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ABSTRACT

Motivation: The de novo assembly of large, complex genomes is a

significant challenge with currently available DNA sequencing technol-

ogy. While many de novo assembly software packages are available,

comparatively little attention has been paid to assisting the user with

the assembly.

Results: This article addresses the practical aspects of de novo as-

sembly by introducing new ways to perform quality assessment on a

collection of sequence reads. The software implementation calculates

per-base error rates, paired-end fragment-size distributions and

coverage metrics in the absence of a reference genome.

Additionally, the software will estimate characteristics of the

sequenced genome, such as repeat content and heterozygosity that

are key determinants of assembly difficulty.

Availability: The software described is freely available online (https://

github.com/jts/sga) and open source under the GNU Public License.

Contact: jared.simpson@oicr.on.ca

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The availability of inexpensive DNA-sequence data has led to a

vast increase in the number of genome projects. For example, the

Genome10K project (Genome 10K Community of Scientists,

2009) aims to sequence 10 000 vertebrate genomes in the upcom-

ing years. Despite the advances in the production of DNA-

sequence data, performing de novo assembly remains a significant

challenge. This challenge was highlighted by the recent

Assemblathon2 project (Bradnam et al., 2013). In this competi-

tion sequence data was obtained for three vertebrate genomes.

Twenty-one teams contributed assemblies of the three genomes,

producing 43 assemblies in total. The quality of the assemblies

was highly variable both between submissions for the same

genome and within individual software packages across the

three species. In our view, this variability stems from the practical

difficulty of designing an assembly strategy (for instance, select-

ing software and its parameters) when little is known about the

structure of the underlying genome and the quality of the avail-

able data. This article aims to address this uncertainty.

Most current genome assemblers are based on constructing a

graph representing the relationship between sequence reads or

their subsequences. The sequence of the underlying genome

is modeled as a walk (or a set of walks) through the graph.

The properties of the sequenced genome and quality of the

input data is reflected by the structure of the graph; repeats,

sequence variation (in a diploid or polyploid genome) and
sequencing errors cause branches in the graph. These branches

increase the difficulty of the assembly by obscuring the true

walks that represent the sequence of the genome with many

false alternatives. Below, we will show how we can estimate the
individual contribution of sequence variants, repeats and sequen-

cing errors to the branching structure of an assembly graph and

we will discuss how the branching structure impacts assembly
difficulty. Additionally, we will develop methods to perform

rich quality assessment without a reference genome, comple-

menting previously developed approaches (FastQC, http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) (Keegan

et al., 2012; Schröder et al., 2010; Wang et al., 2012) by estimat-

ing sequence coverage, per-base error rates, insert size distribu-
tions and providing a visual method to assess coverage biases due

to sequence composition (Dohm et al., 2008; Ross et al., 2013).
Our software is open source under the GNU Public License

(version 3) and freely available online (https://github.com/jts/

sga). The implementation uses the FM-index data structure,
which allows queries to be performed over a large text collection

while limiting memory usage. This framework allows our ana-

lysis pipeline to be run on 170GB of human genome data in 24h
using 56GB of memory on a single multi-core computer. The

output of our software is a PDF report that allows the properties

of the genome and data quality to be visually explored. By pro-

viding more information to the user at the start of an assembly
project, this software will help increase awareness of the factors

that make a given assembly easy or difficult, assist in the selec-

tion of software and parameters and help to troubleshoot an
assembly if it runs into problems.

2 APPROACH

To efficiently calculate read-level metrics, we calculate each

metric on a random subset of reads from the input sequence

collection. For example, to estimate the per-base sequencing
error rate, we sample a read from the entire read collection,

use the FM-index to find reads that it overlaps, then count the

number of mismatches in the overlapping set. Other read level
metrics, such as the quality score distribution and fragment size

distribution, are calculated with a similar sampling-based frame-

work. By sampling reads we are able to estimate the metrics of
interest without testing the full dataset. For each metric the

number of trials is selected to minimize runtime while providing

enough samples to generate meaningful results.
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To quantify the structure of the de Bruijn graph, we sample

k-mers and explore the local structure of the graph around the

sampled vertex. Consider the schematic diagram of part of a de
Bruijn graph in Figure 1.

