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Introduction

Human babesiosis is an emerging tick-borne infectious disease caused by protozoa of the

genus Babesia that are obligate parasites of red blood cells. Long recognized as pathogens

imposing a significant health burden on domesticated animals, Babesia spp. increasingly

have been identified over the last 50 years as a cause of infection in people throughout the

world.

The first reference to babesiosis is probably in Exodus 9:3, which describes the plague

visited upon the cattle of Pharaoh Rameses II. Viktor Babes, a Hungarian pathologist who

investigated the cause of febrile hemoglobinuria in cattle grazing in the Danube region of

Romania, was the first to document a microorganism residing in red blood cells.[1] Shortly

thereafter, Smith and Kilborne identified a similar organism in Texas cattle.[2] Named

Pyrosoma bigeminum after its pear shape, the protozoan was later recognized as Babesia

bigemina. The cattle tick, Boophilus annulatus, was identified as the vector for transmission

of Texas cattle fever. By making this seminal observation, Smith and Kilborne established
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the concept that hematophagous arthropods can transmit an infectious agent to vertebrate

hosts. More than 100 species of babesia subsequently have been identified in wild and

domestic animals.[3]

The first human case of babesiosis was identified in 1957 near Zagreb, Croatia.[4] A young

farmer had been grazing cattle on tick-infested pastures and presented with fever, anemia

and hemoglobinuria. He was asplenic and died of renal insufficiency during the second

week of illness. Initially reported as Babesia bovis, the agent most likely was Babesia

divergens, another pathogen of cattle. In 1968, B. divergens was confirmed as the etiologic

agent in an asplenic person infected while vacationing in the Irish countryside.[5] While

these asplenic cases were attracting the attention of physicians in Europe, babesiosis was

diagnosed in several residents of Nantucket Island, off the coast of Massachusetts. The

causative agent was determined to be Babesia microti, which typically infects mice and

other small rodents.[6] Spielman and colleagues subsequently identified the vector as Ixodes

dammini (also known as I. scapularis) and recognized the white-tailed deer (Odocoileus

virginianus) as an important natural host.[7-10] In the 1990's, Babesia duncani (WA1) was

identified in human cases reported from the northern Pacific coast,[11] and a B. divergens-

like organism in a case from Missouri (MO1).[12] Another Babesia spp. was identified in

asplenic patients from the Tyrol region of Austria and the Alpine region of Italy in 2003.[13]

They experienced a severe illness caused by EU1, a species closely related to B. odocoilei

and known to infect white-tailed deer. Additional babesial species infecting humans have

been identified in Taiwan (TW1)[14] and Korea (KO1).[15] Initially diagnosed in Europe

and North America, human babesiosis is now reported from around the world.

Epidemiology

The pathogen

Babesia spp. are in the phylum Apicomplexa, together with organisms that cause malaria

(Plasmodium spp.), toxoplasmosis (Toxoplasma gondii), and cryptosporidiosis

(Cryptosporidium). The name Apicomplexa is derived from the complex of unique

organelles located in the cellular apex of certain life stages of these protists. The apical

complex includes vesicles called rhoptries and micronemes that secrete enzymes allowing

the parasite to invade host cells.[16]

Babesia spp. have a complex life cycle that involves asexual reproduction in the

erythrocytes of their mammalian hosts and sexual reproduction in their arthropod vector

(www.dpd.cdc.gov/dpdx/HTML/Babesiosis.htm). Within the red blood cell, trophozoites

reproduce by budding rather than schizogony. B. microti and B. duncani may undergo two

successive divisions. The four resulting nuclei remain in close proximity and this merozoite

tetrad form is described as a “Maltese Cross”. B. divergens merozoites undergo a single

division. Egress of merozoites and lysis of red blood cells appear to occur simultaneously.

Free merozoites in the bloodstream attach and invade other red blood cells. Some of the host

intraerythrocytic forms are gametocytes that contain twice as much DNA and are

morphologically distinct from trophozoites.[17, 18] Gametocytes ingested by ticks during

the blood meal emerge from erythrocytes within the gut, and fuse to form an ookinete that

penetrates the gut epithelium. Ookinetes invade the tick salivary glands and other tissue,
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then transform into sporoblasts that remain dormant through the molt of the engorged tick.

