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Abstract

We investigated differences in the geographic distribution of autism spectrum disorders (ASD) 

over time in central North Carolina with data from the Autism and Developmental Disabilities 

Monitoring (ADDM) Network. Using generalized additive models and geographic information 

systems we produced maps of ASD risk in 2002–2004 and 2006–2008. Overall the risk of ASD 

increased 52.9% from 2002–2004 to 2006–2008. However, the magnitude of change in risk was 

not uniform across the study area; while some areas experienced dramatic increases in ASD risk 

(>400%), others experienced slight decreases. Generally, areas with the lowest risk in 2002–2004 

experienced the greatest increases over time. Education and outreach efforts in North Carolina 

expanded during this period, possibly contributing to the observed leveling of risk over time.
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Introduction

In 2008, autism spectrum disorders (ASDs) impacted an estimated 1 in 88 8 year old 

children in the United States (U.S.); reflecting an increase over previous estimates (Baio 

2012). Reasons for the increasing ASD prevalence are likely to be multi-factorial and 

challenging to measure; however, the role of greater ASD awareness among parents, 

educators, and clinicians, along with increased access to diagnostic and treatment services, 

has received considerable attention (Charman 2002; Blaxill 2004; Fombonne 2005; 

Williams et al. 2006; Newschaffer et al. 2007; Matson and Kozlowski 2011).
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In addition to change over time, ASD prevalence estimates vary geographically. Most 

dramatically, estimated ASD prevalence in South Korea was more than two times higher 

than in the U.S. (Charman 2002; Baio 2012). Estimated prevalence also varies across the 

U.S. (Baio 2012), within states (Mazumdar et al. 2010; Van Meter et al. 2010), and within 

smaller regions (Hoffman et al. 2012). For example, we previously reported regional 

variability of ASD in central North Carolina (Hoffman et al. 2012). Much of that variability 

was explained by geographic difference in maternal education within the study area, a factor 

potentially related to increased ASD awareness and service seeking behavior (Hoffman et al. 

2012). Regional variability in ASD prevalence may also be due to clinician and educator 

ASD awareness and diagnostic practices, which may be broadly improving over time.

We have investigated temporal differences in the geographic distribution of ASD with data 

from the Autism and Developmental Disabilities Monitoring Network in North Carolina. 

Using generalized additive models (GAMs) and geographic information systems (GIS), we 

produced maps of ASD risk in early (2002–2004) and later (2006–2008) study years and 

predicted the change in ASD risk in central North Carolina over time. As a comparison, we 

also investigated temporal changes in the geographic pattern of intellectual disability (ID) 

risk, which has been stable over time within our study area. Understanding temporal changes 

in geographic patterns of ASD risk may provide insight into the observed increases in ASD 

prevalence.

Methods

Identification of Children with ASD and ID

Children with ASD and ID were identified using the standardize surveillance methods of the 

ADDM Network. The ADDM Network is an active, population-based surveillance program 

that biannually monitors the prevalence of developmental disabilities among children aged 8 

years in selected geographic regions across the U.S. (Rice et al. 2007). Trained clinicians 

review medical and educational records across many developmental disabilities to determine 

whether standardized case definitions for ASD and ID have been met, even if a specific 

diagnosis has not been previously noted (Rice et al. 2007). Children are classified as having 

an ASD if their records note behaviors consistent the Diagnostic and Statistical Manual 

IV™ criteria for Autistic Disorder, Asperger Disorder, or Pervasive Developmental Disorder 

Not-Otherwise-Specified (American Psychiatric Association 2000). Children are classified 

as meeting the standardized definition for ID if clinician review of developmental 

evaluations determined they had an IQ ≤ 70 on the most recently administered psychometric 

test such as the Battelle–cognitive domain (Newborg 2004), Differential Ability Scales 

(Elliott 2007), Stanford-Binet–4th ed. (Thorndike et al. 1986), Wechsler Preschool and 

Primary Scale of Intelligence (Wechsler 1989), and the Wechsler Intelligence Scale for 

Children-III (Wechsler 1991). A written statement indicating the presence of severe or 

profound intellectual disability was used to classify ID in the absence of test scores recorded 

in a child’s developmental evaluation (Rice et al. 2007).

Our analyses utilized ASD and ID surveillance data from the North Carolina ADDM site 

(NC-ADDM) in 2002, 2004, 2006, and 2008. We included only children born in the 8 

counties that were consistently under surveillance during all four study years (Alamance, 
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Chatham, Davidson, Durham, Forsyth, Guilford, Orange, and Randolph Counties, Figure 1), 

resulting in 561 children with ASD and 1028 children with ID. Because ASD and ID often 

co-occur, some children (n=231) are included in both the ASD and ID case groups.

