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ABSTRACT

Motivation: Targeted resequencing of cancer genes in large cohorts

of patients is important to understand the biological and clinical con-

sequences of mutations. Cancers are often clonally heterogeneous,

and the detection of subclonal mutations is important from a diagnos-

tic point of view, but presents strong statistical challenges.

Results: Here we present a novel statistical approach for calling mu-

tations from large cohorts of deeply resequenced cancer genes.

These data allow for precisely estimating local error profiles and

enable detecting mutations with high sensitivity and specificity. Our

probabilistic method incorporates knowledge about the distribution of

variants in terms of a prior probability. We show that our algorithm has

a high accuracy of calling cancer mutations and demonstrate that the

detected clonal and subclonal variants have important prognostic

consequences.
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1 INTRODUCTION

In recent years, genome sequencing has greatly enhanced our

understanding of cancer biology (Stratton, 2011). Tumors are

evolving entities and display complex clonal architectures with
many mutations present in only a subset of cells (Nik-Zainal

et al., 2012; Yates and Campbell, 2012). Subclonal mutations
provide insights into disease evolution and influence prognosis

(Landau et al., 2013; Papaemmanuil et al., 2013). Subclonal vari-

ants can be detected using the deep coverage of next-generation
sequencing technologies, but their distinction from sequencing

errors, library preparation and alignment artifacts suffers from
an unfavorable signal to noise level (Gerstung et al., 2012;

Schmitt et al., 2012).
A series of powerful variant callers has been developed in

recent years for calling variants from genome or exome sequen-
cing data of tumor–normal pairs (Cibulskis et al., 2013; Goya

et al., 2010; Larson et al., 2011). For detecting subclonal variants,
or mutations in samples with a low purity, which are both

reported by small fractions of reads only, it is mandatory to

accurately quantify the abundance of sequencing artifacts,

which may otherwise lead to large numbers of false positives.

With increasing numbers of genomic datasets being generated,

it becomes apparent that sequencing artifacts tend to occur in a

systematic way and on specific sites.

Targeted resequencing experiments, in which a selected set of

candidate genes is resequenced across hundreds or thousands of

samples, are increasingly prepared to evaluate findings from

large-scale sequencing studies. Such datasets present an oppor-

tunity to precisely estimate the distribution of sequencing arti-

facts by aggregating information across samples, rather than

across sites as is commonly done in tumor–normal variant call-

ing. This will help avoid artifacts and likewise enable calling

more variants on sites with lower error rates.

The growing catalogs of somatic mutations in cancer also

make it possible to define genomic loci more likely to be

mutated. Therefore, one may attempt to incorporate this prior

knowledge to facilitate variant calling on mutational hotspots

while remaining conservative on the remaining sites. Hence, a

well-chosen prior will increase sensitivity at a given level of

specificity.
Here we present a novel approach for detecting clonal

and subclonal variants that exploits the power of a large

sample set for precisely defining the local error rates and which

uses prior information to call variants with high specificity and

sensitivity.

2 APPROACH

Detecting mutations in deep sequencing data is essentially a

model selection problem: one compares the probability of obser-

ving a given number of reads reporting a base change under a

null model specifying the distribution of sequencing artifacts to

the probability in an alternative model allowing for true variants.

A mutation is called if the probability under the alternative ex-

ceeds that of the null model. A probabilistic framework offers the

flexibility to account for prior information, which can be useful,

as some genes are more likely to be mutated in particular cancers

and there often exist mutational hotspots within a gene. The

approach we present here for modeling the error distribution is

based on the observation that sequencing artifacts are recurrent

on specific loci. In a large cohort, this allows to define a back-

ground error distribution on each locus, above which true vari-

ants can be called.*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:mg14@sanger.ac.uk
mailto:pc8@sanger.ac.uk
utilizing
unfavourable 
-
; Larson etal., 2011
very 
tumour
-
also 
O
therefore 
utilises


3 METHODS

3.1 Statistical framework

To define a statistical test, we have to parameterize the distributions of

variant allele counts. Let i ¼ 1, . . . ,N be the index of one of N samples.