A typical de Bruijn graph-based assembler will try to find and
remove branches that are caused by sequencing errors (red ver-

tices), find and collapse ‘bubbles’ caused by sequence variation

(green vertices) and attempt to resolve branches caused by

repeats (blue vertices). The rate at which the graph branches

due to repeats and variation are key determinants of assembly
difficulty. In Section 3, we design an algorithm to estimate how

often such branches occur.

3 METHODS

3.1 Framework

The basic building block of the following methods is simply counting the

number of times a particular string occurs in the read collection. For this

task, we use the FM-index (Ferragina and Manzini, 2000) which allows

the number of occurrences of a pattern P in the read collection to be

counted in time proportional to the length of P. We will use the notation

countðPÞ to refer to this procedure. As our dataset consists of DNA and

we will often want to know the count of P and its reverse-complement, we

define the function

countDNAðPÞ ¼ countðPÞ þ countðrcðPÞÞ

where the rcðPÞ function returns the reverse-complement of P.

A second building block of our algorithms is sampling a read at

random from the FM-index of the read collection S. We adapted the

well-known functions to efficiently extract arbitrary substrings of the

text from the FM-index (Ferragina et al., 2004) to the restricted case of

extracting an entire read from S. We will call the procedure to extract

read i from the index extractðiÞ: For a read collection with n reads, our

sampling procedure simply draws a random number i from 0 to n – 1 then

runs extractðiÞ:
We can also use the FM-index to implicitly represent the structure of a

de Bruijn graph. In Pevzner’s original definition of a de Bruijn graph

k-mer subsequences of the reads are vertices in the graph (Pevzner

et al., 2001). Two vertices X and Y are connected by an edge if some

read contains a (kþ 1)-mer that contains X as a prefix and Y as a suffix,

or vice-versa. This condition allows one to formulate the assembly as a

tour of the graph that visits each edge at least once. As we do not require

this condition for this work, we adopt the slightly simpler definition of the

graph where the vertex set is the set of k-mer subsequences and the edges

are defined by k – 1 overlaps between k-mers (Pell et al., 2012; Simpson

et al., 2009). For our purposes, we consider a k-mer and its reverse

complement to be the same vertex.

This definition of the graph allows us to determine the structure of the

graph by simply performing k-mer count queries on the FM-index. Given

a vertex sequence X, we can use the following procedure to find the

neighbors of X. Write X as X¼ aZ where Z is the k – 1 suffix of X.

We can then run countDNAðZbÞ for b 2 fA,C,G,Tg: The k-mers with

non-zero count represent the ‘suffix neighbors’ of X. The ‘prefix neigh-

bors’ of X can be found similarly.

If a vertex has multiple suffix neighbors, we call it a ‘suffix branch’

(respectively, ‘prefix branch’).

3.2 The k-mer count distribution

The number of times a given k-mer occurs in the sequence reads depends

on the k-mer’s genomic copy number, whether it contains a sequencing

error, and the total number of k-mers drawn from the genome. To model

k-mer counts, we assume a diploid genome and consider different types of

k-mers. First, k-mers containing sequencing errors will occur at some rate

�0 that depends on sequence quality and the total number of k-mers.

Second, k-mers that are present on one of two parental chromosomes

will occur at some rate �1 which is half the rate of k-mers that are present

on both parental chromosomes, �2. We will refer to these k-mers as het-

erozygous and homozygous, respectively. The k-mers that are repeated in

the genome occur at rate �r for r42: A natural generative model for the

probability of observing a k-mer ci times for one component is a Poisson

distribution (Lander and Waterman, 1988). In our case as we do not

observe k-mers with count 0, we use a zero-truncated Poisson

distribution:

Pðci j zi ¼ j, �jÞ ¼
�cij e

��j

ð1� e��j Þci!
: ð1Þ

The latent variables zi indicate the type of the k-mer. For example zi ¼ 0

indicates k-mers that contain a sequencing error, zi ¼ 1 indicate hetero-

zygous k-mers and so on. The probability of observing ci reads for k-mer i

can be found by marginalizing out zi:

Pðci j k,wÞ ¼
X
j¼0

Pðci j zi ¼ j, �jÞPðzi ¼ jjwÞ ð2Þ

where Pðzi ¼ j jwÞ ¼ wj are the mixture proportions.

