Skip to main content
. 2014 Feb 24;4(7):933–943. doi: 10.1002/ece3.997

Table 2.

Proximity analysis results using binary generalized linear mixed-effects models (GLMM; each model contains a random effect [intercept] for each fisher). Models within 2 AICc units of the top model are shown. Inline graphic represents the conditional R2 for general linear mixed-effects models developed by Nakagawa and Schielzeth (2013)

Model K ΔAICc AICcWt Cum.Wt Inline graphic
Year 1 – 250 m data
Sex × Season + Locs250 6 0 0.39 0.39 0.24
Sex + Season + Locs250 5 0.83 0.26 0.65 0.20
Year 1 – 500 m data
Sex × Season × Locs500 9 0 0.82 0.82 0.42
Year 2 – 250 m data
Season + Locs250 4 0 0.48 0.48 0.13
Season × Locs250 5 1.53 0.22 0.7 0.13
Sex + Season + Locs250 5 1.79 0.19 0.9 0.14
Year 2 – 500 m data
Season + Locs500 4 0 0.4 0.4 0.18
Season × Locs500 5 0.15 0.37 0.77 0.17

AIC, Akaike Information Criterion; K, number of parameters; AICcWt, AICc weight; Cum.Wt, cumulative AICc weight.