For each position j in the genome and nucleotide k 2 fA,T,C,G,�g, let

Xijk, X
0
ijk denote the count of that nucleotide in forward and backward

read orientations in sample i. Let the coverage be denoted nij and n0ij,

respectively. For the ease of reading, we omit the indexes i, j and k, unless

a clear distinction is necessary. We model the nucleotide counts to be

distributed by a beta-binomial distribution,

X � BetaBinðn,�, �Þ

X0 � BetaBinðn0,�0, �Þ:
ð1Þ

The parameters � ¼ �ijk and �0 ¼ �0ijk define the expected number of

nucleotide counts per read,

E½X� ¼ �n,

Var½X� ¼ n�ð1� �Þð1þ ðn� 1Þ�Þ, ðsimilar for X0Þ:
ð2Þ

The dispersion factor � ¼ �jk (no sample index) defines the amount of

extra variance, as compared with pure sampling errors; for � ¼ 0, the

model is the usual binomial.

Variant calling is commonly performed against a matched normal.

Here we construct an aggregate control sample for sample i from the

set of all other samples JðiÞ ¼ fh 6¼ ig, Xijk ¼
P

h2JðiÞ Xhjk and

X0ijk ¼
P

h2JðiÞ X
0
hjk instead. The latter is justified if the particular variant

occurs only rarely, or if the set of reference samples J(i) is chosen such

that they are unlikely to contain the variant, e.g. by only selecting samples

with a variant allele frequency (VAF) Xi=ni smaller than a predefined

threshold, typically �10%. We assume that the control counts are also

beta-binomially distributed with mean � ¼ �ijk, �0ijk and coverage

n ¼ nijk ¼
P

h2JðiÞ nhjk and n0 ¼ n0ijk ¼
P

h2JðiÞ nhjk
0:

X � BetaBinðn, �, �Þ

X0 � BetaBinðn0, �0, �Þ:
ð3Þ

This definition is consistent with the assumption that the individual

samples are beta-binomially distributed, as long as the dispersion param-

eter � is small. The above parameterization is similar to the deepSNV

algorithm (Gerstung et al., 2012), but uses aggregate control counts X,X0

instead of a single control sample. We find that the model realistically

reflects the observed distribution of nucleotide counts (Fig. 1a).

We formulate calling variants as a model selection problem. A true

variant will be present on both strands, � ¼ �0, and at a higher frequency

than both background error rates �, �0 because it is the sum of the true

allele frequency and the error rate. The null-model is that X and X0 are
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Fig. 1. General illustration of our approach. (a) Distribution of observed and expected VAFs across samples. The histograms denote the VAF �̂0 and �̂
0
0

of a recurrent artifact occurring at low frequencies in �20% of the samples in forward, but not in the reverse orientation. The solid lines denote the

expected distribution based on a beta-binomial model, Equation (1), with mean �̂0 and �̂00 defined as the average across all samples with VAF 510%.

The third histogram denotes the SF3B1 K700E variant present at clonal and subclonal frequencies, with the curve denoting the expected frequency

distribution. (b) Heatmap of 1000nt from five adjacent bait sets targeting the SF3B1 gene in 683 samples. The intensity of each pixel represents VAF of

cytosine, �̂0, �̂
0
0, in a given sample (y, left axis) and position (x). If the relative frequency is identical, pixels tend to be black. Curves on the bottom

indicate the error rates �̂0 and �̂
0
0 in forward and reverse directions (right y-axis). The black line is the estimated dispersion �̂. The prior � of finding a true

variant is derived from the COSMIC database. Circles are drawn around variants with a posterior PðM0 jDÞ50:5; the area of each circle is proportional

to the VAF. At position 650 resides the K700E hotspot mutation with many variant calls. (c–f) Bayes factors [Equation (7)] as a function of forward (x)

and reverse (y) allele counts for different error rates � ¼ �0 and dispersions � ¼ �0. (g) A variant-specific prior � influences the Bayes factor needed to call

a variant at a given cutoff on the posterior probability, Equation (9)
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distributed with the same rate as the control counts X and X0 on either

strand, which we assume to contain only errors but no variants. We then

have the two models:

M0 : � ¼ � _ �0 ¼ �0;

M1 : � ¼ �04�, �0:
ð4Þ

3.2 Inference

Denoting the data by D ¼ fX,X0,X,X0g, the Bayes factor

PrðD jM1Þ=PrðD jM0Þ can be approximated using point estimates:

PrðD jM0Þ

PrðD jM1Þ
�

PrðD j �̂0, �̂
0
0, �̂
0Þ þ PrðD j �̂0, �̂, �̂

0
0Þ � PrðD j �̂0, �̂

0
0Þ

PrðD j �̂, �̂, �̂0Þ
: ð5Þ

The three terms in the numerator arise from the OR condition of M0,

Equation (4), and denote the probability that the error rates in forward,

the reverse or both orientations are identical. Hence, the third term is

usually small in cases where both allele frequencies �,�0 are different

from the error rates. Note that this approximation is rather strong, but

efficient to compute and works well in real applications. The point esti-

mates are defined in the following way, using the method of moments:

�̂ ¼ X=n, �̂0 ¼ X0=n0

�̂ ¼ maxfðXþ X0Þ=ðnþ n0Þ, �, �0g

�̂0 ¼ ðXþ XÞ=ðnþ nÞ, �̂00 ¼ ðX
0 þ X0Þ=ðn0 þ n0Þ

�̂0 ¼ X=n, �̂00 ¼ X0=n0:

ð6Þ

The symbols �̂0 and �̂
0
0 are the error rates across all samples; �̂0 and �̂

0
0

are the VAF in forward and reverse orientation for each sample (Fig. 1b).

The likelihood factorizes into PrðD j�,�0, �, �0Þ ¼ PrðD j�,�0, �, �0Þ ¼

PrðX j�Þ PrðX0 j�0Þ PrðX j �Þ PrðX0 j �0Þ; this allows to write the Bayes

factor as

PrðD jM0Þ

PrðD jM1Þ
¼

PrðX j �̂0ÞPrðX
0 j �̂00ÞPrðX j �̂0Þ

PrðX j �̂ÞPrðX0 j �̂ÞPrðX j �̂Þ

þ
PrðX j �̂0ÞPrðX

0 j �̂00ÞPrðX
0 j �̂00Þ

PrðX j �̂ÞPrðX0 j �̂ÞPrðX0 j �̂0Þ

�
PrðX j �̂0ÞPrðX j �̂0ÞPrðX

0 j �̂00ÞPrðX
0 j �̂00Þ

PrðX j �̂ÞPrðX j �̂ÞPrðX0 j �̂ÞPrðX0 j �̂0Þ

ð7Þ

The value of the Bayes factor PðD jM0Þ=ðD jM1Þ as a function ofX,X0

is illustrated in Figure 1c–f for different error rates. For a small error rate

of � ¼ �0 ¼ 10�4, which is found on the majority of sites, only a few

variant alleles lead to a Bayes factor small enough to call a variant.

3.3 Estimating �

There exists no closed-form solution to estimate �, but it can be estimated

from the variances of the VAF �̂ ¼ �̂ijk and total coverage mij ¼ nij þ n0ij
across samples i by the method-of-moments estimator �̂ ¼ �̂jk:

�̂jk ¼

Ns2=ð1� �̂0, jkÞ=�̂0, jk �
PN
i¼1

1=mij

N�
PN
i¼1

1=mij

, with

s2 ¼

N
PN
i¼1

mijð�̂0, jk � �̂ijkÞ
2

ðN� 1Þ
PN
i¼1

mij

:

ð8Þ

As this estimator is not guaranteed to yield values in (0,1), we bound it

to ½10�6, 0:1�. Empirically, we found that �̂ is usually small (Fig. 1b).