To fit the parameters of this model, we first construct an empirical

distribution of k-mer counts by sampling 50 000 reads from the

FM-index. Let Nc ¼ jfK in sample j countDNAðKÞ ¼ cgj: Intuitively,

Nc is the number of sampled k-mers with count c across all reads.

We initialize the model by calculating the mean count of homozygous

k-mers � as described in the supplement, fixing the number of compo-

nents n to 10, setting w ¼ ½0:1, :::, 0:1� and k ¼ ½�=50, �=2, �, 2�, :::�: The

vector w and k are iteratively updated using the Expectation-

Maximization algorithm (Dempster et al., 1977) until convergence or

30 iterations to obtain posterior estimates ŵ and b�. When updating k

only �0 is changed. The parameters �i for i40 are fixed to constrain

the model based on the assumption that the k-mer counts for each gen-

omic copy-number state are directly determined by overall sequence

coverage.

In principle, it is preferable to model the counts as a mixture of nega-

tive binomial distributions to model over dispersion of the count data.

Chikhi and Medvedev (2013) recently modeled the count distribution

using a mixture of Gaussians for this purpose. We found the Poisson

mixture was sufficient for the following applications so opted for the

simpler model.

3.3 Estimating genome size

It is useful to know the expected genome size to evaluate the completeness

of the final assembly. Previously, genome size has been estimated from

the distribution of k-mer counts (Li et al., 2009). Here we adapt this

method by explicitly correcting for sequencing errors.

Fig. 1. Schematic representation of a portion of a de Bruijn graph. Red

vertices are k-mers-containing sequence errors. Green vertices are k-mers

with sequence variation. Blue vertices are repeats
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Assuming all reads are length l and the reads do not contain sequen-

cing errors, there is a simple relationship between k, the number of reads,

n, and genome size, G. There are nðl� kþ 1Þ k-mers in the reads and

G� kþ 1 � G (as G� k) k-mers in the genome. The mean number of

times a homozygous k-mer appears in the reads is therefore:

� ¼
nðl� kþ 1Þ

G
: ð3Þ

If we know �, which we approximate from the count distribution as

described in the previous section, G can easily be calculated. If the reads

contain sequencing errors, this calculation requires modification. In this

case, the quantity nðl� kþ 1Þ, the total number of k-mers in the reads, is

a mixture of genomic k-mers and artificial k-mers containing errors.

However, � indicates the mean count of homozygous k-mers only, and

does not include k-mers containing errors. Therefore the calculation

G ¼ nðl� kþ 1Þ=� will overestimate G as nðl� kþ 1Þ is inflated by

k-mers with errors. We correct for this effect using w0, the proportion

of k-mers that contain errors from our mixture model. Our genome size

calculation therefore becomes:

G ¼ ð1�cw0Þ
nðl� kþ 1Þ

�̂
: ð4Þ

We use k¼ 31 when estimating genome size.

3.4 Branch classification

Sequencing errors, sequence variants and repeats cause branches in the de

Bruijn graph contributing to assembly difficulty (Fig. 1). We can estimate

the rate of branching in the graph that can be attributed to each of these

branch types by coupling a graph traversal with a probabilistic classifier.

For this analysis, we assume that the sequenced genome is diploid. We start

by sampling a read from the FM-index then iterating over all k-mers in the

read. We check each k-mer that satisfies Pðzi ¼ 2 j ci, k,wÞ40:90 (the pos-

terior probability of the k-mer being homozygous) for a suffix branch. To

minimize the impact of systematic errors (Guo et al., 2012), we require that

a neighboring k-mer is seen on both sequencing strands to be a valid edge

in the graph. If ki has more than one suffix neighbor, we attempt to classify

the branch. Let ka and kb be the two highest coverage neighbors of ki with

counts ca and cb. We set ka to be the higher coverage neighbor ðca � cbÞ:
We classify each such branch using amodified version of the probabilistic

model designed by Iqbal et al. (2012). Initially wemodeled the total coverage

of the branch, t ¼ ca þ cb, using a Poisson distribution with mean � under

the variant and error models and r� in the repeat model (for r � 2, repre-

senting the repeat copy number). This model tended tomisclassify repeats as

variants in the case when ki is from a low-coverage region of the genome, as t

is correlated to ci and therefore undersampling ki -biased t to be smaller than

expected. To account for this, we define a new variable without the depend-

ency on ci. Let cia (respectively, cib) be the number of reads that contain both

ki and ka (ki and kb). We define d ¼ ca þ cb � cia � cib: Intuitively, d is the

number of reads that contains ka or kb but not ki. Under the variant and

errormodel this is only possible when ka or kb is the first k-mer of a read or if