[19] When the next stage of the tick (nymph or adult) takes a blood meal from a vertebrate

host, sporoblasts are activated and begin a sporogonic process. Each sporoblast may liberate

up to 10,000 sporozoites, which enter the salivary ducts of the tick, and are deposited into

the skin of the infested vertebrate.[20]

Transmission

B. microti is the most common cause of human babesiosis. The primary tick vector of this

species is I. scapularis.[10] The primary reservoir for B. microti in eastern North America is

the white-footed mouse (Peromyscus leucopus).[7, 10] As many as two-thirds of mice have

been found to be parasitemic in endemic areas.[10] These mice also may be infected with

Borrelia burgdorferi, the etiologic agent of Lyme disease, and Anaplasma phagocytophilum,

the agent of human granulocytic anaplasmosis. I. scapularis may acquire B. microti, B.

burgdorferi, and/or A. phagocytophilum during a blood meal and subsequently transmit

these pathogens.[10, 21]

Each of the three active stages in the life cycle of I. scapularis (larva, nymph, and adult)

takes a blood meal from a vertebrate host in order to mature to the next stage (Figure 1). The

tick transmission cycle begins in the spring when adult females lay eggs that hatch into

larvae. In the late summer, newly hatched larvae ingest the parasite with a blood meal from

an infected rodent and molt to the nymphal stage. Nymphs transmit babesia to rodents in late

spring and summer of the following year.[7, 10] Larvae, nymphs, and adults can feed on

humans, but nymphs are the primary vector.[22] All active tick stages also feed on the

white-tailed deer (Odocoileus virginianus), which is an important host for the tick but is not

a reservoir for B. microti.[10] Because deer serve to amplify the number of ticks, the growth

of the deer population over the past few decades is thought to be the major cause for the

increase in human cases.[7, 10, 23] Babesiosis is rarely acquired through blood transfusions

and a few cases of transplacental/perinatal transmission have been described.[24-26]

Human epidemiology

Over the past 50 years, the epidemiology of the human babesiosis has changed from a few

isolated cases to the establishment of endemic areas in southern New England, New York,

and the north central Midwest. Human babesiosis due to B. microti has been reported in

Connecticut, Massachusetts, Minnesota, New Jersey, New York, Rhode Island, and

Wisconsin.[6-10, 24, 27-31] Moderately severe illness caused by B. duncani occurs in

Washington state and California.[11, 32] Cases of B. divergens-like infection have been

reported from Missouri,[12] Kentucky,[33] and Washington state.[34] In Europe, B.

divergens, B. microti, and EU1 have been reported to cause babesiosis in people and are

thought to be transmitted by Ixodes ricinus.[13, 35-38] In Asia, babesiosis has been reported

in Japan (B. microti-like),[39] Korea (KO1),[15] Taiwan (TW1),[14] and India.[40] Human

babesiosis also has been reported in Africa[41] and South America.[42]

Although the babesial piroplasm and Lyme spirochete share the same reservoir hosts and

tick vectors, human babesiosis only has been recognized in concentrated foci within Lyme

disease-endemic areas and the number of reported cases of babesiosis is less than that of
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Lyme disease in these foci.[43] B. burgdorferi infection is more commonly found in ticks

and rodents than B. microti or A. phagocytophilum in regions where all three infections are

endemic.[44] Unlike Lyme disease, babesiosis is not a nationally reportable disease. Lyme

disease is better recognized and more easily diagnosed than babesiosis, primarily because of

the pathognomonic erythema migrans rash, whereas symptoms and signs of babesiosis are

non-specific and easily mistaken for a viral illness.[45] Nonetheless, results of a detailed

epidemiologic study of babesiosis and Lyme disease suggest that the disparity in the

frequency of these infections on the southern New England coast is markedly less than

would be expected from current epidemiologic data.[43] The public health burden of

babesiosis is incompletely described but may be significant in certain endemic sites.