3.4 Prior data

The posterior probability that M0 is true can be computed by Bayes’

formula:

PrðM0 jDÞ ¼
ð1� �ÞPrðD jM0Þ

ð1� �ÞPrðD jM0Þ þ �PrðD jM1Þ

¼
1

1þ �=ð1��Þ
PrðD jM0Þ=PrðD jM1Þ

:
ð9Þ

We use the probability of the null modelM0 because of its similarity to

a P-value in a hypothesis testing scheme and call variants below a certain

threshold PrðM0 jDÞ5P0. The parameter � ¼ �jk denotes the prior prob-

abilities that a variant k exists at position j. The prior � essentially shifts

the relation between the Bayes factor PrðD jM0Þ=PrðD jM1Þ and the pos-

terior probability PrðM0 jDÞ. A higher prior probability results in a lower

posterior probability of an artifact for a given signal as quantified by the

Bayes factor (Fig. 1g).

Prior information about the likelihood of an allele being mutated can

be extracted, for example, from the COSMIC database (Forbes et al.,

2011). We assume that the prior can be written as follows:

�jk ¼ �gene � �̂jk, ð10Þ

where the histogram

�̂jk ¼
# mutations k at loccus j

total # mulations in gene
ð11Þ

denotes the relative frequency of mutations k at site j in a given gene. The

factor �gene defines the probability of a gene being mutated. These prob-

abilities vary greatly between genes and for the same gene also between

different tumor types. As there are currently many systematic studies

being performed, we expect that accurate estimates will be available

soon for many cancers. For all sites not present in COSMIC, we use a

constant value of � ¼ 10�4. An example of the prior distribution ob-

tained from COSMIC is shown in Figure 1b.

3.5 Implementation

We have implemented the algorithm in the statistical language R (R Core

Team, 2012) and released code as part of the deepSNV Bioconductor

package (�1.8) (Gerstung et al., 2012). We named the algorithm ‘shear-

water’ after the seabirds that fly long distances over the ocean, watching

the water closely and eventually dive into the water to pick up prey, often

with prior help from other fish. More information can be found in the

accompanying vignette:

4library(deepSNV)

4vignette(‘‘shearwater’’)

The runtime of 1 kb over 800 samples is �1 CPU min on a 2.2GHz

AMD processor. This performance is sufficient to process a complete

targeted screen with 100 genes in a few hours on an 8-core machine,

and the algorithm can be parallelized easily.

4 RESULTS

We benchmark our algorithm against data from two large gene
screens in hematological cancers, a subset of 738 patients with

myelodysplastic syndromes (MDS) we have published recently

(Papaemmanuil et al., 2013). In these screens, 111 cancer genes

were sequenced using barcoded libraries prepared from whole
genome amplified DNA. Samples were sequenced in batches of

96 per lane on a HiSeq2000 and reads were aligned with bwa

(0.5.9� r16þ rugo) (Li and Durbin, 2010) to the GRCh37

human reference genome. Technical replicates existed for 20
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samples with acute myeloid leukemia (AML) assayed by the

same gene panel. Moreover, we included 32 normal samples to

quantify specificity. Here we focus on a subset of 43 genes with

good coverage and in which we had previously found oncogenic

mutations (Papaemmanuil et al., 2013; Table 1). The availability

of survival data in the MDS cohort allows for evaluating the

quality of variant calls by their prognostic potential, which is

an orthogonal measure to technical replication.

4.1 Simulations and control data

To assess the sensitivity and specificity of shearwater, we used a

panel of 500 samples, including 32 normals and 2� 20 AML

replicates. The remaining samples served for defining the

background error distribution and for assessing how reprodu-

cible the calls are. To analyze the sensitivity for different com-

binations of coverage, we simulated mutations at different

variant allele frequencies using the coverage and strand bias of

one of the normal samples (median 128�, 5% 13�, 95% 372�

coverage). For each position j, we drew a vector of variant allele

frequencies for fA,T,C,G,�g from a Dirichlet distribution,

�j � Dirð1, 1, 1, 1, 1Þ. We then sampled reads Xj �Multð�j, njÞ,

X0j �Multð�j, n
0
jÞ, where nj and n0j are the coverages on forward

and reverse strand as observed in the normal sample. We ran

shearwater on the cohort of 500 samples to compute the Bayes

factors of each simulated variant.