Identification of the Underlying Population

To represent the underlying population (i.e. the population that gave rise to the cases) for 

this analysis, we randomly selected a 15% sample of birth records for children born in the 

same 8-county region and years as children included in NC-ADDM (birth years: 1994, 1996, 

1998 and 2000; n=11,902 of 79,346). Children with and ASD or ID were not removed from 

the underlying population sample. We excluded children who were adopted because they 

lacked information on birth address and those who died during infancy because they were 

not part of the risk set for developmental disabilities (n=93 excluded; <1%). Analyses were 

approved by the Institutional Review Board at the University of North Carolina-Chapel Hill.

Residential Location and Covariates

Children with ASD and ID were also linked to birth records to obtain their residential 

address and covariate information at the time of birth. We successfully assigned latitude and 

longitude coordinates (i.e. geocoded) to 12,299 (93.4% of 13,167) residential addresses 

using previously described methods (details in Hoffman et al. 2012). Addresses that we were 

unable to geocode were post office boxes, incomplete, or did not geocode to a specific 

location. Geocoding success was similar for children with disabilities and children in the 

birth cohort.

Spatial Analysis

We examined the spatial distribution of ASD and ID at age 8 in early study years (2002 and 

2004) and late study years (2006 and 2008) using previously described statistical methods 

(Webster et al. 2006; Hoffman et al. 2012). Briefly, we used generalized additive models to 

estimate the log odds of each outcome (ASD or ID) while adjusting for covariates. We 

modeled location using a non-parametric loess smooth function of latitude and longitude and 

included other covariates as parametric terms. We determined the optimal amount of 

smoothing, i.e. the optimal span size, in each analysis by minimizing the Akaike’s 

Information Criteria (AIC). If the optimal span size of the early and later analyses differed, 

we used the same span size (whichever was smaller) in all analyses of each developmental 

outcome.

We created a rectangular grid that extended across all residential addresses of study 

children, which was of irregular shape. Thus, we removed grid points that fell outside the 

study area and grid points within the study area where no children were living. We predicted 

the risk of ASD or ID at each point on the grid assuming the covariate pattern of population 

that gave rise to cases (e.g. a population that was 51.4 % male, 69.0% white, etc). 

Additionally, we accounted for the sampling fraction of the underlying population (15%) in 

calculations of risk. We used GAMs to test the null hypothesis that risk does not depend on 

residential location (i.e. there is no spatial variability in risk; details in Webster et al. 2006 

and Bliss et al. 2011). We used a conservative global p-value cut off of 0.025, which 

accounts for inflated type 1 error rates associated with using the optimal span size for the 
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original dataset in permutations, to assess the overall statistical significance of geographic 

variability in risk (Bliss et al. 2011). We calculated the percent change in risk over time for 

ASD (comparing later study years to early years). Statistical analyses were performed in the 

R Package 2.12.02 (Vienna, Austria) using the gam library and a local scoring algorithm 

GAM estimation procedure.

Estimates of risk and percent change in ASD were mapped using ArcGIS 9.3 (version 9.3, 

Redlands, California). We used the same scale range and color scheme for maps of each 

outcome.

Confounding

Spatial confounding occurs when risk factors for a disorder are not evenly distributed within 

the study area. In our previous work, for example, we demonstrated that higher risk of ASD 

in certain regions of our study area was largely explained by higher maternal education and 

age in those same regions (Hoffman et al. 2012). We adjusted models for several previously 

established ASD predictive factors, including year of birth; plurality; maternal age, race/

ethnicity, and level of education; and report of tobacco use during pregnancy (Hultman et al. 

2002; Croen et al. 2007; Durkin et al. 2008; Durkin et al. 2010; Durkin et al. 2010; Gardener 

et al. 2011). Thirty-five children (<1%) were missing these covariates and were excluded 

from analyses. As reported previously, we also investigated, but found no confounding by, 

method of delivery, marital status, birthweight, and adequacy of prenatal care (Hoffman et 

al. 2012); thus these variables were not included in the presented analyses.

Robustness of analyses

Our final dataset included some siblings. In addition to being genetically more similar to 

each other, siblings typically share the same residence. Inclusion of siblings living at the 

same address in analyses could induce spatial clustering as a result of familial (i.e. genetic) 

similarities rather than geographically-linked factors. To assess the robustness of our results 

to inclusion of a small number of sibling groups, we conducted secondary analyses 

including only one randomly selected child per family. Families were defined as children for 

whom the mother had the same first and maiden name and date of birth (obtained from birth 

records). Because information for fathers was often missing or incomplete on birth records, 

we did not attempt to identify paternal-only siblings.

