
Vol. 30 no. 9 2014, pages 1266–1272
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu014

Genetics and population analysis Advance Access publication January 9, 2014

Efficient haplotype matching and storage using the positional

Burrows–Wheeler transform (PBWT)
Richard Durbin
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK

Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: Over the last few years, methods based on suffix arrays

using the Burrows–Wheeler Transform have been widely used for DNA

sequence read matching and assembly. These provide very fast

search algorithms, linear in the search pattern size, on a highly com-

pressible representation of the dataset being searched. Meanwhile,

algorithmic development for genotype data has concentrated on stat-

istical methods for phasing and imputation, based on probabilistic

matching to hidden Markov model representations of the reference

data, which while powerful are much less computationally efficient.

Here a theory of haplotype matching using suffix array ideas is

developed, which should scale too much larger datasets than those

currently handled by genotype algorithms.

Results: Given M sequences with N bi-allelic variable sites, an O(NM)

algorithm to derive a representation of the data based on positional

prefix arrays is given, which is termed the positional Burrows–Wheeler

transform (PBWT). On large datasets this compresses with run-length

encoding by more than a factor of a hundred smaller than using gzip

on the raw data. Using this representation a method is given to find all

maximal haplotype matches within the set in O(NM) time rather than

O(NM2) as expected from naive pairwise comparison, and also a fast

algorithm, empirically independent of M given sufficient memory for

indexes, to find maximal matches between a new sequence and the

set. The discussion includes some proposals about how these

approaches could be used for imputation and phasing.
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1 INTRODUCTION

Given a large collection of aligned genetic sequences, or haplo-

types, it is often of interest to find long matches between

sequences within the collection, or between a new test sequence

and sequences from the collection. For example, sufficiently

long identical substrings are candidates to be regions that are

identical by descent (IBD) from a common ancestor. (I will use

the word ‘substring’ to denote contiguous subsequences, as is

standard in the computer science text matching literature.)

When using imputation approaches to infer missing values one

wants to identify sequences that are as close as possible to the test

sequence around the location being imputed, such as those that

are IBD, or at least share long matches with the test sequence.

Maximizing the number of such long matches could also form

the basis of genotype phasing.

Naive substring match testing would take OðN2MÞ time for

each test sequence, where there are N variable sites and M

sequences, and hence OðN2M2Þ time for complete all-pairs
comparison within a set of sequences. By keeping a running

match score to find maximal matches as in BLAST, it is straight-

forwardly possible to reduce this toO(NM) per single test, and so

OðNM2Þ across the whole collection, but this is still large for
large M. Recently suffix-array-based methods have proved

powerful in standard sequence matching, as exemplified by

Bowtie (Langmead et al., 2009), BWA (Li and Durbin, 2009)
and SOAP2 (Li et al., 2009). Here an approach based on suffix

arrays is described that can find best matches within a set of

sequences in O(NM) time, following preprocessing of the dataset
also in O(NM) time, and empirically best single haplotype

matches in O(N) time.
The differences between the algorithms described here and

standard suffix array based sequence matching are derived

from the fact that there are many sequences that are all of the
same length and already aligned. So on the one hand there is no

need to consider offsets of the test sequence with respect to the

sequences in the collection, but on the other hand the test

sequence is long and we are looking for maximal matches of
an arbitrary substring of the test sequence, not of the whole

test sequence.

2 APPROACH

When looking at genetic data from humans or other diploid

organisms, there are two underlying genome sequences per
person, one from their father and one from their mother.

These are known as ‘haplotype’ sequences. Here I consider the

case where we are given these two sequences separately, rather

than unphased diploid ‘genotype’ sequences, where the two
haplotype sequences have been observed together.