Nantucket Island reported 21 cases in 1994, which translates to 280 cases per 100,000

inhabitants, placing the burden of disease in a category with gonorrhea as “moderately

common”.[46] Furthermore, babesiosis may be increasing in incidence relative to Lyme

disease. In the early 1990's on Block Island, Rhode Island, the incidence of B. microti

infection increased approximately four-fold while that of B. burgdorferi remained

essentially unchanged.[43] Most human cases of babesiosis occur in the summer and in

areas where the vector tick, rodents, and deer are in close proximity to humans.[10]

Although the majority of cases are reported in adults, there is evidence that the disease is

more common in children than is currently reported.[43]

Clinical manifestations

Patients may experience a spectrum of disease severity and three distinct syndromes have

been described, (i) mild to moderate viral-like illness, (ii) severe disease with a fulminant

course resulting in death or a persistent relapsing course, and (iii) asymptomatic infection.

Limited data suggest that symptoms of babesiosis begin one to six weeks after tick feeding.

Mild to moderate illness

Most cases of babesiosis consist of a mild to moderate illness characterized by the gradual

onset of malaise and fatigue followed by intermittent fever and one or more of the

following: chills, sweats, headache, arthralgia, myalgia, anorexia, and cough (Table 1).[21,

47-49] Less commonly noted are sore throat, abdominal pain, nausea, vomiting, weight loss,

conjunctival injection, photophobia, pallor, emotional lability, depression, and

hyperesthesia.[50, 51] The findings on physical examination generally are minimal, often

consisting only of fever.[21, 48] Mild splenomegaly, hepatomegaly, or both are noted

occasionally.[48, 52] Slight pharyngeal erythema, jaundice, and retinopathy with splinter

hemorrhages and retinal infarcts also have been reported.[53, 54] Rash seldom is noted,

although ecchymoses and petechiae have been described in severe cases.[51] The illness

usually lasts for several weeks to months, occasionally with prolonged recovery that can last

more than a year.[21, 48, 55, 56] Parasitemia may continue even after the patient feels well

and rarely may persist for more than two years after the initial episode.[56]

Severe disease

Severe disease generally occurs in people with underlying immunosuppressive conditions

that include HIV coinfection,[57-59] malignancy,[55] immunosuppressive medication,[55,
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60] and splenectomy.[55, 61, 62] In a recent case control study, patients with more than one

of these immunosuppressive conditions were shown to experience a prolonged, relapsing

course of illness, sometimes lasting more than a year.[55] Despite multiple courses of

antibabesial therapy, a fifth of these patients died. People 50 years of age and older are also

more likely to experience severe babesiosis.[47, 49] Recent studies using a babesia mouse

model suggest that advanced age is not universally associated with more severe parasitemia

and that age related severity may be genetically determined.[63] Microbial virulence also

may account for disease severity. B. divergens and B. duncani appear to cause more severe

infection than that caused by B. microti.[11, 64] Finally, patients experiencing babesiosis

who are coinfected with B. burgdorferi also have more severe acute illness.[21, 45]

Complications of babesiosis are commonly associated with severe illness and include acute

respiratory failure, DIC, congestive heart failure, liver and renal failure, and splenic

infarction (Table 2). In a review of 34 consecutive babesial patients admitted to the hospital

(median age of 43 years, range 3 months to 85 years), the most common complication was

acute respiratory failure.[47] Nine percent of these hospitalized patients died. A mortality

rate of 5 percent was noted in a retrospective study of 136 patients experiencing B. microti

infection on Long Island, New York.[30] In that study, patients who suffered fatal infection

ranged from 60 to 82 years and only one was known to be immunocompromised.