4.1.1 Sensitivity The fraction of variants with a Bayes factor
510�4 for fixed dispersion � is shown in Figure 2a. This cutoff

corresponds to a posterior odds of 1, or a cutoff of P0 ¼ 0:5,
under a uniform prior with probability 10�4. For a coverage of

250�, the true-positive rate of a 5% variant is 70%, and that of a

10% variant is �85%. Variants present in 20% can be called

almost with certainty. When the dispersion is estimated from the

data using all samples with VAF 510%, the Bayes factors

become larger for variants510% and only few reach the thresh-

old of 10�4, as the model starts fitting the distribution of true

calls (Fig. 2b). In this case, a Bayes factor of 10�1 gives rise to a

similar power as in the undispersed case and a stronger prior is

required for a variant to be called.

4.1.2 AUC and cohort size We evaluated the area under the
ROC curve (AUC) as a global measure of predictive accuracy

for different VAF frequencies as a function of cohort size

(Fig. 2c). Typical AUC values range from 60% for 1% variants

to 98% for 50% VAF with only a mild influence of the cohort

size. A small percentage of variants could not be called with the

experimentally observed coverage.

4.1.3 Specificity As variants in cancer samples are typically rare

and millions of loci are analyzed, specificity is a major concern.

We compared shearwater’s specificity on 32 normal samples

against three other algorithms: Caveman, an established variant

caller, which has been used inmany large-scale genome and exome

sequencing projects (Jones et al., unpublished data; Nik-Zainal

et al., 2012; Stephens et al., 2012), MuTect (Cibulskis et al.,

2013) and deepSNV (Gerstung et al., 2012). We ran Caveman

as described against a single unmatched normal sample

(Papaemmanuil et al., 2013). Similarly, we ran MuTect (v.1.1.4)

with default options —–cosmic b37_cosmic_v54_120
711.vcf and —–dbsnp dbsnp_132_b37.leftAligned
.vcf.gz against the same unmatched normal. The options of

Fig. 2. Variant calling in control data. (a) Power (true-positive rate) of

detecting variants with different frequency and coverage for fixed disper-

sion �. (b) Power of detecting variants when � is estimated from the data

using a VAF cutoff of 0.1. (c) AUC as a function of cohort size for

different variant allele frequencies. The two lines for each VAF refer to

the case � ¼ 10�4 and to the case � ¼ �̂, respectively. (d) Specificity of

different algorithms on 32 normal control samples. (e) Scatterplot of

Bayes factors for 20 replicates. Colors denote variants meeting a posterior

threshold of 0.5 in only one of the two replicates. Open circles are known

polymorphisms. (f) Concordance of variant calls as a function of the

posterior cutoff. Filled segments show the number of variants called in

either of the two replicates (top and bottom; left axis) and the overlapping

fraction (middle) when a given posterior cutoff is applied. The black line

(right axis) shows the relative proportion of overlapping to total calls

Table 1. Forty-three genes analyzed in 683 MDS samples with average

coverage in parentheses

ASXL1 (232), ATRX (393), BCOR (97), BRAF (415), CBL (392),

CDKN2A (129), CEBPA (39), CREBBP (187), CTNNA1 (309), CUX1

(110), DNMT3A (94), EP300 (370), ETV6 (281), EZH2 (470), FLT3

(522), GATA2 (38), GNAS (196), IDH1 (341), IDH2 (96), IRF1 (61),

JAK2 (476), KDM6A (420), KIT (445), KRAS (274), MLL2 (164),

MPL (391), NF1 (448), NPM1 (345), NRAS (608), PHF6 (236), PTEN

(545), PTPN11 (430), RAD21 (330), RUNX1 (247), SF3B1 (282),

SH2B3(113), SRSF2 (65), STAG2 (276), TET2 (715), TP53 (311),

U2AF1 (191), WT1 (252), ZRSR2 (197)
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deepSNV (v.1.3.3) were combine.method¼‘fisher’ and
adjust.method¼‘BH’. After calling variants, we filtered the

output by removing variants in Ensembl variation (v70) and

removed unknown polymorphisms with PðVAF40:5Þ40:1.
In total, shearwater called five non-polymorphic variants

(Fig. 2d). deepSNV, in contrast, called of 32, Caveman 48 and

MuTect 79 variants. Hence, the specificity of shearwater appears

satisfying.