Consider a set X of M haplotype sequences xi, i ¼ 0, . . .,
ðM� 1Þ over N variable sites indexed by k, numbered from 0

to (N� 1). We can take all the sites to be bi-allelic with values 0

or 1, so a typical site xi½k� 2 f0, 1g: For any sequence s, let us
write s½k1, k2Þ to represent the semi-open substring of s starting at

k1 and finishing at ðk2 � 1Þ: We will say that there is a ‘match’

between s and t from k1 to k2 if s½k1, k2Þ ¼ t½k1, k2Þ, and this
match is ‘locally maximal’ if there is no extension that is also a

match, i.e. if k1 ¼ 0 or s½k1 � 1� 6¼ t½k1 � 1�, and k2 ¼ N or

s½k2� 6¼ t½k2�: When comparing s to the set of sequences X
we say that s has a set-maximal match to xi from k1 to k2
if the match is locally maximal and there is no longer match

from s to any other xj that includes the interval ½k1, k2Þ:
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For some applications we will be interested in the set-maximal

matches within X, i.e. the set-maximal matches of each xi to

Xnfxig:
Fundamental to our approach will be to consider a particular

form of ordering on substrings of the set X of sequences. Here is

an explanation for this ordering, with some motivation about

why it is important. We will consider a separate ordering for

each position k between 0 and N. For given k, let us order the

sequences x in X so that their reversed prefixes x½0, kÞ are

ordered, by which I mean that the reversed sequences of the

prefixes running back from (k� 1) to 0 are ordered in the natural

fashion, with them being ordered according to their index i in X

if the prefixes are the same.

Let us consider a set-maximal match between two sequences in

X from k0 to k. If we sort in this reversed order at k, then the

maximally matching sequences must be adjacent, because, if

there were another prefix sorting in between them, then it

would have to match both from k0 to k because of sort order,

and it would have to match one of the two at position ðk0 � 1Þ,

because the maximally matching sequences must take different

values there and there are only two possible values. The new

sequence would thus form a longer match, which contradicts

the presumption that the match between the original pair was

set-maximal. Strictly, this argument requires that the original

match was set-maximal in both directions. We will see this is

important below. However, this is just a motivating paragraph

so there is no need to consider yet the case where it is set-

maximal in only one direction.
Those with prior exposure to suffix array algorithms will

notice that I talk here about prefixes and reversed ordering

rather than suffixes and lexicographic ordering. In this text the

direction of the standard theory is reversed so that algorithms

process forwards naturally through the sequences from 0 to

(N� 1), rather than backwards; this has no substantive effect

on any of the algorithms or results, but will enable us to process

very large datasets in the order in which they naturally come, and

also makes some of the notation more natural.

2.1 Derivation of prefix array representation

The argument in the preceding paragraph suggests that having

the sequences sorted in order of reversed prefixes at position k

would help find maximal matches. It might seem that finding this

sort order for all the prefixes at every position k would be com-

putationally costly, but that is not the case. If we know the sort

order at position k Algorithm 1 shows how to derive the sort

order at position (kþ 1) by a simple process looking only at the

k-th value of each sequence. We can therefore calculate the entire

set of orderings for all k in a single pass through all the se-

quences, in time proportional to NM. Let ak½i� be the index

m5M of the sequence xm from which the i-th prefix in the re-

versed ordering at k is derived. The array ak is a permutation of

the numbers 0, . . ., ðM� 1Þ: Because we are often going to want

to discuss the sequences sorted in the order of their prefixes,

I define yki to be the i-th sequence in this sorted ordering

yki ¼ xak½i�: The key observation is that, conditional on the

value of yki ½k�, the order of the elements of akþ1 is the same as

their order in ak. An illustration is given in Figure 1.

