference (1.0) bandwidth. Sam-

ple sizes for estimating annual and seasonal home ranges

were large, and we expect high accuracy when using our

method for bandwidth selection. The median number of

relocations used for annual home range estimation was

164 (range = 37–276), and for the seasonal home ranges

was 84 (range = 25–155).

Methods for comparing telemetry and
camera trap data

Camera trap availability

We defined as “available” each camera trap that had the

potential to capture a collared fisher photo based on its

location and time of deployment. We first identified the

locations of camera traps within home ranges using the

90% isopleth as the maximum extent. Second, we deter-

mined which camera traps were available for each collared

fisher temporally by examining the overlap between the

camera trap deployment windows and the period each

fisher was actively radio-tracked (e.g., to exclude mortality

or dropped/inactive collar events). Similar to the home

range analyses, we omitted camera trap data collected

during the reproductive season.

Proximity analysis

For each collared fisher and available camera, we

extracted the number of telemetry locations within 250

and 500 m circular neighborhoods centered on camera

trap locations (NLocs). We limited the extent to 500 m to

ensure that each telemetry location was only counted for

one camera trap; cameras were located 1000–1400 m

from each other (e.g., within 1-km2 grids); thus, the max-

imum of 500 m ensured that each telemetry location

could only be counted once. We used variable Season to

test for differences in detection probability between peri-

ods with high (Summer: June–September) and low (Fall/

Winter: October–March) food availability.

We used generalized linear mixed-effects models

(GLMM; McCulloch et al. 2008) to investigate whether

the number of known telemetry locations within 250 and

500 m from camera traps can be used to predict the cam-

era capture probability of collared animals (Year 1: 35

fishers, 208 camera locations, and 547 fisher/camera com-

binations; Year 2: 35 fishers, 212 camera locations, and

371 fisher/camera combinations). We used a binary

response variable indicating detection [1] (e.g., fisher was

photographed at least once at a given camera trap) or

nondetection [0], and ran models with the number of

telemetry locations (NLocs), sampling season (Season),

and Sex as fixed effects, and individual Fisher as a random

effect. Along with additive models, the candidate model

set contained the interaction terms Sex 9 Season and

NLocs 9 Sex. We used Akaike Information Criterion cor-

rected (AICc for small sample size) for model selection

and likelihood ratio tests to examine a priori hypotheses

(Royle and Dorazio 2008).

Home range analysis

According to the theory behind kernel density estimation

of home ranges, the utilization distribution describes the

estimated frequency of space use at any location. The

probability that an animal is found in a small area is pro-

portional to that area times the utilization density (UD)

at that location, and the entire surface of utilization den-

sities is the utilization distribution. Therefore, one would

predict that probability of detection at a camera trap

should be proportional to the UD at the camera location,

which we call the simple model. We expect that the
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proportionality constant could differ between males and

females for behavioral reasons, with males moving across

larger areas and thus more likely to find cameras, but

potentially spending less time in areas surrounding any

one camera.

Alternatively, if camera trap probabilities are not pre-

dicted solely by UD at camera locations, then additional

variables and/or model forms will provide better predic-

tions. For example, highly heterogeneous home range

sizes would yield utilization densities not perfectly corre-

lated to the isopleth percentile. First, if including isopleth

percentiles themselves (Isopleth, to 1% accuracy) or a cat-

egorical variable for the core versus noncore parts of the

home range (Core), separated by the 50% isopleth, pro-

vides a better model, it would mean animals tend to find

cameras in the central versus peripheral parts of their

home range more or less often relative to the time they

spend in those areas. Second, we considered that proba-

bility of finding a camera could vary nonlinearly with

UD, meaning that larger or smaller isopleth values lead to

different photo probabilities beyond just the effect of UD.

Third, we considered interactions between these variables

and Sex.

We considered two types of response variables: (1) a

binary response indicating whether each available camera

ever captured a photo of each animal and (2) a count

response indicating the number of times each camera

detected each animal. The binary variable allows modeling

of camera trap probabilities without complications due to

behaviors induced by camera traps themselves (e.g.,

“trap-happiness” due to baiting or “trap-shyness”), or

other latent factors. The count variable uses more infor-

mation from the cameras, but at the cost of these addi-

tional complications for interpretation.