4.1.4 Reproducibility To quantify the reproducibility of shear-
water, we evaluated 20 AML samples that had been sequenced in

replicates. Here the second replicate underwent whole-genome

amplification, whereas the first replicate did not. The Bayes fac-

tors of replicates are highly correlated (Spearman’s � ¼ 0:87)
with only few samples missing the thresholds for variant calling

(Fig. 2e). The overall overlap of variants called in both replicates
ranges from 80 to 490%, depending on the posterior cutoff

(Fig. 2f). This is consistent with an average power of 90–95%.

4.2 Variants in MDS

Here we reanalyze data from 683 MDS samples that were

sequenced in the same run and passed quality control steps.

We used the shearwater algorithm to analyze 258830 nt from

43 oncogenic genes. For each call, we annotated polymorphisms

present in Ensembl variation (v70) but not in COSMIC (v63) and

termed mutations that were missense, nonsense or splice-site

variants as non-silent.

4.2.1 Effect of prior and cutoff First, we assess the influence of
the prior �gene and the cutoff of the posterior probability P0,

below which we call variants. As expected, the number of non-

polymorphic variants calls grows when increasing either the
cutoff of the posterior error probability P0, or the prior odds

�gene=ð1� �geneÞ (Fig. 3a). As the cutoff P0 affects all sites, it has

a somewhat larger influence on the number of calls than the

prior, which affects only a small subset of sites.
A stronger prior weight, but not a larger posterior cutoff, leads

to a higher ratio of non-silent to silent non-polymorphic calls

(Fig. 3b), as the prior specifically enriches for non-coding vari-

ants. The absolute value of N=S � 1:7 being smaller than the

neutral value of �3 indicates that there may be some residual

single-nucleotide polymorphisms present in the data

(NSNP=SSNP ¼ 0:33).
In the following, we use a prior probability �gene ¼ 0:5 for a

gene to be mutated in our cohort, which seems plausible, given

that we resequenced cancer genes. We use a posterior cutoff of
P0 ¼ 0:5 for our calls, which is the natural Bayes cutoff.

4.2.2 Distribution of calls With these parameters, shearwater

made 20975 calls across all samples, of which 2363 were

unique variants (identical alleles present in multiple samples).
Of these unique variants, 757 were found either in Ensembl vari-

ation or in an in-house panel of 500 normal exomes. Two hun-

dred variants were present in COSMIC, but not in Ensembl

variation, and 1406 were new (Fig. 3c).
The distribution of variant allele frequencies of known poly-

morphisms has two narrow peaks at 0.5 and 1, confirming the

accuracy of allele frequency estimates (Fig. 3d).Non-polymorphic

calls have a broad distribution with typical frequencies ranging

from 0 to 0.5, with slightly more mass toward lower frequencies.
This is consistent with our expectation that more variability

exists at lower frequencies. The distributions of COSMIC and

new variants are similar, which gives us confidence that these

are real. This also indicates that the prior did not lead to overcall-

ing, which would occur specifically at low frequencies.

4.2.3 Comparison with other variant callers We ran Caveman,

MuTect and deepSNV against an unmatched normal as

described above. After filtering variants from Ensembl variation,
576 variants were called by all four approaches (Fig. 3e). One

thousand two hundred fifty-six variants were unique to shear-

water, compared with 360 for Caveman, 1381 for deepSNV and

855 for MuTect. Four hundred five of 1256 unique variants were

single base deletions, which could not be called by Caveman or

MuTect. It therefore appears that shearwater achieves a good

level of specificity, given that Caveman used a series of post-

processing filters, whereas deepSNV and MuTect did not.
In the presence of noise, variant calling amounts to balance

sensitivity and specificity. We evaluated this trade-off by

Fig. 3. Variants in MDS. (a) Number of non-polymorphic variant calls

versus cutoff P0 and prior weight �gene=ð1� �geneÞ. (b) Ratio of non-silent

to silent variant calls. (c) Venn diagram of the distribution of shearwater

variants across a normal panel, known SNPs and COSMIC variants.