Algorithm 1 BuildPrefixArray—build the positional prefix array akþ1
from ak

u 0, v 0, create empty arrays a½�, b½�

for i ¼ 0!M� 1 do

if yki ½k� ¼ 0 then

a½u�  ak½i�, u uþ 1

else

b½v�  ak½i�, v vþ 1

akþ1  the concatenation of a followed by b

To identify where maximal matches start, we need to keep

track of the start position of matches between neighboring pre-
fixes. Formally, for i40 define dk½i� to be the smallest value j

such that yi½j, kÞ matches yi�1½j, kÞ (note that I have dropped the
k suffix of the y’s here and in the following for ease of notation,

since its value is implicitly k for the time being). If
yi½k� 1� 6¼ yi�1½k� 1� then set dk½i� ¼ k: It can then be shown

that the start of any maximal match ending at k between any
yi, yjði5jÞ is given by maxi5m�j dk½m�: Using this we can effi-

ciently extend Algorithm 1 to update dk in parallel with ak as
we sweep through the data, as shown in Algorithm 2.

Algorithm 2 BuildPrefixAndDivergenceArrays—build the divergence

array dkþ1 along with akþ1 from dk and ak

u 0, v 0, p kþ 1, q kþ 1

create empty arrays a½�, b½�, d½�, e½�

for i ¼ 0!M� 1 do

if dk½i�4p then p dk½i�

if dk½i�4q then q dk½i�

if yi½k� ¼ 0 then

a½u�  ak½i�, d½u�  p, u uþ 1, p 0

else

b½v�  ak½i�, e½v�  q, v vþ 1, q 0

akþ1  the concatenation of a followed by b

dkþ1  the concatenation of d followed by e

Because we are dealing with bi-allelic data, so long as dk½i�40,

the values of yi�1½dk½i� � 1� and yi½dk½i� � 1� must be 0 and 1,
respectively, since they differ by definition and are in sorted

order. This means as a corollary that it is not possible for dk½i�
to be equal to dk½iþ 1�, as long as they are greater than 0, be-

cause otherwise yi½dk½i� � 1� would need to be both 1 and 0,
which is impossible.
I will call the collection of arrays ak for all k the ‘positional

prefix arrays’ of X. These are related to standard suffix arrays,
but apart from being prefix rather than suffix arrays because the

sorting is in the reverse direction, they differ because they form a
set of N arrays each of size M rather than a single array of size

NM. The dk contain the equivalent of ‘longest common prefix’
values in standard suffix array algorithms.

2.2 Finding all matches within X longer than a

minimum length L

Now we can use the ak and dk arrays to efficiently find matches.
In order to count matches only once, we will sweep through the

sequences with increasing k and only report matches at each k
that end at k, i.e. for which yi½k� 6¼ yj½k�: In order for the match

to be longer than L, we must by definition have dk½m� � k� L
for all i5m � j, so pairs of indices (i, j) with this property will

occur in blocks in the sorted list, separated by positions at which
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dk½i�4k� L: We therefore proceed through the sorted list at

position k, keeping track of the last time that dk[i] was greater
than (k�L). Given this, our algorithm looks remarkably like

that for generating the ak arrays.

Algorithm 3 ReportLongMatches—report matches within X ending at k

longer than L

u 0, v 0, create empty arrays a½�, b½�

for i ¼ 0!M� 1 do

if dk½i�4k� L then

if u40 and v40 then

for all 0 � iu5u and 0 � iv5v do

report match from a½iu� to b½iv� ending at k

u 0, v 0

if yi½k� ¼ 0 then

a½u�  ak½i�, u uþ 1

else

b½v�  ak½i�, v vþ 1

This algorithm isOðmaxðNM, number of matchesÞÞ; reporting
the pairs of subsets a[] and b[] of sizes u and v would be O(NM).

Note that ReportLongMatches can be run in the same sweep
through the data as used to calculate the a and d arrays, so if

we are happy to discard previous values of aj and dj for j5k as
we go, it can be carried out in O(M) space.
A variation of this method can deliver all matches that extend

in both directions from a location by at least a minimum length
L/2. In this case one considers blocks within which

dkði, jÞ � ðk� ð2Lþ 1ÞÞ to find sets of such matches centered on
position k� ðL� 1Þ, and does not separate into subsets for which

yk[i]¼ 0 or 1. This approach may be relevant when looking for
similar sequences at a position, perhaps for the purpose of imput-

ation. Long matches will recur many times in this formulation, so
it is best if possible to use the similar subsets as they are identified

during the sweep, rather than to store them for future use.