Results

Risk of ASD was four times higher among males than females and directly associated with 

higher educational attainment. The risk of ID was twice as high among males; however, ID 

risk was inversely associated with maternal education. Overall, in our 8 county central North 

Carolina study area, the risk of ASD at age 8 years increased 52.9% between 2002–2004 and 

2006–2008, while the risk of ID remained relatively stable (decreasing 2.6%).

We present the predicted risk from the GAMs, for the average central North Carolina child. 

The risk of ASD varied geographically in early study years (Figure 2a; span size=0.55; 

global p-value=0.01). Risk was highest in portions of Durham, Orange, and Alamance 

Counties and lowest in southern Davidson and Randolph Counties, ranging from 1 to 6 per 
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1000, a 6 fold gradient across the study area. In later study years, we did not observe 

statistically significant geographic variability in surveillance-recognized ASD (Figure 2b; 

range of estimated prevalence 5 to 9 per 1000; span size=0.55; global p-value=0.10).

Next, we examined the percent change in ASD from early to late study years. Regions that 

had lower risk in early study years experienced the greatest increases in ASD risk (Figure 

3a). For example, in the southern portions of Davidson and Randolph Counties, the risk 

increased >400% from early study years to later study years. Conversely, regions of the 

study area where risk was highest in early study experienced much smaller increases, or 

even decreases, in risk from early to later study years.

In both early and later study years we observed very little geographic difference in the risk 

of ID across the study area and observed variability was not statistically significant (span 

size=0.95; early global p-value=0.81; late global p-value=0.96). ID risk for the average 

central North Carolina Child ranged from 8 to 11 per 1000 in early study years to 9 to 11 per 

1000 in later study years. Accordingly, when we examined the percent change in risk over 

time, the resulting map showed very little change over time. Percent change across the study 

area ranged from −8% to 28% from early to later study years (Figure 3b).

Sibling pairs were uncommon in our analyses and their impact on analyses of both ASD and 

ID was negligible. When we randomly selected one child from each family for analyses, the 

pattern of spatial variability was similar to analyses including all children (results not 

shown).

Discussion

Overall, we also observed increases in the age 8 risk of ASD within central North Carolina 

from 2002–2004 to 2006–2008 (as has been reported previously by ADDM (Baio 2012)). 

However, increases in ASD risk over time were not uniform across our study area. The most 

dramatic increases in ASD risk occurred in areas that had the lowest risk in early study 

years. By later study years, the estimated risk in these areas caught-up to the estimated risk 

in other regions observed within the study area where ASD risk estimates have been more 

stable over time.

There are important differences in the communities comprising our study area that may 

contribute to the geographic variability we observed in early study years. For example, in 

early study years, we estimated the highest risk of ASD to be in southern Alamance, 

Durham and Orange Counties. These counties also contain the University of North Carolina 

and Duke University, which have active autism research facilities and large medical centers. 

Conversely, Randolph County was designated as a health care professional shortage area in 

early study years, but not later study years. Additionally, from 2002 to 2008, a number of 

ASD outreach events and trainings for clinicians and educations were held within our study 

area. For example, the Carolina Institute of Developmental Disabilities, in partnership with 

the North Carolina Department of Public Instruction, began holding workshops to train 

educators to recognize and evaluate students with ASD in 2005 (personal communication 

with Dr. Rebecca Edmondson Pretzel, Director of Services and Psychology Section Head at 
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the Carolina Institute for Developmental Disabilities). Another possible explanation for the 

observed patterns is that ASD awareness among parents has increased over time. Parents 

who are more aware of ASD may seek services for their child, regardless of service 

availability in their home community. Although we were unable to quantify the contribution 

of such trainings or role of access to care in our data, these factors provide an anecdotal 

explanation for the decrease in geographic variability we observed over time.

Surveillance for ASD depends on the quality and depth of information in the existing 

developmental evaluation record. Changes in record quality over time, reflected as better 

documentation of symptoms, may indicate changes in clinical practice that contributes to an 

increase in the documentation of ASD risk, even in actual risk has not increased. However, 

it is also possible that surveillance methods have improved independent of clinical practice. 

If the ASD risk pattern we observed could be explained by changes in surveillance methods, 

we would expect changes in the patterns for ID and ASD to be similar. However, unlike 

ASD; the risk of ID within our study area was relatively stable over time and we did not find 

evidence of geographic variability in risk after adjusting for individual-level risk and 

predictors in either early or later study years.

ADDM Network comprehensively reviews medical and education records of children with 

developmental disabilities, including children without a previous ASD diagnosis. By linking 

ADDM Network data with vital records, we were able to evaluate a number of important 

individual-level covariates that may vary with residential location at birth and ASD 

diagnosis. Combining these data resources allowed us to carefully consider ASD risk on a 

very small spatial scale, which may identify communities with elevated ASD risk or areas 

undergoing rapid change in risk.