(d) Distribution of variant allele frequencies. (e) Venn diagram of calls

from different algorithms. (f) Number of SF3B1 K700E calls as a func-

tion of false positives for different variant callers
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comparing the ability for calling the SF3B1 K700E hotspot mu-

tation, which is characteristic of MDS and can thus be con-

sidered true somatic, versus the overall number of false-positive

calls in the normal panel as discussed in the previous section. All

three variant callers detect 97 K700E variants; above this level,

however, MuTect and Caveman begin to call many artifacts (Fig.

3f). Shearwater calls 108 variants without decreasing specificity

because of the higher prior weight (�K700E ¼ 0:05) put on this

variant. Yet no K700E variants were found in the normal sam-

ples, showing that shearwater does not blindly call this hotspot.

4.3 Prognostic performance

In the absence of a known ground truth and reliable methods for

validating subclonal mutations that are guaranteed not to repli-

cate systematic artifacts, it is generally difficult to assess the qual-

ity of one variant caller over another (Kim and Speed, 2013). An

indirect measure of the quality of a predicted genotype can be the

correlation with a known phenotype, such as survival. Suppose

there exists a correlation C between genotype G and a quantita-

tive trait Y. In practice, we do not know the genotype with cer-

tainty, and only have estimates bG ¼ G þ �, where " is the

deviation of the estimate from the truth. If " is 0, the observed

correlation between genotype and phenotype is Ĉ ¼ C; if " is

large and completely randomizes G then the observed correlation

becomes 0. Conversely, a higher correlation between genotype

estimates and phenotype indicates a lower average bias of the

genotype estimates. This reasoning requires the error " and the

phenotype Y to be uncorrelated and it appears unlikely to us that

the ability to call mutations is confounded with the outcome of

the patient in such a way that it leads over- and undercalling of

mutations in specific sets of genes.

4.3.1 Marginal effects of single genes Survival in MDS depends
on the absence and presence of mutations in multiple genes. For

example, we and others have shown previously that oncogenic

mutations in the SF3B1 gene are associated with better prognosis

(Damm et al., 2012; Malcovati et al., 2011; Papaemmanuil et al.,

2011), whereas alterations in TP53, DNMT3A, STAG2 and

other genes are indicative of a worse outcome (Papaemmanuil

et al., 2013). Patients with any novel mutations should hence

follow these survival trends.
Survival data were available for 517 patients. We considered a

gene to be mutated if it contained at least one non-silent muta-

tion; the endpoint was AML-free survival. Figure 4a–d shows

Kaplan–Meyer curves for patients carrying mutations identified

by Caveman and/or shearwater. Patients with mutations only

detected by shearwater generally display the expected behav-

ior—that is on average better survival if SF3B1 was mutated,

poor survival if TP53 or STAG2 were mutated and a moderate

change for DNMT3A.

4.3.2 Overall prognostic accuracy To assess the overall prog-
nostic power combining all mutated genes, we trained Cox pro-

portional hazards survival models with mutated genes as

covariates. We used a 5-fold cross-validation scheme to estimate

Harrel’s C-statistic (Harrell et al., 1996), measuring the corres-

pondence of the estimated risk and the ordering of deaths, simi-

lar to an AUC statistic, on the remaining fifth. The predictive

potential C increases with P0 and the prior odds, with typical

Fig. 4. Prognostic effect of different variant callers. (a–d) The fraction of AML-free patients (either death or AML transformation) versus the time in

months after sampling is shown. Patients are split into groups depending on whether the patient has a non-silent mutation in the given gene, found

exclusively by Caveman, by shearwater only or by both. The gray line denotes patients with no mutations. P-values in the caption are from a log-rank

test against the wild-type group, C is the corresponding C-statistic. While the Kaplan–Meyer curves and N refer to the fraction of patients exclusive to

each method, P and C include the joint cases. (e) C-statistic for shearwater for different parameters. (f) C-statistic under permutation tests shuffling

all calls in the set of variants exclusive to one variant caller. (g) C-statistic for different AND combinations of genotypes. (h) C-statistic for different