there is a sequencing error in the first base of ki. Both of these cases are

relatively rare so d is expected to be very small under the variant and error

model. Under the repeat model ka and kb appear in more genomic locations

thanki. This givesmore opportunities to samplek-mers coveringka andkb so

we expect d to be relatively large.

We use the following distributions for d, conditional on the branch

classification:

Pðd j error, k,wÞ ¼ Poisðd;�r þ w0�0Þ ð5aÞ

Pðd j variant, k,wÞ ¼ Poisðd;�r þ w0�0Þ ð5bÞ

Pðd j repeat, k,wÞ ¼

P
r¼3 Poisðd; ðr� 2Þ�ÞwrP

r¼3 wr
ð5cÞ

where �r ¼ n=G is the density of read-starting positions along the

genome. In the repeat model, we sum over repeat states of the mixture

model, where each state represents an integral number of extra genomic

copies of ka and kb.

The second source of information is the coverage balance between ka
and kb. If ka and kb represent a variant, we expect each k-mer to be

equally well represented. If the branch is due to an error we expect

most reads to support the higher coverage neighbor, ka. We model cover-

age balance with the following distributions:

Pðca, cb j errorÞ ¼ BetaBinomðca, ca þ cb; 50, 1Þ ð6aÞ

Pðca, cb j variantÞ ¼ Binomðca, ca þ cb; 0:5Þ ð6bÞ

Pðca, cb j repeatÞ ¼ BetaBinomðca, ca þ cb; 5, 1Þ ð6cÞ

Here BetaBinomðk, n, �, �Þ is the probability mass function of the

Beta-Binomial distribution parameterized by � and � and

Binomðk, n, pÞ is the probability mass function of the Binomial distribu-

tion parameterized by p. The parameters � and � of the Beta-Binomial

under the repeat model are chosen to reflect our uncertainty of the gen-

omic copy-number configuration of ka and kb (Iqbal et al., 2012).

We calculate the posterior probability of each classification using

Bayes’ rule assuming independence of d and ca, cb and a uniform prior

on the classifications. We then estimate branch rates from the classifica-

tions. We count the number of branches classified as each type

(Ne,Nv,Nr) and the number of homozygous k-mers that were checked

for a branch (Nh). Rather than classifying each branch to the type with

the largest posterior probability, we use soft classifications and update the

branch counts with the expectation from the posterior of the model:

Nh ¼
X
i2H

Pðzi ¼ 2 j ci, k,wÞ ð7aÞ

Ne ¼
X
i2B

Pðzi ¼ 2 j ci, k,wÞPðerror j ca, cb, d, k,wÞ ð7bÞ

Nv ¼
X
i2B

Pðzi ¼ 2 j ci, k,wÞPðvariant j ca, cb, d, k,wÞ ð7cÞ

Nr ¼
X
i2B

Pðzi ¼ 2 j ci, k,wÞPðrepeat j ca, cb, d, k,wÞ ð7dÞ

HereH is the set of sampled k-mers that were checked for a branch and B

is the subset of H consisting of k-mers that have a suffix branch.

We perform this classification on every k-mer in 1 000 000 randomly

sampled reads for k 21–71 in increments of 5. For the output plots in the

PDF report the branch rates are calculated as Nr=Nh and Nv=Nh: If the

number of branches for a classification is52, no point is plotted for that

value of k.

This model has limited power to distinguish between sequence errors

and variants when � is small. Additionally, if � is too small we will simply

not observe variant branches in the graph due to both alleles not being

represented in the sequence data. Therefore, we do not output classifica-

tions when �515:

3.5 Estimating position-specific error rates

Sequencing errors complicate de Bruijn graph assembly by lowering

effective k-mer coverage and adding false branches to the graph. In over-

lap-based assembly sequencing errors must be accounted for by either

allowing the overlaps to have mismatches or gaps, which leads to false-

positive edges in the graph, or by error correcting the reads prior to graph

construction (Simpson and Durbin, 2012).