A set of candidate models was represented by general-

ized linear (possibly mixed-effects) models (GLM or

GLMM). For the binary response, we used a complemen-

tary log-log (cloglog) link and binomial or quasibinomial

variation. The cloglog link is more appropriate for model-

ing detection/nondetection as a spatial process, as

opposed to the more traditional logit link approach

(Baddeley et al. 2010). For count responses, we used a log

link with Poisson or quasipoisson variation. Consider a

GLM with the linear part describing the log rate of cam-

era captures:

gi ¼ bSex;i þ bUD logðUDiÞ (1)

Here, bSex,i takes one value if the animal in observation

i is male and another if it is female; log(UDi) is the

natural log of the utilization density of the camera for

observation i; and bUD is a coefficient for log(UDi). The

right-hand side can be extended to other combinations of

fixed and random effects.

The rate of camera captures is:

egi ¼ ebSex;iUD
bUD
i (2)

Thus, exp[bSex,i] is the slope for the utilization density.

And if the simple model is correct, bUD should be 1. In

some candidate models, we estimate bUD to see whether

it deviates from 1, while in others, we set it to 1. Setting

it to 1 means that the value of 1*log(UDi) is forced into

each linear predictor (equation 1), which is called an

offset. Thus, our simple model is denoted as (Sex + offset

[log(UD)]).

For count responses, equation (2) gives the expected

value. For binary responses, the cloglog link gives the

probability of at least one camera capture over a fixed

time interval as

pi ¼ 1� e�egi (3)

The cloglog link itself is gi = log(�log[1�pi]).
For each type of response variable, we compared a pre-

defined set of hypotheses that included the simple model

(Sex + offset[log(UD)]), as well as nonlinear effects of UD

(i.e., bUD estimated) and additive and interactive effects

of Isopleth or Core, with or without UD. We evaluated

these models using model selection with AIC (GLMMs),

AICc (GLMs), or QAICc (GLMs with quasilikelihoods;

Burnham and Anderson 2002). The GLMMs and quasi-

likelihoods represent two different ways to accommodate

overdispersion (Fieberg et al. 2009). For the GLMMs, we

first selected random effects using models with saturated

fixed effects and then used the chosen random effect

structure to compare different fixed effects (Zuur et al.

2009). We used Fisher as a random effect (n = 26 fishers

in Year 1 and n = 18 fishers in Year 2) to account for

behavioral heterogeneity between animals [1 | Fisher]. We

also examined the use of random effects for Camera [1 |

Camera], and Camera 9 Fisher combinations [1 | Fisher/

Camera], to account for unexplained heterogeneity related

to camera location only, and camera location within a

fisher home range, respectively (Year 1: 131 camera trap

locations, 402 fisher/camera combinations; Year 2: 123

camera trap locations, 330 fisher/camera combinations).

GLMM fitting was performed using package lme4 (Bates

et al. 2012) for R 3.0.1 (R Core Team 2013), and we used

package AICcmodavg (Mazerolle 2012) for model

selection.

Examining the relation between the proximity-
to-cameras and home range analyses

The two analyses used different information from the

same dataset, but were ultimately used to predict the

same quantity: probability of detection at camera traps.
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The proximity analysis did not use home range informa-

tion, while the home range analysis did not account for

the distance of relocations from cameras. To examine

how these analyses fit together, we visually investigated

the relation between (1) the number of telemetry reloca-

tions for those cameras that were successful at detecting

fishers and (2) the utilization density at which these cam-

eras were located.

Results

Fisher home ranges

Across both years, male annual home ranges (95% kernel

density estimates) were greater than female home ranges

(8915.8 � 963.5 ha vs. 2910.0 � 416.7 ha for males and

females, respectively; Mann–Whitney U = 84.0, 1 d.f.,

P-value < 0.0001; Table 1). Fall/Winter home ranges were

greater than Summer home ranges for females (2490.9 �
382.4 ha vs. 1310.4 � 254.2 ha; Mann–Whitney U =
437.0, 1 d.f., P-value < 0.0001), and also for males,

although the result was not statistically significant

(6049.8 � 497.1 ha vs. 4867.3 � 323.6; Mann–Whitney

U = 64.0, 1 d.f., P-value = 0.263; Table 1).

Proximity analysis

During both years, there was a positive relationship

between the number of telemetry relocations within 0–
250 and 0–500 m buffers and the probability of an animal

being detected at camera traps, and there were differences

between years based on Season and Sex (Fig. 2).