Asymptomatic infection

Patients who develop symptomatic babesiosis experience an initial subclinical infection

during the first few weeks following the bite of an infected tick. After symptoms have

resolved, asymptomatic parasitemia may persist for months or years.[56] It is well

recognized that many people who are infected with B. microti never experience any

symptoms, as indicated by the disparity between seroprevalence and the number of

indigenous reported cases.[48] A survey of adults living on Shelter Island, New York,

showed that 6 of 102 (5.9 per cent) had B. microti IFA antibody at titers of ≥1:64.[65]

Similar disparities were noted in serosurveys in Connecticut, Massachusetts, and Taiwan.

[29, 48, 66] An estimate of the actual rate of asymptomatic babesial infection can be derived

from an intensive epidemiologic study of babesiosis carried out on Block Island, Rhode

Island.[43] Symptomatic babesial cases were identified by physicians at the Block Island

Medical Center. Asymptomatic babesial infections were identified among healthy residents

participating in an annual serosurvey who reported no babesial-like illness but seroconverted

against B. microti antigen during the previous year. Overall, about one third of babesial

infections on Block Island were asymptomatic, including 19% (13 of 67) of adults and 40%

(4 of 10) of children.[43] It is uncertain whether patients experiencing asymptomatic

babesial infection are at risk for any complications, although such carriers may transmit the

infection if they donate blood.[26] Long-term asymptomatic infection of natural hosts

increases the probability of transmission to arthropod vectors and to new hosts, thereby

assuring pathogen survival.

Pathogenesis

Two major processes underlie the pathogenesis of babesiosis: red blood cell modification by

the pathogen, and the host immune response to the pathogen.
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Red blood cell modification

The only cells infected by Babesia spp. are erythrocytes. A study of B. bovis infection

revealed that variable merozoite surface antigens (VMSA) mediate the attachment of free

merozoites and sporozoites to red blood cells.[67] Heparin sulfate-like glycosaminoglycans

and sialoglycoproteins on the surface of red blood cells also are engaged.[67, 68] After re-

orientation of the merozoite, proteins are secreted from rhoptries and micronemes that

mediate parasite entry into the erythrocyte.[67] The parasite reproduces by binary fission,

generating as many as four merozoites. The egress of merozoites eventually leads to the loss

of red blood cell membrane integrity. As the infection progresses, hemolytic anemia

develops and may be accompanied by tissue hypoxia.

As with Plasmodium spp., Babesia spp. export proteins that are incorporated into the red

blood cell membrane. Like the P. falciparum erythrocyte membrane protein1 (PfEMP1), the

variant erythrocyte antigen 1 (VESA1) of B. bovis appears to be encoded by a highly

polymorphic gene.[69] Such polymorphisms are thought be beneficial to the parasite, as the

expression of different variants over the course of infection allows the parasite to escape the

immune response mounted by the host.[70, 71] VESA1 appears to promote cytoadherence

of infected red blood cells to the vascular endothelium, although the evidence is less

compelling than for PfEMP1.[72] Cytoadherence is thought to facilitate persistent infection,

perhaps by diminishing access to host immune cells or preventing removal of infected

erythrocytes in the spleen.[73] In B. bovis and B. duncani infections, excessive

cytoadherence and sequestration lead to microvascular obstruction and tissue hypoxia.

[74-76] Erythrocyte cytoadherence and sequestration are yet to be documented in B. microti

or B. divergens infections.[77, 78]

Host immune response

The host immune response is required to control and clear Babesia infected red blood cells

but also may cause pathology. Cytokines are central to both aspects of the immune response.

Sequential cytokine gene expression is thought to confer protective immunity, with

expression of the inflammatory cytokines IL-12 and IFN-γ preceding expression of the anti-

inflammatory cytokines IL-4 and IL-10.[79, 80] In mice infected with B. duncani, IFN-γ is

required for survival.[81] In mice infected with B. microti, a lack of IFN-γ increases peak

parasitemia, and prolongs or prevents resolution of parasitemia.[82, 83] CD4+ T cells are the

main source of IFN-γ in B. microti infection,[83] but do not appear to contribute to

resistance in B. duncani infection.[81] In contrast, NK cells are the main source of IFN-γ in