To estimate the sequencing-error rate as a function of base position

within the read, we compute read–read overlaps that are seeded by short

exact matches. We begin by sampling a read R from the FM-index and
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computing the set of reads that share a 31-mer with R. For each read in

this candidate set we compute an overlap between the read and R. To

avoid spurious matches between repetitive sequences, we require the over-

lap is at least 50bp in length and the percent identity is at least 95%. We

construct a multiple alignment using R and the pair-wise overlaps for

reads meeting this threshold. We then compute a consensus sequence

for each column of the multiple alignment. A base call R½j� ¼ b is con-

sidered to be incorrect if b does not match the consensus base, at least

three reads support the consensus base and fewer than four reads support

base call b. We calculate the error rate at position j as:

�j ¼

PM
i¼1 I½base j incorrect in read i�

M
: ð8Þ

We use M¼ 100 000 for the figures in this manuscript. To avoid

excessively long computation time for repetitive reads, we skip 31-mers

that are seen 4200 times in the reads when computing the candidate

overlap set.

3.6 Estimating the fragment-size distribution

To help resolve long genomic repeats, read pairs are typically obtained

by sequencing both ends of a DNA fragment. The fragment size range is

determined during preparation of the DNA prior to sequencing. To

ensure that the sequenced fragment size distribution matches the expected

distribution, we developed a method to estimate the fragment size distri-

bution. We begin by sampling a read pair, X and Y, from the FM-index.

Starting from the first 51-mer of X, we perform a greedy search of the

51-mer de Bruijn graph by choosing the highest coverage branch as the

next vertex in the search. The search stops when the first 51-mer of Y is

found, there are no possible extensions or 1500 iterations have passed. If

a complete walk from X to Y is found, the length of the walk in nucleo-

tides is emitted as the fragment size. If sequence coverage is low, this

method of estimating the fragment size distribution may be biased to-

wards shorter fragments, as it is more likely that a walk representing a

long fragment is broken by lack of coverage. For Section 4.7, 100 000

read pairs were sampled.

3.7 Simulating de Bruijn assembly

We designed a method to simulate the output of a de Bruijn assembler to

allow the dependency between k-mer size and contig size to be explored.

For small k the graph will branch more often due to repeats than for large

k but for large k we are less likely to sample the complete set of genomic

k-mers leading to coverage breaks. Our simulation allows the balance

between these factors to be explored by performing walks through a de

Bruijn graph mimicking the performance of an assembler that is able to

identify and resolve false branches that are caused by errors and bubbles

that are caused by variants. As opposed to most assemblers which classify

branches as errors, variants or repeats based the topology of the graph we

use the probabilistic model developed in Section 3.4 to guide the graph

traversal.

We begin by sampling a read at random and calculating the probabil-

ity that the first k-mer of the read is a homozygous k-mer as in the branch

classification method. If the probability is50.50, we discard this read and

start again. Otherwise we begin a new contig starting from the first k-mer

of the read.

LetX be the current k-mer of the contig. We checkX for a branch as in

our branch classification method. If X does not have a branch, or has a

branch that is classified as an error or variant, we iterate from the highest-

coverage neighbor. If X does not have a neighbor or has a repeat branch

we terminate extension of the contig. This procedure occurs for both the

suffix neighbors of the initial k-mer and the prefix neighbors. Once the

extension has terminated in both directions the number of k-mers visited

is written to the output file.

To avoid excessively long computation time we cap the maximum walk

length at 50 000 and stop extension if a particular k-mer is visited twice.

We also do not allow a given walk to be used multiple times by recording

all visited k-mers in a bloom filter. Starting k-mers that are present in the

bloom filter are skipped. We perform 20000 walks for each k from 21 to

91 in increments of 5.

3.8 Computations

The program to calculate the genome characteristics and qc metrics is

implemented as a module of the SGA assembler in Cþþ. This program

writes the results to a JSON file, which is read by a Python script

to generate the PDF report. The computations performed in this article

are fully reproducible by downloading and running the following

Makefile:

https://github.com/jts/preqc-paper/tree/master/bin/generate_data.make

The Makefile will download the input data from public repositories,

run SGA, and then generate the final reports. Version 0.10.12 of SGA

was used to generate the data and figures for this article. The JSON-

formatted results are available online (ftp://ftp.sanger.ac.uk/pub/js18/

preqc-paper).