2.3 Finding all set-maximal matches within X in

linear time

Consider a sequence yi in the sorted list at k. Under what

conditions will it have a set-maximal match ending at k?
Clearly the match must be to one or more sequences directly

preceding or following it in the sort order. First we find

the candidate interval [m,n] such that for all j 6¼ i with
m5j � n, dk½j� � minðdk½i�, dk½iþ 1�Þ: If yj½k� 6¼ yi½k� for all

these j then yi has a set-maximal match to them all, but (unless
K¼N) if any have yj½k� ¼ yi½k� then the match between yi and yj
can be extended forwards, and there is no set-maximal match

ending at k. Iterating over all k and i we get algorithm 4.

Algorithm 4 ReportSetMaximalMatches—report set maximal matches

in X

for k ¼ 0! N do

dk½0�  kþ 1, dk½M�  kþ 1 . sentinels at boundaries

for i ¼ 0!M� 1 do

m ¼ i� 1, n ¼ iþ 1

if dk½i� � dk½iþ 1� then . scan down the array

while dk½mþ 1� � dk½i� do

if ym½k� ¼ yi½k� and K 6¼ N next i

m m� 1

if dk½i� � dk½iþ 1� then . scan up the array

while dk½n� � dk½iþ 1� do

if yn½k� ¼ yi½k� and K 6¼ N then next i

n nþ 1

for j ¼ mþ 1! i� 1 do

report match of ak½i� to ak½j� from dk½i� to k

for j ¼ iþ 1! n� 1 do

report match of ak½i� to ak½j� from dk½iþ 1� to k

Despite the inner loops this algorithm only has time complex-
ity O(NM), because the requirement that yj½k� 6¼ yi½k� limits the

search so that each position is compared at most once from each

Fig. 1. A set of haplotype sequences sorted in order of reversed prefixes at position k, showing the set of values at k isolated from those before and after,

and on the right hand side how the order at position (kþ 1) is derived from that at k as in Algorithm 1. Maximal substrings shared with the preceding

sequence ending at k are shown bold underlined; these start at position dk[i] as calculated in Algorithm 2
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direction. To be completely precise, because matches have to

terminate at the start and end of the sequence, this last statement

relies on there not being arbitrarily large groups of sequences

identical from 0 to N. Under these conditions, this also proves

that the total number of set-maximal matches within X is

bounded by a fixed multiple of NM.
As with ReportLongMatches, ReportSetMaximalMatches can

be run in the same sweep through the data as used to calculate

the a and d arrays, so if we are happy to discard previous values

of aj and dj as we go, it also can be carried out in O(M) space.

2.4 Finding all set-maximal matches from a new

sequence z to X

Next let us consider the case where we have a new sequence z,

and want to find the set-maximal matches between it and set X.

We will again sweep forward through the sequence, and in this

case keep track of the start ek of the longest match of z to some yi
ending at position k, and the interval ½fk, gkÞ � ½0, . . .,MÞ of

indices in ak with that match. So for all i such that fk � i5gk
we have z½ek, kÞ ¼ yi½ek, kÞ, but z½ek � 1� 6¼ yi½ek � 1�: We allow

gk to be M if yM�1 is included in the set of longest matches.

