Table 2. The Performance of SVM Models with different learning parameters on D1 and D2 dataset.
Features | C | g | SN | SP | ACC | MCC |
Binary | 8 | 0.008 | 100 | 100 | 100 | 1 |
AA | 0.125 | 0.008 | 100 | 100 | 100 | 1 |
Using binary patterns and AA (amino acid) composition [γ (g) (in RBF kernel), c: parameter for trade-off between training error & margin] where SN–sensitivity, SP–specificity, ACC-accuracy, MCC–Matthews Correlation Coefficient.