The computation time for the human data, the largest set used in the

article, was 13h (elapsed time) to download the data, 18 h to build the

FM-index and 6h to calculate the metrics. The memory high-water mark

was 56GB during construction of the FM-index. For the other genomes

the index construction time ranged from 1h for the yeast data to 14h for

the snake data. The metrics calculation runtimes ranged from 2h (yeast)

to 9h (bird).

4 RESULTS

4.1 Input data

In the following sections, we demonstrate the output of our pro-

gram using freely available data from genomes of varying com-

plexity. The selected datasets and their accessions are:

� Saccharomyces cerevisiae (ERR049929),

� Melopsittacus undulatus, a budgerigar from Assemblathon2

(ERR244146),

� Maylandia zebra, a Lake Malawi Cichlid from

Assemblathon2 (SRX033046),

� Boa constrictor constrictor, a snake from Assemblathon2

(ERR234359-ERR234374),

� Crassostrea gigas, a Pacific oyster (SRR322874-

SRR322877),

� Homo sapiens, a human genome (ERR091571-ERR091574).

For simplicity and consistency with the Assemblathon2 paper,

we will refer to these datasets as ‘yeast’, ‘bird’, ‘fish’ ‘snake’,

‘oyster’ and ‘human’. The yeast genome was selected to provide

an example of an uncomplicated genome that is typically

straightforward to assemble. In contrast, the oyster genome is

highly heterozygous and repeat-rich. This genome was recently

sequenced using a fosmid-pooling strategy after whole genome

assembly failed to produce satisfactory results (Zhang et al.,

2012). The human and Assemblathon2 datasets represent a

range of large eukaryotic genomes of varying heterozygosity

and repeat content. Multiple high-coverage sequencing libraries

are available for the human and Assemblathon2 samples. For

each genome a single library was selected for analysis. For the
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oyster data all three short-insert libraries are used for the inbred

sample to provide adequate coverage to infer the properties of

the genome. The yeast dataset was downsampled from 500X

coverage to 40X to be consistent with the other datasets. We

first describe our estimates of genome characteristics, followed

by our data quality metrics.

4.2 Exploring heterozygosity

Allelic differences in a diploid or polyploid genome generate

branches in an assembly graph with the characteristic ‘bubble’

structure (Zerbino and Birney, 2008) shown in Figure 1. Most

graph-based assemblers have functions to search for these struc-

tures in the graph and remove them. While these algorithms are

typically effective at removing isolated allelic differences, high

density variation can make assembly challenging (Donmez and

Brudno, 2011; The Potato Genome Sequencing Consortium,

2011; Zhang et al., 2012). We used the branch classifier de-

veloped in Section 3.4 to estimate the sequence variant branch

rate in our test datasets. Figure 2 depicts the rate of variant

branches in a de Bruijn graph as a function of k.

Approximately 1 in 1000 vertices in the de Bruijn graph of the

human sample has a variant-induced branch, which is consistent

with the rate of heterozygous variation found by reference-based

analysis of this genome (supplemental results).
It is easy to see from Figure 2 that the oyster genome has the

highest density of variant branches, indicating the genome is

highly heterozygous. As observed in Zhang et al. (2012) this

extreme heterozygosity makes assembly significantly challenging.

Of the three Assemblathon genomes, the bird genome has the

highest heterozygosity while the fish and snake datasets had simi-

lar estimated heterozygosity. The human genome contains the

least level of variation within the diploid species.
A low level of branching in the yeast dataset is attributed to

sequence variation (510�4 branch rate). As the sequenced yeast

was haploid these likely represent misclassification of systematic

sequencing errors or repeats.

4.3 Exploring genome repeat content

Genomic repeats also cause branches in the assembly graph. As
repeat branches tend to be difficult to resolve, often requiring
long-range paired-end data to jump over the repetitive region

(Weber andMyers, 1997) the number of repeat-induced branches
is a key indicator of assembly difficulty (Kingsford et al., 2010).
We use the output of our classifier to estimate the rate at

which repeat-induced branches appear in a de Bruijn graph as
a function of k (Fig. 3). As expected, the rate of repeat-induced
branches clearly decreases as a function of k for all datasets. The

difficulty of assembling the oyster genome is again reflected in
this analysis. For k551, the oyster graph has a comparable
repeat branch rate to the human graph despite oyster’s much

smaller genome size. For larger k, the oyster graph has the high-
est branch rate of all datasets. Likewise, the fish genome is more
repetitive than what might be expected from its relatively small

genome size.
The yeast genome branches very infrequently due to repeats.