We want an efficient procedure for updating e, f and g as we

move from k to (kþ 1). First let us imagine that we have a pro-

cedure for updating f and g to f 0 and g0 given a fixed starting

position ek. If f
05g0 then at least some of the original matches

starting at ek and ending at k can be extended to (kþ 1), so

e0kþ1 ¼ ek by definition and we are done. If on the other hand

f 0 ¼ g0 then none of the matches can be extended, and so

the matches ending at k to sequences between fk and gk are

set-maximal and can be reported. Then we need to find a new

ekþ14ek and corresponding new fkþ15gkþ1:
To efficiently update f and g we need the values u and v from

Algorithm 1. We did not store them at the time, but let us

now assume that we did so, in arrays uk and vk, and also kept

track of the total number of zero values at position k in the

sequences as value ck, which is equivalently the length of

array a[] in Algorithm 1. Now if we define wkði, 0Þ ¼ uk½i�

and wkði, 1Þ ¼ ck þ vk½i� then Algorithm 1 tells us that

akþ1½wkði, yi½k�Þ� ¼ ak½i�: Furthermore, if �k is the inverse of the

permutation ak, then �kþ1½i� ¼ wkð�k½i�, xi½k�Þ: This last state-

ment gives us a clue about how to update f and g. If we define

f0 ¼ wðf, z½k�Þ then this will be the index in akþ1 of the first se-

quence yj with j � f for which yj½k� ¼ z½k�, which is what want.

Similarly g0 ¼ wðg, z½k�Þ is what we want for updating g. So we

can now update f and g by simple lookup from stored values.
Now, as we saw above, if f 05g0 then we are done. On the

other hand, if f 0 ¼ g0 then there are no extensions of the match

starting at ek. At position k, we know that z sorted either just

before the block [f,g) in the natural prefix ordering, or just after

it. So it either sorted just before f or just before g. From this we

can infer that ykþ1f 0�15z5ykþ1f 0 in the natural ordering of reversed

prefixes. So ekþ1 � dkþ1½f
0�: Let us consider z½dkþ1½f

0� � 1�: If this
is 0 then z matches ykþ1f 0�1 better than ykþ1f 0 , and we will set

gkþ1 ¼ f 0 ¼ g0 and look for fkþ15f 0: If it is 1 then z matches

ykþ1f 0 better than ykþ1f 0�1, and we will set fkþ1 ¼ f 0 ¼ g0 and look for

gkþ14g0: In either case we need to search back from dkþ1½f
0� to

find ekþ1: We need to take a little care at the boundaries 0

and M.

Algorithm 5 UpdateZmatches—report any set-maximal matches of z to X

ending at k and update to (kþ 1)

f 0  wðfk, z½k�Þ, g
0  wðgk, z½k�Þ

if f 05g0 then

e0  ek
else

for i ¼ f; i5g; i iþ 1 do report match to ak½i� from e to k

e0  dkþ1½f
0� � 1

if z½e0� ¼ 0 and f 040 then

f0  g0 � 1

while z½e0 � 1� ¼ ykþ1f 0 ½e
0 � 1� do e0  e0 � 1

while dkþ1½f
0� � e0 do f 0  f0 � 1

else

g0  f 0 þ 1

while z½e0 � 1� ¼ ykþ1f 0 ½e
0 � 1� do e0  e0 � 1

while g05M and dkþ1½g
0� � e0 do g0  g0 þ 1

fkþ1  f 0, gkþ1  g0, ekþ1  e0

It is not immediately obvious that the algorithm is O(N). The

while loop in f 0 or g0 is inevitable because it only takes as many

iterations as there are matches to report the next time that

f 0 ¼ g0: The total number of set-maximal matches is bounded

by NA, as required. More complicated are the while loops that

decrement e0. The sum of times these are used is bounded by a

constant multiple of N.

