Table 3. Validation statistics and jack-knife analysis of variable contributions to the models for all taxa (50th percentile), Alcyoniina, Antipatharia and Calcaxonia.
All Taxa | Alcyoniina | Antipatharia | Calcaxonia | |||||||||||||
Cross-validation cell | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1* | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Validation statistics | ||||||||||||||||
Test AUC | 0.82 | 0.846 | 0.815 | 0.943 | 0.871 | 0.861 | 0.881 | 0.95 | 0.577 | 0.835 | 0.929 | 0.912 | 0.787 | 0.923 | 0.922 | 0.896 |
Test AUC standard deviation | 0.016 | 0.012 | 0.016 | 0.005 | 0.026 | 0.015 | 0.013 | 0.004 | 0.204 | 0.033 | 0.017 | 0.037 | 0.036 | 0.016 | 0.01 | 0.011 |
10th percentile training presence | 0.4866 | 0.5028 | 0.4545 | 0.4222 | 0.515 | 0.577 | 0.4962 | 0.4586 | 0.434 | 0.4829 | 0.2917 | 0.4321 | 0.6061 | 0.5946 | 0.4228 | 0.4631 |
Maximum test sensitivity plus specificity | 0.181 | 0.262 | 0.412 | 0.379 | 0.153 | 0.162 | 0.098 | 0.35 | 0.57 | 0.054 | 0.375 | 0.26 | 0.046 | 0.195 | 0.117 | 0.323 |
Jack-knife of variable importance (jack of regularized training gain) | ||||||||||||||||
Depth | 0.7343 | 0.8258 | 1.0306 | 0.6101 | 0.9197 | 1.0217 | 1.2143 | 0.7726 | 1.0188 | 1.1635 | 0.528 | 1.0441 | 1.1326 | 1.1511 | 1.3354 | 1.1089 |
Dissolved Oxygen | 0.5784 | 0.5817 | 0.6399 | 0.5601 | 0.8359 | 0.8946 | 0.9726 | 0.9285 | 1.2431 | 1.3786 | 0.4208 | 1.4051 | 1.0852 | 1.0692 | 1.1143 | 1.3166 |
Calcite Saturation State | 0.6823 | 0.7536 | 0.9572 | 0.5682 | 0.9203 | 1.0206 | 1.1697 | 0.8571 | 1.2913 | 1.4405 | 0.5438 | 1.3341 | 1.1359 | 1.1417 | 1.2385 | 1.2377 |
Particulate Organic Carbon | 0.6244 | 0.7207 | 0.9181 | 0.5533 | 0.7423 | 0.8689 | 1.0206 | 0.6541 | 0.798 | 0.7914 | 0.2422 | 1.0263 | 0.5591 | 0.55 | 0.9316 | 0.7141 |
Salinity | 0.815 | 0.8898 | 1.0605 | 0.6733 | 0.9825 | 1.1053 | 1.2755 | 0.8786 | 1.2911 | 1.4415 | 0.5035 | 1.3727 | 1.2273 | 1.2426 | 1.3415 | 1.296 |
Slope (1 km) | 0.9349 | 0.9133 | 0.8904 | 0.5992 | 1.2309 | 1.3442 | 1.3521 | 1.0203 | 1.4655 | 1.5807 | 1.3852 | 1.3643 | 1.5481 | 1.4591 | 1.4562 | 1.3894 |
Temperature | 0.749 | 0.8451 | 1.0054 | 0.6698 | 0.9414 | 1.0662 | 1.1859 | 0.8904 | 1.4282 | 1.627 | 0.7199 | 1.4986 | 1.2905 | 1.2951 | 1.3924 | 1.3747 |
Test AUC for a single variable | ||||||||||||||||
Depth | 0.9045 | 0.7761 | 0.7048 | 0.8734 | 0.9403 | 0.8161 | 0.784 | 0.8639 | 0.6869 | 0.6496 | 0.8357 | 0.7562 | 0.8125 | 0.8368 | 0.8067 | 0.8675 |
Dissolved Oxygen | 0.7588 | 0.8111 | 0.7253 | 0.7746 | 0.8504 | 0.8013 | 0.7904 | 0.8379 | 0.5127 | 0.7592 | 0.7807 | 0.6544 | 0.7517 | 0.853 | 0.7973 | 0.7244 |
Calcite Saturation State | 0.8791 | 0.7738 | 0.7312 | 0.8449 | 0.9165 | 0.8303 | 0.8193 | 0.845 | 0.5853 | 0.6969 | 0.8488 | 0.8689 | 0.8115 | 0.8512 | 0.8235 | 0.8435 |
Particulate Organic Carbon | 0.8558 | 0.7159 | 0.6523 | 0.7759 | 0.7956 | 0.7 | 0.673 | 0.6805 | 0.611 | 0.771 | 0.6574 | 0.5644 | 0.693 | 0.6625 | 0.6173 | 0.6079 |
Salinity | 0.8185 | 0.8036 | 0.7082 | 0.8618 | 0.9113 | 0.7971 | 0.7875 | 0.8921 | 0.6308 | 0.8093 | 0.8468 | 0.5811 | 0.7874 | 0.8524 | 0.8133 | 0.8549 |
Slope (1 km) | 0.6041 | 0.7819 | 0.8298 | 0.9205 | 0.7739 | 0.8421 | 0.8948 | 0.9515 | 0.7553 | 0.7945 | 0.9116 | 0.9571 | 0.727 | 0.9184 | 0.9324 | 0.9436 |
Temperature | 0.8882 | 0.7622 | 0.6842 | 0.8656 | 0.9331 | 0.7594 | 0.7889 | 0.8476 | 0.6478 | 0.6091 | 0.8535 | 0.7822 | 0.8095 | 0.8448 | 0.8045 | 0.8603 |
Higher values for the regularized training gain of the jack-knife test indicates greater contribution to the model for a variable (these values are not directly comparable between the different taxa). Test AUC numbers in parentheses are the standard deviation of the Test AUC scores. The top three variables are highlighted in bold for each taxon, both for the jack-knife variable contribution and test AUC values for Maxent models generated using a single variable. *indicates cross-validation cells that were eliminated due to low Test AUC scores.