Coupled with the lack of variation shown in the previous section,
this suggests that even with small k the de Bruijn graph of the

yeast data is relatively uncomplicated and should be straightfor-
ward to assemble.

4.4 Genome size estimates

The final genome characteristic that we estimate is the size of the
genome itself. Table 1 presents a comparison of our genome size

estimates to either the reference size or a recent published
estimate.

4.5 Assessing genome coverage

To facilitate genome assembly the genome must be sequenced
redundantly. The parameters key to the success of an assembly,
particularly the overlap length or k-mer size in de Bruijn assem-

bly, are tightly linked to the depth of coverage. If the parameters
to the assembler are too stringent, for instance large k or long
overlaps are requested, then the graph may become disconnected

due to lack of coverage. Conversely, if the parameters are too
permissive then the graph may contain an unacceptable number

Fig. 2. The estimated variation branch rate for each genome as a function

of k. Branch rate estimates for the yeast and fish data are not available for

all k due to insufficient coverage

Fig. 3. The estimated repeat branch rate for each genome as a function

of k
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of repeat branches. The parameters are usually chosen (or

learned from the data) to maximize stringency subject to avail-

able coverage.

We have developed multiple methods to assess the coverage

of a given dataset. The first method is a histogram of k-mer

counts for a fixed k (by default k¼ 51). An example is shown

in Figure 4.
On the x-axis are k-mer counts and the y-axis is how fre-

quently k-mers seen x times occur in the sampled data. For ex-

ample, 5–20% of k-mers are seen only once. These k-mers with

low count typically contain sequencing errors (Kelley et al., 2010;

Pevzner et al., 2001; Simpson and Durbin, 2012). The remaining

k-mers, those with higher count (45 occurrences), are typically

error-free and form the substrate of the assembly graph. Ideally

the error-free k-mers are well separated from k-mers containing

errors to allow easy identification and correction of errors. The

snake data is an excellent example of the desired separation,

while the yeast data would benefit from more sequencing data

or choosing a smaller k.
The count distribution also informs our understanding of het-

erozygosity. The oyster and bird data, which have the highest

estimated heterozygosity by our branch-classification method,

have two noticeable peaks in the distribution of error-free

k-mers. One peak corresponds to k-mers present on both paren-

tal haplotypes (at count 46 for oyster, 24 for bird) and one peak

for k-mers covering heterozygotes (22 for oyster, 13 for bird).

The oyster heterozygosity is so high that the peak at count 22 is

the mode of the error-free 51-mer distribution.
Sequence coverage is known to be dependent on the GC con-

tent of the sampled fragment (Ross et al., 2013). For extremely

biased genomes, it can be difficult to cover the entire genome

with sequence reads (Kozarewa et al., 2009). To visually assess

coverage as a function of GC content, we generate a 2D histo-

gram of (GC-content, k-mer count) pairs. If sequence coverage is

independent of GC content then the distribution of sequence

coverage within each column will be the same. As an example,

the fish data has a relatively uniform coverage profile across

the range of GC content (Supplementary Fig. S1A). The yeast

data is skewed with higher GC sequences having lower coverage

on average (Supplementary Fig. S1B). However, the overall

coverage is high enough that this mild bias likely does not impact

the assembly. The heteroyzgosity of the oyster data is clearly

visibile as two distinct clusters of k-mers (Supplementary Fig.

S1C).

4.6 Simulating contig assembly

In Section 3.7, we describe how our branch classifier can be used

to simulate the output of a de Bruijn assembler. Figure 5 shows

the simulated contig N50 as a function of k for the six test gen-

omes. For most datasets, there is a value of k that maximizes

N50 contig length by striking a balance between ability to resolve

short repeats and ensuring the graph is well-connected. The yeast

data is the best example of this with a peak at intermediate k.