B. duncani infection,[81] but are not required for resistance in B. microti infection.[84] IFN-

γ, in synergy with inflammatory cytokines such as TNF-α, activates macrophages to

produce nitric oxide that kills intracellular parasites.[81, 85, 86] Merozoites themselves also

can induce inflammatory cytokines and nitric oxide.[86, 87] The fine-tuning of IFN-γ and

TNF-α by the anti-inflammatory cytokines IL-4 and IL-10[88] may ensure that the

inflammatory reaction remains mainly localized to the spleen, thereby limiting a generalized

systemic inflammatory reaction. As a stronger inflammatory reaction is required to contain

and resolve a more severe infection, the inflammatory reaction may spill into the systemic

compartment, thereby generating a sepsis-like syndrome or evoking the adult respiratory

distress syndrome.
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Pulmonary inflammation is the most common complication in people experiencing severe B.

microti infection with up to 20% of patients suffering from non-cardiac pulmonary edema.

[47] Edema and inflammation also have been noted in the lungs of B. duncani infected mice.

[89] IFN-γ is detected around and within the pulmonary vessels whereas TNF-α is mostly

localized to the alveolar septa.[89] In this model, infection with B. duncani is fatal but

blockade of TNF-α can prevent death. Excess cytokine production is thought to be a major

cause of severe babesial disease and is associated with tissue pathology that can lead to

significant end-organ damage.[90, 91]

Immunosuppressed patients experiencing babesiosis generally suffer severe disease. The

nature of the immunosuppression provides useful insights regarding the immune cells

critical for host resistance. Patients with immunosuppressive conditions that primarily affect

the CD4+ T cell compartment, such as HIV/AIDS, may develop fulminant and persistent B.

microti infection.[55, 57-59] Elderly individuals who are known to experience a progressive

contraction of the naïve CD4+ T compartment are predisposed to severe, sometimes fatal B.

microti infection.[47, 49] The importance of T cells, particularly CD4+ T cells, has been

confirmed in mouse models of B. microti infection.[83, 92-94] On the other hand, virtually

every person who resolves their babesial infection develops specific antibabesial antibody,

implying that antibodies help clear infected red blood cells. In addition, patients who suffer

from lymphoproliferative disorders of the B cell compartment and are treated with regimens

that deplete B cells also are at risk for persistent or relapsing babesiosis,[55] suggesting an

important role for B cells in host resistance. However, studies of B. microti infection in mice

do not provide strong evidence of a role for B cells and immunoglobulins in host resistance,

[82, 95-97] implying that additional immune dysfunction is required for symptomatic

babesiosis to develop in patients with B cell proliferative disorders.

Diagnosis

Clinical diagnosis

The diagnosis of babesiosis requires strong clinical suspicion, as the symptoms of babesial

infection may overlap with those of several other illnesses. There are no pathognomonic

signs on physical exam. Babesiosis should be considered when individuals present with

viral-like symptoms and have recently spent time outdoors in a babesial endemic area during

the summer or early autumn months. With changes in climate patterns, the season during

which new babesiosis cases occur may extend. Babesiosis also should be considered in

individuals with Lyme disease or human granulocytic anaplasmosis, as any combination of

the three infections can be transmitted simultaneously by I. scapularis.[45] A workup for

babesiosis should be initiated in patients who experience a viral-like illness without

alternative diagnosis that begins within 2 months following a blood transfusion.

Laboratory diagnosis

Non-specific laboratory findings of babesiosis reflect lysis of erythrocytes. These may

include a normocytic hemolytic anemia, with hyperbilirubinemia and an elevated indirect

bilirubin fraction, elevated serum lactate dehydrogenase (LDH), and decreased serum

haptoglobin. An elevated reticulocyte count and thrombocytopenia are commonly observed.
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[45] Leukocyte counts are generally normal to slightly decreased, with a left-shift. Elevated

transaminase and alkaline phosphatase are noted in about half the patients.[49] Proteinuria

and elevated blood urea nitrogen and creatinine also may occur in severe cases. Urinalysis

may likewise reflect hemolysis, with hemoglobinuria.