During Year 1, the best models yielded differences in

detection probability between males and females (given

the same number of relocations), but not between seasons

(Fig. 2A, Table 2; see Appendix S1 in Supplementary

Information for full set of models). Detectability based on

relocations within 250 m from camera traps was consis-

tently higher for females across the entire range of reloca-

tions (Fig. 2A). The best model for the 500 m data

included the interaction Sex 9 Season 9 Locs500

(Table 2). The mean probability of detection for females

increased from 0.33 (n = 1 relocation) to 0.77 (n = 5

relocations; Fig. 2B), while male detectability increased

sharply, and required only three relocations to reach a

0.73 detection probability (Fig. 2B).

During Year 2, the simple Season models were best,

and detection probability was consistently lower (by 0.2)

during Summer compared to Fall/Winter for both buffer

distances (Table 2, Fig. 2C and D). Sex-based differences

in detection probability were not evident.

Home range analysis

Binary data

The best model using AICc for the binary camera data for

both years was the simple model with photo probability

proportional to UD (Table 3 and Appendix S2). The

effect of Sex was significant, indicating that males are

more likely than females to find a camera given the same

intensity of space use as measured by telemetry-based UD

estimates. In both cases, there are several models with

small AICc differences from the best model. When the

coefficients for any of these are considered with their con-

fidence intervals, they include a linear relationship with

respect to UD (bUD not significantly different from 1,

consistent with the simple model, Fig. 3A and C).

Several “saturated” GLMM models were considered for

selection of random effect terms, but none yielded better

AIC for either year compared with binomial GLMs, so

further binomial GLMMs were not considered.

Count data

For both years, count data models required accommoda-

tion of overdispersion (Table 4, Appendix S2). The sim-

ple GLM quasi-Poisson model (Sex + offset[log(UD)])

was the best model for Year 1 (Table 4, Appendix S2).

For Year 2, there were three models with higher QAICc

than the simple model, each including some effects of

Isopleth and/or nonlinearity in UD (Appendix S2). These

models suggest that fishers have a weakly supported ten-

dency to visit cameras more frequently in the central part

of a home range (i.e., lower Isopleth intervals). Moreover,

the Sex 9 Isopleth interaction appears to be driven by few

Table 1. Mean (�1 SE) annual and seasonal home range sizes of fishers estimated using kernel density methods (data from both years

combined); n = number of individuals.

Home range type Period

Males Females

Area (ha) n Area (ha) n

Annual 1 October–30 September 8915.8 � 963.5 23 2910.0 � 416.7 43

Fall/Winter 1 October–15 March 6049.8 � 497.1 14 2490.9 � 382.4 30

Summer 1 June–30 September 4867.3 � 323.6 7 1310.4 � 254.2 18
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male camera pairs with high photo counts in low isopleth

intervals (Fig. 3B and D).

When overdispersion was handled with a GLMM,

models containing a random effect for each animal cam-

era combination were supported (Appendix S2). For Year

1, the simple models without and with the Sex effect are

only 0.95 or 1.12 below the best model, suggesting only

very weak evidence against the simple model. The coeffi-

cients for the Isopleth and Core effects in the best models

indicate that animals in the Core, or low Isopleth intervals,

tend to have slightly higher photo counts. For Year 2, the

simple model (1 + offset[log(UD)]) was selected, again

suggesting that no information beyond the UD values

contributes to camera trap detection probabilities

(Appendix S2).

Models without log(UD), and relying only on Isopleth,

Core, and/or Sex, had much worse fits (Tables 3, 4,

Appendix S2). This supports the hypothesis that camera

trap probabilities are related to home ranges via the den-

sity of space use, as measured by the utilization density.

(A)

(B)

(C)

(D)

Figure 2. Predicted probability of detection at camera traps of male and female fishers based on telemetry relocations within <250 m and

<500 m from camera traps during Year 1 (A and B) and Year 2 (C and D), based on the best generalized linear mixed-effects models with a

random effect for each fisher ([1 Fisher]) for each year and distance (see Table 2). Dots represent vertically and horizontally jittered binary

detection/nondetection data. The solid lines are mean probability calculated using fixed effects only; dotted lines are 95% confidence intervals.

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 939

V. D. Popescu et al. Data Consistency for Inferring Animal Space Use



Due to the large heterogeneity in home range sizes, utili-

zation density is not precisely related to the isopleth

percentile (Fig. 4), which explains how one variable can

provide much better fits to camera trap data than the

other.