OR combinations of genotypes
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values between 0.67 and 0.68 (Fig. 4e). For a prior weight of 100
and P0 ¼ 0:5, C starts dropping again as shearwater starts over-
calling variants with a high prior probability. The maximal value
of C ¼ 0:682 was observed for a cutoff of P0 ¼ 0:5 and a prior

odds of 1, justifying our previous parameter choices.
The C-statistics of shearwater’s competitors were slightly

lower, with Caveman having C ¼ 0:666 and permutations of

the discrepant calls show that this difference is unlikely to be
an artifact (P ¼ 0:03; Fig. 4f). For Mutect we obtained
C ¼ 0:666 (P ¼ 0:02) and deepSNV C ¼ 0:583 (P50:01).
The higher prognostic accuracy of shearwater suggests that
shearwater calls more survival-associated variants and less noise.
In a practical application, one will most likely rely on a com-

bination of variant callers to avoid the biases of a single method.
Combining the genotypes of different methods by either the
intersection (AND) or the union (OR) of variant calls, however,
did not further increase C (Fig. 4g, h). This indicates that the

variants that shearwater may be missing do not have a large
influence on survival.

5 DISCUSSION

In this article, we presented a statistical approach for detecting
clonal and subclonal single nucleotide variants in targeted gene
screens. The availability of large numbers of samples allows for

precisely estimating the rate of artifacts, which is important for
reliably detecting subclonal mutations that can have a disadvan-
tageous signal to noise level. Our model incorporates prior in-

formation on mutational hotspots, which selectively increases the
sensitivity for known mutations. Shearwater automatically deter-
mines the noise levels from the data, and we therefore expect it to
deal well with sequencing data from other sequencing platforms

and aligners.
Shearwater has both a high specificity and good power to

detect variants. The genotypes obtained by shearwater have a

higher prognostic value than those from established variant call-
ers, and are likely to contain fewer artifacts. To an extent this
behavior is expected because of our algorithm’s ability to exploit

the power of a large cohort of samples and to incorporate prior
knowledge about which mutations are more likely than others.
As our algorithm uses unmatched samples, it relies on the

quality of polymorphism databases such as Single Nucleotide
Polymorphism Database or Ensembl variation, which can gen-
erally be expected to become better in the future. The same holds
true for the quality of databases of somatic mutations that will

get richer over time and contain more precise information about
the mutational patterns in each cancer type. Here we used the
same probability for each gene to be mutated, but once unbiased

estimates for the mutation frequencies in each cancer type exist
from systematic gene screens, one will be able to further improve
the accuracy of our algorithm. The idea of using a prior for

recurrent mutations may also be incorporated easily into other
variant callers.
Finally, our core algorithm may also be improved in many

ways. For example, one could account for base qualities by a
weighted counting scheme, instead of a simple phred quality
threshold. One limitation of our approach is its reliance on a
variant to be present on reads from both directions due to the

specifics of the null model M0. This was introduced as it greatly

increases the specificity of calls, but leads to a decrease in power

in regions with low coverage and also at the flanks of the target

regions, where often reads in only one direction are available.

Our implementation allows the user to choose an essentially

strand-agnostic null model M0 : � ¼ � ^ �0 ¼ �0, but this may

be less specific. To analyze matched samples, one could derive

the joint probability of a variant being present in only the tumor

but not the normal, or simply remove the intersection of variants

in tumor and matched normal.
In summary, we have presented a coherent statistical method-

ology and robust algorithm for calling subclonal variants in

cancer samples with great specificity. As genomic sequencing is

about to enter clinical diagnostics, we believe that our method

will have broad applicability.
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