Definitive diagnosis of babesial infection generally is made by microscopic identification of

the organism (Figure 2) on Giemsa or Wright stains of thick and thin blood smears.[98]

Babesia species may appear as round, oval, or pear-shaped forms, with blue cytoplasm and

red chromatin. Multiple parasites may be present in infected red blood cells. The ring form

is most common and is similar to that of P. falciparum. Distinguishing features of babesiosis

on smear include the presence of extra-erythrocytic forms in severe cases and the absence of

pigment deposits (hemozoin) typically seen in older ring stages of P. falciparum. Tetrads of

merozoites arranged in a ‘Maltese Cross’ are pathognomonic for babesiosis but rarely are

seen.[98] The percent of infected erythrocytes varies over the course of infection. Often less

than 1% of erythrocytes are parasitized early in the course of illness. Thus, multiple blood

smears may need to be examined over several days to identify parasite forms.

If the suspicion of babesiosis remains high despite negative smears, babesial DNA from

blood samples may be amplified using the polymerase chain reaction (PCR).[99, 100] PCR

provides a highly sensitive and specific, albeit expensive test for detecting babesial DNA in

blood.[99, 100] Babesial DNA may be amplified for months after initial infection despite

standard treatment and resolution of clinical illness.[56] Rigorous precautions are required

to avoid false-positive PCR results. Serology is also useful in confirming babesial diagnosis.

Anti-babesial IgM and IgG antibodies can be detected by indirect immunofluorescence

assay (IFA).[101-103] A babesial IFA titer of ≥1:1024 usually signifies active or recent

infection.[103] Titers generally return to ≤1:64 within 8 to 12 months but may persist for

years.[56, 103] In rare circumstances when the conventional tests are negative but babesiosis

remains a possibility, the diagnosis may be made by injection of patient blood into hamsters,

as an intense parasitemia will develop 2 to 4 weeks after inoculation of this highly

susceptible host.[104]

Treatment

Patients who experience symptomatic babesiosis should be given a course of antimicrobial

therapy upon confirmation of the diagnosis by blood smear or PCR.[52, 105, 106] Two

commonly used antimicrobial regimens are highly effective: the combination of atovaquone

and azithromycin and the combination of clindamycin and quinine (Table 3).

Mild to moderate illness

Atovaquone and azithromycin administered for 7 to 10 days is the regimen of choice for

mild to moderate babesiosis. Alternatively, clindamycin and quinine may be given, however,

adverse affects associated with this combination occur at a relatively high frequency during

treatment of babesiosis. In particular, tinnitus and gastroenteritis limit the ability of many

patients to tolerate this regimen. The two regimens were directly compared in adults in a

prospective, nonblinded randomized control trial.[105] While these drug combinations were

similarly effective in clearing parasitemia and achieving resolution of symptoms, adverse
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effects were reported in 15% of subjects who received atovaquone and azithromycin

compared with 72% of subjects who received clindamycin and quinine. Furthermore, about

one third of subjects taking clindamycin and quinine suffered from adverse reactions that

were severe enough to require a decrease in dosage or discontinuing the medication. In

contrast, only 2% of subjects taking atovaquone and azithromycin experienced such severe

drug reactions. Although atovaquone and azithromycin has not been studied in a controlled

trial for pediatric use, cure has been achieved with use of this regimen in children.[25, 107]

Severe disease

In patients with severe disease, the combination of clindamycin (administered intravenously)

and quinine given for 7 to 10 days is the treatment of choice (Table 3).[52, 106] Although

other drugs have proven ineffective in experimental models of babesial infection or in

human babesiosis, the combination of pentamidine and trimethoprim-sulfamethoxazole was

used successfully to treat a case of B. divergens infection.[108] B. divergens infections are

consistently described as life threatening and clindamycin and quinine should be used for all

such cases, in addition to exchange blood transfusion.[64] Exchange red blood cell

transfusion is indicated for all babesiosis patients experiencing heavy parasitemia (≥10%) or

who have significant pulmonary, renal, or hepatic compromise.[47, 109-111] Partial or

complete exchange transfusion rapidly decreases parasite burden and removes toxic

byproducts of babesial infection.