The snake data is able to support a very large k as the high-

sequencing depth ensures the graph remains well-connected even

for large k. By this assessment, the oyster data is again the most

difficult to assemble.

4.7 Assessing error rates and insert sizes

To infer per-base sequencing error rates, we calculate read-read

overlaps and compare each read to the consensus sequence of

reads it overlaps. All datasets show the tendency of higher error

rate towards the 30-end of the sequence read characteristic of

Illumina data (Nakamura et al., 2011) (Fig. 6). Most datasets

Fig. 5. The N50 length of simulated contigs for k from 21 to 91, in

increments of 5

Fig. 4. A histogram of 51-mer frequencies for each dataset

Table 1. The genome size estimates from our method compared to pre-

viously published estimates

Genome Estimate (MB) Published size (MB) Source

Yeast 13 12 Goffeau et al. (1996)

Oyster 549 545–637 Zhang et al. (2012)

Fish 889 1000 Bradnam et al. (2013)

Bird 1086 1200 Bradnam et al. (2013)

Snake 1467 1600 Bradnam et al. (2013)

Human 2895 3102 GRC37
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have51% error rate across the length of the read. The distribu-

tion of quality scores along the length of the reads shows a simi-

lar trend (Supplementary Fig. S2).

Paired-end sequence data is commonly used to help resolve

repeats that are longer than the read length. To help ensure

that the sequenced fragments match the expected size determined

by the DNA library preparation, we infer the insert size distri-

bution by performing walks through the assembly graph that

begin and end on either end of a read pair (Supplementary

Fig. S3). In this figure, the oyster data has three modes as it is

a mixture of three separate paired-end libraries.

4.8 Model accuracy

Finally, we performed a simulation to test the accuracy of our

branch classification model. We performed this assessment by

obtaining a diploid reference genome for the human sample

(see Supplemental Material). We directly calculated the variant

and repeat branch rate from the de Bruijn graph of the diploid

reference genome. We also simulated 40X coverage of this dip-

loid reference and estimated branch rates using the same meth-

odology as the real NA12878 data. We expect that the branch

rate estimates from the simulated data should match the direct

calculations from the reference graph. The branch rates for the

real data should be close to those of the reference graph and

simulated data but may differ slightly due to the way the diploid

reference genome was prepared or biases in real data that our

classification model does not account for.
In Supplementary Figure S4, the variant and repeat branch

rates for the reference graph, simulated reads and real NA12878

data is shown. The estimated repeat branch rate for the simu-

lated data and real data closely match the repeat rate of the

diploid reference genome. The variant branch rate for the simu-

lated data closely matches the reference calculation, except for

very small k. At low k there is a very high density of repeat

branches, which suggests misclassification of repeats may lead

to an overestimation of the variant branch rate. The variant

branch rate for the real dataset is consistently higher than the

simulation and direct reference calculation. This difference may

be due to misclassification of systematic sequencing errors as

variants or indicate that an incomplete variant set was used to

construct the diploid reference genome.

5 DISCUSSION

While the development of new genome assembly methods con-

tinues, comparatively little attention has been paid to assisting

the user from a practical standpoint. Our program, along with

tools like VelvetOptimiser (http://bioinformatics.net.au/software.

velvetoptimiser.shtml) and KmerGenie (Chikhi and Medvedev,

2013), attempts to fill this gap. The program we developed helps

the user perform quality checks on their data while simulate-

nously assessing the difficulty of the assembly by measuring

the branching structure of a de Bruijn graph. By helping the

user better understand their data, our program makes progress

towards the goal of making assembly an easier and more con-

sistent process. The ability to identify low quality data early in

the assembly process will help to avoid effort wasted on unsuit-

able data, and guide the application of optional preprocessing

steps like quality trimming the reads. The PDF report generated

by the software provides a medium for discussing a given assem-

bly problem, for instance when getting help on a mailing list or

online.
The methods described in this article are our initial attempt at

assessing data quality and genome characteristics. There are two

promising ways to extend this work. First, we have limited our

model to diploid genomes. Extending the model to higher ploidly

would increase the range of genomes that could be characterized.

Second, we only describe methods to assess short insert paired-

end libraries. Many assembly projects use a range of paired end

libraries including multi-kilobase insert sizes. The addition of

methods to perform quality controls on these libraries would

be a valuable addition to our program.
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