2.5 Compact representation of X

The algorithms described above all use the ak and dk arrays to

find matches. However, these are arrays of integers with a total

number of elements equal to the number of binary values in the

original dataset, so storing them would take more space than a

bit representation of the starting data. Some algorithms can be

applied on the fly, in the same sweep through the data as used to

generate the values of a and d, but for other purposes, in par-

ticular for analyzing new sequences, we would like to store the

relevant information more efficiently. Here is a description of

how to do that.
First we notice that in the matching processes we do not ac-

tually use directly the ak½i� indexes, but rather the yi½k� ¼ xak ½i�½k�

values. These are a permutation of the xi½k� values determined by

the ak permutation indicating the sort order at k of prefixes up

to position (k� 1), and are therefore a positional analogue of

the Burrows–Wheeler Transform (BWT) of X (Burrows and

Wheeler, 1994; see Li and Durbin (2009) for an explanation

closer to that given here if this is not familiar). Let us call the

set of ordered y sequences the Positional Burrows–Wheeler

Transform (PBWT). As with the BWT, the PBWT is composed

of bit values not integer values, so we can store it in the same

space as the original data. Furthermore we can also expect the y

arrays to be strongly run-length compressible. This is because

population genetic structure means that there is local correlation

in values due to linkage disequilibrium, which means that haplo-

types with similar prefixes in the sort order will tend to have the

same allele values at the next position, giving rise to long runs of

identical values in the y array. So the PBWT can easily be stored

in smaller space than the original data. This will be true even if

the original data is run-length encoded, since the left-to-right

orientation of the data in X will not reflect shared haplotype

structure due to linkage disequilibrium.
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To find matches to a new sequence, as in Algorithm 5, we need
also the stored arrays uk and vk, in order to evaluate the exten-
sion function wkðÞ: These arrays correspond to the information

stored in the index described by Ferragina and Manzini (2000),
commonly known as the FM-index. Given the PBWT we can
store the information needed to generate them efficiently in an

exactly analogous fashion to that for normal strings.
We do need values of ak½� for reporting, but given the y values

in the PBWT and the position FM-index, we can do this effi-

ciently by only storing ak for a subset of values of k, for example
every 32 or 64 positions. Reported matches will be longer than
this, so extending to the next stored value of a by use of the

extension function wkðÞ is relatively inexpensive.
Finally, we need a compact representation of the dk arrays.

For now, it is proposed to Huffman encode the differences be-

tween adjacent dk½i�, and perhaps only store them at a subset of k
as for ak. There is probably scope for further improvement here.

3 RESULTS

Here I present initial results on simulated data. A dataset of

100000 haplotype sequences covering a 20Mb section of
genome sequence was simulated using the sequentially
Markovian coalescent simulator MaCS Chen (2009) using essen-

tially the command macs 100000 2e7 -t 0.001 -r 0.001
(in fact a larger simulation was undertaken, which crashed a little
beyond 20Mb, and the remaining material was trimmed down to

this set). There are 370 264 segregating sites in this dataset. The
raw MaCS output contains essentially the haplotype sequences

written in 0’s and 1’s, and so is approximately 37GB in size. This
compresses with gzip to 1.02GB.
An initial implementation pbwt of the key algorithms was

produced. This uses single byte run length encoding for the
PBWT, with the top bit encoding the value, the next two bits
selecting whether the length is in units of 1, 64 or 2048, and the

remaining 5 bits giving the number of units. For runs464 but
52048 this typically requires 2 bytes, and for runs 42048 but
564k this typically requires 3 bytes. All experiments were carried

out on an Apple Mac Air laptop with a 2.13GHz Intel Core 2
Duo processor using a single core. Encoding the dataset of
100000 sequences described above took 1070 s (user plus

system), generating a PBWT representation that is 7.7MB in
size, over 130 times smaller than the gzip compression of the
raw data. Further results including application to subsets of

the data are given in Table 1, showing that the relative gain
increases with the number of sequences, indicating clearly the

non-linear benefits of the algorithm. This can be clearly seen
by the observation that for each increase of a factor of ten in
the number of sequences, the average number of bytes used by

the PBWT to store the haplotype values at a site only approxi-
mately doubles. As a test on real data, similar measures were
applied to the chromosome 1 data from the 1000 Genomes