One caveat to note is that the ADDM Network estimates prevalence using all children living 

in the area meeting ASD and ID criteria and census data to reflect the denominator of 

children 8 years of age. While inter-census data incorporates birth records and other regional 

data to estimate the population, our risk estimates based on birth records differ slightly from 

previously published prevalence estimates using inter-census based denominators. In 

addition, our analyses excluded children who were born outside the study area, which 

resulted in a lower risk of ASD in our analyses than would have been observed in a cross-

sectional analysis of ASD prevalence (e.g. ADDM prevalence estimates). Children with 

ASD who emigrated from the surveillance region after birth but before they were under 

surveillance at age 8 years would be under-represented in the numerator, although it is not 

expected that this would vary across early vs later surveillance period. Additionally, the 

analyses were limited to comparisons of only two time points. Although data were available 

for four individual study years, we combined study years (early years and later years) to 

obtain a sufficient sample size for analyses. Even so, inferences about temporal changes in 

some sparsely populated regions are limited. Follow-up of these analyses in future ADDM 

study years will allow for continued evaluation of the trend in ASD risk over time.

Our results indicate that increases in estimated ASD risk in central North Carolina are 

largely attributable to increases in areas that previously had low risk, possibly where ASD 

may have been under recognized in early study years. While, anecdotally, we know many 
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education and outreach efforts were underway in NC over this period, like others evaluating 

the changes in risk over time, we do not have direct measures of such campaigns or 

measures of provider awareness that may result in changes in clinical/educational practices. 

We observed that regions with low ASD risk in the early years of surveillance become more 

similar to regions with high risk in later years of surveillance, while the regions with high 

risk in early years tend to remain fairly constant. Such patterns may suggest that practices in 

remote regions are catching up to those in more resource-rich regions, where diagnostic 

centers are often ‘early adapters’ to diagnostic and clinical practices. A positive, though 

subjective, interpretation of these results could be that efforts to train educators and 

clinicians in regions with fewer resources are helping them identify and serve children with 

ASD. Additional work is needed to evaluate these patterns in other regions of the country, 

follow these patterns over a longer period of time, and quantify the reason behind the 

observed patterns; still this work provides visual support for closing gaps in the diagnosis of 

ASD.
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Fig 1. 
Central North Carolina 8 County Study Area
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Fig 2. 
Predicted age 8 ASD risk adjusted for year of birth; plurality; maternal age, race/ethnicity, 

and level of education; and report of tobacco use during pregnancy: (A) 2002–2004 and (B) 

2006–2008.
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Fig 3. 
Predicted percent change in age 8 risk from 2002–2004 to 2006–2008: (A) ASD and (B) ID.
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Table 1

Selected Characteristics of the Birth Cohort and Children with ASD and ID in Eight North Carolina Counties 

2002–2004 and 2006–2008.

Variable

Birth Cohort *
Children with

ASD **
Children with

ID **

n (%) n (%) n (%)

Total 11809 (100.0) 561 (100.0) 1028 (100.0)

Sex

Male 6073 (51.4) 464 (82.7) 665 (64.7)

Female 5736 (48.6) 97 (17.3) 363 (35.3)

Year of Birth

1994 and 1996 5552 (47.0) 206 (36.7) 490 (47.7)

1998 and 2000 6257 (53.0) 355 (63.3) 538 (52.3)

Maternal Age at Birth

Under 25 4984 (42.2) 184 (32.8) 460 (44.8)

25–35 5435 (46.0) 281 (50.1) 465 (45.2)

Over 35 1388 (11.8) 96 (17.1) 103 (10.0)

Missing 2 (0.0) 0 0

Maternal Race

White 8148 (69.0) 368 (65.6) 519 (50.5)

Other 3661 (31.0) 193 (34.4) 509 (49.5)

Maternal Educational Attainment

Less than High School 2553 (21.6) 76 (13.6) 377 (36.7)

High School 3424 (29.0) 149 (26.6) 372 (36.2)

Some College 2472 (20.9) 126 (22.5) 144 (14.0)

College or More 3341 (28.3) 208 (37.1) 134 (13.0)

Missing 19 (0.2) 2 (0.4) 1 (0.1)

Maternal Tobacco Use During Pregnancy

Yes 1647 (14.0) 67 (11.9) 208 (20.2)

No 10150 (86.0) 493 (87.9) 819 (79.7)

Missing 12 (0.1) 1 (0.2) 2 (0.2)

Plurality

Yes 353 (3.0) 23 (4.1) 54 (5.3)

No 11456 (97.0) 538 (95.9) 974 (94.8)

*
93 children that were adopted or died in infancy were excluded from analyses.

**
231 children had both an ASD and an ID and are included in both columns.
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