Despite standard combination antimicrobial therapy, persistent relapsing babesial infection

may develop in people with significant underlying immunosuppression.[55] Atovaquone-

proguanil (250mg-50mg) was used to eradicate parasitemia in one such patient.[112] In a

recent case-control study of chronic babesiosis in 14 highly immunocompromised patients,

no single antimicrobial combination was uniformly effective in achieving resolution of

infection.[55] Rather, cure was associated with duration of therapy for a minimum of six

weeks and for at least two weeks after the last positive blood smear. Interestingly, the

majority of case patients in the study had underlying B-cell lymphoma and had been treated

with the anti-CD20 monoclonal antibody rituximab prior to acute babesial infection, further

impairing their B-cell compartment. Future studies are required to determine whether

humoral immunity plays a central role in termination of human babesiosis, and if so,

whether there may be a role for passive immunotherapy with IVIG for such patients.

Likewise, murine models of babesiosis have underscored the importance of IFN-γ to host

resistance. Further studies should clarify whether subcutaneous administration of IFN-γ is

beneficial for people with T-cell deficits who are poorly responsive to standard therapy.

Asymptomatic infection

Asymptomatic patients should not be treated, even if smears are positive, unless parasitemia

persists for longer than three months.[106] Similarly, people who have positive anti-babesial

serology, but negative blood smears and negative babesia PCR should not be treated, as they

likely already have resolved their infection. Immunocompromised patients experiencing

persistent asymptomatic parasitemia should have sequential blood smears performed every

several months until they clear infection.
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Prevention

Strategies to prevent I. scapularis transmitted diseases have been the focus of intense study.

[10, 113-115] Preventive measures consist of personal, residential, and community

approaches. The use of multiple strategies is most likely to be effective.

Personal protective measures include avoiding sites where ticks, deer, and mice are known

to thrive, especially from May through October. It is especially important for those at

increased risk, such as asplenic or other immunocompromised people who live or travel in

endemic areas, to avoid brushy sites where ticks may abound. All those who contact foliage

in endemic sites should wear clothing that covers the lower part of the body, cuffs of the

trousers should be tucked into stockings, and clothing should be sprayed or impregnated

with permethrin (Permanone®).[116] DEET-containing products should be applied to the

skin in the event that the legs remain uncovered. The body should be searched for attached

ticks at the end of each period of exposure. Attached ticks should be removed as soon as

possible by use of tweezers.[117] In contrast to Lyme disease, there is no data on the use of

prophylactic antibiotics after a tick bite to prevent babesiosis nor has a human babesiosis

vaccine been developed.

Property modifications such as keeping grass mowed, removing leaf litter at the edge of

lawns, and use of plantings that do not attract deer, are just a few landscape management

strategies for prevention of tick-borne infection.[114] Fencing may be used to keep deer

away and sealing stonewalls can decrease the number of mice on property. Residential land

can be treated with acaricidal sprays to brushy sites, such as those that occur at the forest

margins. Rodent-targeted acaricides, such as Damminix® or fipronil, can be used to

eliminate ticks that are attempting to feed on mice while a four poster device has been used

to apply acaricides to deer.[114, 118] Community efforts to eliminate the local deer

population can sharply reduce the risk of infection. Deer were virtually eliminated on Great

Island off Cape Cod, Massachusetts, and within 3-5 years the density of I. scapularis ticks

fell precipitously.[115] Only one case of babesiosis has been reported from that site since

deer reduction. Currently the Red Cross and other blood donation agencies prohibit people

with a history of babesiosis from donating blood in order to prevent transfusion-related

cases.[119]