Project phase 1 data release 1000 Genomes Project (2012), con-
sisting of 2184 haplotypes at 3 007 196 sites. The gzip file of this
data took 303MB, whereas the PBWT used 51.1MB, nearly a

factor of six smaller, not far from the factor expected based on
the simulated data.
Next Algorithm 4 was implemented to find all set-maximal

matches within the simulated datasets. As expected the time

taken was linear in the number of sequences (Table 2), taking

only 20min to find all maximal shared substrings within 100 000

sequences.
Finally the comparative performance of three different

approaches to matching new sequences to a pre-indexed refer-

ence panel was evaluated, finding all set-maximal matches of

each new sequence to the reference set. For this evaluation, I

subsampled the simulated sequence dataset to approximate typ-

ical data from a genotype array experiment, by only retaining a

fraction (10%) of sites with allele frequency45%. This reduced

the number of sites to 5940, approximately one pre 3.4kb, cor-

responding to 850 k in the human genome, comparable to the

content of a standard a genotyping array. Table 3 shows results

for matching 1000 of the sequences from the simulation, compar-

ing them to non-overlapping subsets between 1000 and 50 000 in

size.
First a ‘naive’ algorithm was implemented, in which each

sequence was compared to all sequences in the panel in a

single pass, keeping the best matching segment covering each

base in the test sequence. As expected, this approach takes

time linear in the size of the panel, taking �0.05 s per sequence

in the panel. Second Algorithm 5 was implemented, which is

termed ‘indexed’ in Table 3. This takes constant user time of 0.9

user seconds to match 1000 sequences to reference panels up to

size 10 000, but for 50000 reference sequences the size of the

stored u, v and d arrays (which were not compressed in this im-

plementation) became larger than the available memory, result-

ing in an increase in system time from 0.2 to 15 s, and a smaller

increase in user time to 1.7 s. I therefore conclude that the

PBWT-based approach can be hundreds of times faster than a

direct search approach and find matches in time independent of

the reference panel size, as conjectured above, so long as the

associated index arrays fit in memory.
For situations where the indexes do not fit in memory, we can

still use the PBWT data structures to provide a third ‘batch’

matching process that is still much faster than the naive

Table 1. Compression performance of pbwt on datasets of increasing

size

Number of sequences 1000 10 000 100 000

Sequences .gz size (KB) 10 515 105 559 1024 614

PBWT size (KB) 1686 3372 7698

Ratio .gz/PBWT 6.2 31.3 133.1

PBWT bytes/site 4.6 9.1 20.8

Table 2. Set-maximal match performance of pbwt on datasets of increas-

ing size

Number of sequences 1000 10000 100000

Set-maximal time (s) 12.1 120.3 1213.7

Set-maximal average length (Mb) 0.27 1.48 3.98
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approach. This uses a modified version of the within-set

Algorithm 4 that passes jointly through the panel and combined

set of new sequences together, just considering matches between

new and old sequences. As shown in Table 3, the time taken by

this batch approach, whose memory requirements are low and

independent of the number of sites, increases with reference

panel size, but is still many times more efficient than a direct

search as in the naive approach. Asymptotically the time taken

by current implementation will depend linearly M, but it may be

possible to reduce this by careful avoidance of PBWT compres-

sion where it is not needed.

4 DISCUSSION

I have presented here a series of algorithms to generate positional

prefix array data structures from haplotype sequences and to

use them for very strong compression of haplotype data, and

time and space efficient haplotype matching. In particular, the

matching algorithms remove a factor of M, the size of the set of

haplotype sequences being matched to, from the search time

taken by direct pair-wise comparison methods. This makes it

possible to find all best matches within tens of thousands of

sequences in minutes, and generates the potential for practical

software that scales to millions of sequences. Although the

algorithms are presented for binary data, they can be extended

to multi-allelic data with a little care.

These algorithms share aspects of their design with analogous

algorithms based on suffix arrays for general string matching,

but are structured by position along the string resulting in sub-

stantial differences. One consequence is that, unlike with suf-

fix array methods where linear time sorting algorithms are

non-trivial, building the sorted positional prefix arrays in linear

time using Algorithm 1 is straightforward. The approach used

here is reminiscent of that used by Bauer et al. (2011) to generate

a string BWT from very large sets of short strings.