Relations between camera captures and isopleth
interval area

For both sexes, the mean number of telemetry relocations

within cameras that successfully detected animals

increases with utilization density, which is consistent with

Table 2. Proximity analysis results using binary generalized linear

mixed-effects models (GLMM; each model contains a random effect

[intercept] for each fisher). Models within 2 AICc units of the top

model are shown. R2GLMM represents the conditional R2 for general

linear mixed-effects models developed by Nakagawa and Schielzeth

(2013).

Model K DAICc AICcWt Cum.Wt R2GLMM

Year 1 – 250 m data

Sex 9 Season + Locs250 6 0 0.39 0.39 0.24

Sex + Season + Locs250 5 0.83 0.26 0.65 0.20

Year 1 – 500 m data

Sex 9 Season 9 Locs500 9 0 0.82 0.82 0.42

Year 2 – 250 m data

Season + Locs250 4 0 0.48 0.48 0.13

Season 9 Locs250 5 1.53 0.22 0.7 0.13

Sex + Season + Locs250 5 1.79 0.19 0.9 0.14

Year 2 – 500 m data

Season + Locs500 4 0 0.4 0.4 0.18

Season 9 Locs500 5 0.15 0.37 0.77 0.17

AIC, Akaike Information Criterion; K, number of parameters; AICcWt,

AICc weight; Cum.Wt, cumulative AICc weight.

Table 3. Home range analysis results for Fall/Winter Year 1 for bino-

mial models. Response variable is whether an available camera ever

saw a particular animal. Models within 2 AICc units of the top model

are shown, as well as best model that does not include log(UD). See

Table S2.1 for complete list.

Model K DAICc AICcWt Cum.Wt

Sex + offset(log[UD]) 2 0.00 0.18 0.18

Sex 9 log(UD) 4 0.25 0.16 0.35

Sex 9 Core + offset(log[UD]) 4 0.85 0.12 0.47

Sex 9 Isopleth + offset(log[UD]) 4 1.94 0.07 0.54

Sex 9 Isopleth 4 9.30 0.01 1.00

UD, utilization density; K, number of parameters; AICcWt, AICc

weight; Cum.Wt, cumulative AICc weight.

(A)

(B)

(C)

(D)

Figure 3. Estimated models relating camera

trap data to log(UD) of home ranges. For

binary data (A and C), the simple model was

selected (Sex + offset[log(UD)]). Model

predictions are shown with gray (male) and

black (female) solid lines, with dotted lines for

95% confidence intervals. For count data (B

and D), the simple model was either selected

or almost selected. The count models shown

are for the quasi-Poisson GLM method. In Year

2 (D), the simple model is shown as smooth

solid lines, and the selected model

[Sex 9 Isopleth] is shown as jagged solid lines

with dotted 95% confidence intervals,

indicating that three male camera counts in

high use areas support the more complex

model. Binary data are plotted with a random

vertical jitter.
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higher density space use toward the core of home ranges

(Fig. S1). However, when males or females have one

telemetry location within 500 m of a camera, the males

tend to be in locations with a much smaller utilization

density (Fig. 2, Fig. S1), that is, they are using space more

sparsely by traversing larger areas. For Year 2, male detec-

tions still occurred at lower utilization densities, but the

95% CI around the mean isopleth interval areas over-

lapped for males and females (consistent with proximity

results for Year 2).

Discussion

Our results provide fundamental support for use of cam-

era trap data to estimate animal space use by demonstrat-

ing that such data are largely consistent with more

detailed telemetry data in the case of fishers in the Sierra

Nevada. Although spatially explicit capture–recapture
models assume simpler home range shapes than models

for telemetry data, it is reasonable to conclude that cam-

era trap data do reflect space use in a manner consistent

with telemetry data. More generally, the methods we have

provided can be applied to other systems where both

camera trap and telemetry data are available. However,

looking beyond that central conclusion, our findings also

highlight several cautions for use of camera trap data only

and make the case for integrating other sources of data,

such as telemetry (e.g., Ivan et al. 2013; Royle et al. 2013;

Sollmann et al. 2013a,b).

In addition to heterogeneity inherent in camera trap-

ping, our results suggest that there may be differences

between years and between seasons within years in the

relationship between movement and camera detection.