Summary

Human babesiosis is an emerging intraerythrocytic infection caused by protozoal parasites

and transmitted by Ixodid ticks. B. microti infections are endemic in the northeastern and

upper midwestern regions of the United States. Other babesial species causing human

infection in the United States include B. duncani in the western states and B. divergens-like

organisms in the midwestern states. Babesiosis is only sporadically reported in Europe

where cases are caused by B. divergens, B. microti, and EU1. Other species have been

shown to cause disease in Asia, Africa, and South America. Babesial infections range in

severity from asymptomatic to severe, and occasionally are fatal. Most symptomatic

infections with B. microti are mild and self-limiting, causing a viral-like illness one to six

weeks after tick bite. The salient features are fever, malaise, fatigue, chills, sweats, and
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headache. Severe babesiosis may develop in patients with immunodeficiency caused by

splenectomy, malignancy, immunosuppressive therapy, or HIV co-infection. Patients older

than 50 years or people who experience B. divergens or B. duncani infections also are at risk

for severe disease. Severe babesiosis is associated with a parasitemia ≥10%; hemolytic

anemia; pulmonary, renal, and hepatic complications; and death. Specific laboratory

diagnosis of babesial infections is made by morphological examination of Giemsa stained

blood smears, serology, and amplification of babesial DNA using PCR. The combination of

atovaquone and azithromycin is the treatment of choice for mild to moderate illness while

clindamycin and quinine are indicated for severe disease. Exchange transfusion should be

used for life-threatening infection. Although no vaccine has been developed to prevent

human babesiosis, a number of other preventive measures have been described.
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Synopsis

Human babesiosis is an emerging intraerythrocytic infection caused by protozoal

parasites and transmitted by Ixodid ticks. Babesiosis is endemic in the northeastern and

upper midwestern regions of the United States and found sporadically in other parts of

the United States, Europe, Asia, Africa, and South America. Babesial infections range in

severity from asymptomatic to severe, and occasionally are fatal. Specific laboratory

diagnosis of babesial infections is made by morphological examination of Giemsa stained

blood smears, serology, and amplification of babesial DNA using PCR. The combination

of atovaquone and azithromycin is the treatment of choice for mild to moderate illness

while clindamycin and quinine are indicated for severe disease.
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Figure 1. Life cycle of the Ixodes scapularis tick
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Figure 2. Ring forms of Babesia microti in human blood smear (× 1000)
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Table 1
Symptoms of babesiosis

Symptom Outpatient (n=41) Inpatient (n=173) Total (n=214)

Fever 68 89 85

Fatigue 78 79 79

Chills 39 68 63

Sweats 41 56 53

Headache 75 32 39

Myalgia 37 32 33

Anorexia 25 24 24

Cough 17 23 22

Arthralgia 31 17 18

Nausea 22 9 16

Outpatient cases are from Ruebush et al. [50] and Krause et al. [21]. Inpatient cases are from White et al. [49] and Hatcher et al. [47].
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Table 2
Complications of babesiosis in 34 consecutive hospitalized patients

Complication Frequency (%)

Acute respiratory failure 21

DIC 18

Congestive heart failure 12

Coma/lethargy 9

Renal failure 6

Death 9

The mean age of patients was 53 years, median age 43 years, range 3 months to 85 years. From Hatcher et al. [47]
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Table 3
Treatment of babesiosis

ANTIBIOTICS

Antibiotic Dose Frequency

Clindamycin Adult: 600 mg Every 8 hours

Child: 7-10 mg/kg Every 8 hours

(maximum 600 mg)

Intravenous administration

Adult: 300-600 mg Every 6 hours

Child: 7-10 mg/kg Every 6 hours

(maximum 600 mg)

and

Quinine Adult: 650 mg Every 6-8 hours

Child: 8 mg/kg Every 8 hours

(maximum 650 mg)

OR

Atovaquone Adult: 750 mg Every 12 hours

Child: 20 mg/kg Every 12 hours

(maximum 750 mg)

and

Azithromycin Adult: 500 to 1000 mg On day 1

250 to 1000 mg On subsequent days

Child: 5 mg/kg (maximum 500 mg) On day 1

250 mg On subsequent days

All antibiotics are administered by mouth unless otherwise specified. All doses administered for
7 to 10 days except for persistent relapsing infection (see text).

EXCHANGE TRANSFUSION

Exchange transfusion or partial exchange transfusion should be considered for treatment of
severe cases of babesiosis.
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