With respect to efficient representation, it is interesting to note

that the original BWT was introduced by Burrows and Wheeler

(1994) for string data compression, not search, and it in fact

forms the basis of the bzip compression algorithm. Valimaki

et al. (2007) have previously explored the use of BWT com-

pressed self-index methods for efficient compression and search

of genetic sequence data from many individuals, but this does

not require a fixed alignment of variable sites as in the work

presented here, and is substantially different.

All the algorithms described here require exact matching with-

out errors or missing data. As for sequence matching, if a more

sensitive search is required that permits errors, it is still possible
to use the exact match algorithms to find seed matches, and then
join or extend these by direct testing. This would typically be the

approach taken by production software, but having powerful
methods to identify seeds is key to performance.
An alternative to using suffix/prefix array methods in sequence

matching is to build a hash table to identify exact seed matches.
Analogous to the creation of position prefix arrays described
here, it would be possible to build a set of positional hash
tables for each position in the haplotype sequences. Hash

based methods when well tuned can be faster than suffix array
based methods, because the basic operations are simpler, but
they typically require greater memory, particularly in cases

where the suffix representation can be compressed as it can be
here. A problem with genotype data not present in standard
sequence matching is that the information content of positions

varies widely, with a preponderance of rare sites with very little
information, which would mean that the length of hash word
would need to change depending on position in the sequence. An

alternative would be to build hashes based on a subset of sites
with allele frequency greater than some value such as 10%, or in
some frequency range, but this would lose information leading to

false seed matches.
Most research into algorithms for analyzing large sets of

haplotype or genotype data has focused on statistical methods

that are powerful for inference, but only scale up to a few thou-
sand sites and sequences; e.g. see Marchini and Howie (2010).
Recently accelerated methods have been developed that can han-

dle data up to tens of thousands of sequences, e.g. Williams et al.
(2012) or Delaneau et al. (2012). However, these methods pro-
vide approximations to the statistical matching approaches, and

are still much heavier than the algorithms presented here. Over a
million people have been genotyped, and although there are
logistical issues in bringing together datasets on that scale, geno-

type data on sets of 4100 000 people are becoming available
(Hoffman et al., 2011). One approach to more efficient
phasing and imputation may be to use computationally efficient

approaches such as the positional prefix array methods to seed
matches for statistical genotype algorithms, or at other compu-
tational bottlenecks. For example, in their BEAGLE software

Browning and Browning (2007) build a probabilistic hidden
Markov Model from a variable length Markov model of the
local haplotype sequences which is essentially derived from a

dynamic truncation of the positional prefix array. Although
their algorithms using this probabilistic model take them in a
different direction, I suggest that the methods described here

could be used to significantly speed up the model building
phase of BEAGLE.
Alternatively, a more direct approach may also be possible.

Most phasing and imputation algorithms build a model from the
entire dataset, then thread each sequence in turn against it to
provide a new phasing based effectively on a series of matches.

Instead, the positional prefix algorithms progress jointly along all
sequences. If we start at both ends of the data, then at some
position k we have information about matches in both directions

based on the current phasing, and can propose an assignment of
alleles for all sequences at k in a single step, before incrementing
k. Approaches based on this idea may be fast and complemen-

tary to current methods.

Table 3. Time to match 1000 new sequences in seconds, split into user (u)

and system (s) contributions for the indexed and batch approaches

Number of

sequences

1000 5000 10 000 50000

Naı̈ve 52.1 258.9 519.2 2582.6

Indexed 0.9uþ 0.1s 0.9uþ 0.1s 0.9uþ 0.2s 1.7uþ 15s

Batch 2.3uþ 0.1s 3.5uþ 0.1s 4.8uþ 0.1s 12.1uþ 0.1s
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