The proximity results for Year 1 supported differences

between sexes in attraction to nearby cameras, while Year

2 results showed seasonal differences. The latter finding

was consistent with the hypothesis that animals are more

likely to be captured at baited cameras during winter,

when food is scarce (Fig. 2). Results from the home range

analysis were more consistent between years (Fig. 3).

Taken together, these results highlight the importance of

not assuming that camera efficacy is consistent across

seasons.

While our results supported the simple model that

camera detection probability is proportional to UD, we

did find weak evidence for more complicated relation-

ships. Depending on the analysis model, there was weak

evidence that animals tend to make repeated visits to

cameras in the center of their home ranges more fre-

quently than in the periphery. For females, the estimated

relationship between log(UD) and photo counts was

nearly identical to the simple model (Fig. 3D), but for

males, the more complicated model explains a few high

counts in low isopleth intervals (i.e., toward the home

range core). Because the nature of those statistical results

involves failing to reject the simple model in favor of

more complicated ones (e.g., including variables Core, Iso-

pleth, and Sex), it is worth continuing to consider such

hypotheses for future studies.

Table 4. Home range analysis results for Fall/Winter Year 1 for count

models. Response variable is the number of photos of a particular ani-

mal taken by an available camera. Models within 2 QAICc units of the

top model are shown, as well as best model that does not include log

(UD). Overdispersion parameter from saturated model was 2.50. See

Table S2.3 for complete list.

Model K DQAICc QAICcWt Cum.Wt

Sex + offset(log[UD]) 3 0.00 0.15 0.15

Sex 9 Core + offset(log[UD]) 5 0.22 0.14 0.29

Sex + Isopleth + offset(log[UD]) 4 1.23 0.08 0.38

Sex 9 log(UD) 5 1.30 0.08 0.46

Sex + log(UD) 4 1.52 0.07 0.53

Sex + Core + offset(log[UD]) 4 1.60 0.07 0.60

Isopleth + log(UD) 4 1.81 0.06 0.66

Sex + Isopleth 5 8.53 0.00 1.00

UD, utilization density; K, number of parameters; QAICcWt, QAICc

weight; Cum.Wt, cumulative QAICc weight.

Figure 4. Data showing how heterogeneity in

home range sizes generates variation in the

relationship between the utilization density

(y-axis) and the isopleth percentile (x-axis). For

example, the utilization density of one male in

Year 1 at its 60% isopleth is similar to that of

the 30% isopleth for another male.

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 941

V. D. Popescu et al. Data Consistency for Inferring Animal Space Use



How do the two analyses fit together? Our results dem-

onstrate clearly the relationships between sex-specific

home range sizes, attraction to cameras, and detection

probabilities for a camera at a particular space-use density

(UD). The proximity analysis revealed that, given the

same number of nearby relocations, females were more

likely to be captured at camera traps (during Year 1). The

home range analysis suggested that, given the same size of

an isopleth interval, males were more detectable during

both years. These two main findings may appear contra-

dictory until differences in home range sizes are consid-

ered (Table 1). For a given number of telemetry

relocations per camera per individual, such relocations

occur at lower UD values for males compared to females

(Fig. S1). This is due to males having larger home ranges;

thus, the time spent per unit area is less for males com-

pared to females. For example, both males and females

may spend the same amount of time in an area encom-

passing the 40–50% isopleth interval, but the size of that

area for males may be five times larger than that of

females. When males and females are detected within

250 m of a camera just once, males tend to be in area

with lower UD values, hence are less likely to find the

nearby camera. At locations with the same UD, however,

males were more likely to find cameras due to higher

rates of movement (males: 2339 � 208 m/day; females:

1591 � 72 m/day (mean � 1 SE); R. Sweitzer, unpubl.

data). The relationships between these variables further

illuminate the types of processes that call for sex-specific

detection probabilities in spatially explicit capture–recap-
ture models.

In conclusion, our research represents the first empiri-

cal test for reconciling space use by animals using data

gathered simultaneously using different sampling tech-

niques and provides support for using camera traps for

estimating space use with some cautions. Beyond space

use, such data can be used in many other ways to exam-

ine aspects of animal behavior and management. For

example, future studies could investigate (1) the effective-

ness of camera traps at detecting all animals, whose home

ranges overlap a particular camera trap station, and what

level of camera trapping effort is required to do so and

(2) animal density using a combination of mark–recap-
ture (camera trap data) and telemetry data in a spatial

capture–recapture framework.
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