

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S,Z)-3-Phenyl-2-[(1,1,1-trichloro-7methoxy-2,7-dioxohept-3-en-4-yl)amino]propanoic acid monohydrate

Alex Fabiani Claro Flores,^a* Juliano Rosa de Menezes Vicenti,^a Lucas Pizzuti^b and Patrick Teixeira Campos^c

^aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Italia, km 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, ^bUniversidade Federal da Grande Dourados, UFGD, CEP 79825-070 Dourados, MS, Brazil, and CInstituto Federal Farroupilha, Campus Júlio de Castilhos, CEP 98130-000, Júlio de Castilhos, RS Brazil

Correspondence e-mail: alexflores@furg.br

Received 11 December 2013; accepted 3 January 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.105; data-to-parameter ratio = 23.5.

In the title compound, $C_{17}H_{18}Cl_3NO_5 H_2O_5$, intramolecular $N-H \cdots O$ and $C-H \cdots Cl$ hydrogen bonds form S(6) and S(5)ring motifs, respectively. The chiral organic molecule is connected to the solvent water molecule by a short O- $H \cdots O$ hydrogen bond. In the crystal, a weak $C - H \cdots Cl$ interaction connects the organic molecules along [100] while the water molecules act as bridges between the organic molecules in both the [100] and [010] directions, generating layers parallel to the *ab* plane.

Related literature

For the synthesis of the title compound and a similar crystal structure, see: Flores et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short intermolecular hydrogen-bond interactions, see: Pojarová et al. (2010). For intramolecular hydrogen-bonding systems, see: da Costa et al. (2013).

Experimental

Crystal data C17H18Cl3NO5·H2O $M_r = 440.69$ Triclinic, P1 a = 5.6684 (16) Å b = 8.601 (3) Å c = 10.336 (3) Å $\alpha = 87.720(19)^{\circ}$ $\beta = 85.696 \ (17)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: Gaussian (XPREP; Bruker, 2006) $T_{\min} = 0.881, \ T_{\max} = 1$

Refinement

2 2	
$R[F^2 > 2\sigma(F^2)] = 0.040$	$\Delta \rho_{\rm max} = 0$
$vR(F^2) = 0.105$	$\Delta \rho_{\min} = -$
S = 1.04	Absolute
5020 reflections	parame
256 parameters	quotier
3 restraints	(Parson
H atoms treated by a mixture of	Absolute
independent and constrained	0.04 (2
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$\mu = 0.49 \text{ mm}^{-1}$
T = 296 K
$0.98 \times 0.30 \times 0.12 \text{ mm}$
12424 1 0 4

 $\gamma = 85.649 (17)^{\circ}$ V = 500.8 (2) Å³

Mo $K\alpha$ radiation

Z = 1

13424 measured reflections 6020 independent reflections 4784 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$

0.41 e Å⁻³ -0.32 e Å⁻³ structure: Flack eter determined using 1984 nts $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ ns et al., 2013) structure parameter:

D...4

D_H...4

 $D = H \cdots A$ л_н

	$D = \Pi$	11. 21	Dooll	$D = \Pi^{*} \cap \Pi$
$C6-H6A\cdots Cl1^{i}$	0.97	2.94	3.774 (3)	145
$O33 - H33B \cdot \cdot \cdot O91^{ii}$	0.87 (6)	1.89 (6)	2.766 (4)	177 (5)
N41-H41···O21	0.83 (5)	2.05 (6)	2.672 (3)	131 (5)
$O33-H33A\cdots O21^{iii}$	0.76 (6)	2.06 (6)	2.815 (3)	171 (6)
O92−H92···O33	0.89 (5)	1.66 (5)	2.542 (4)	175 (5)
$C3-H3\cdots Cl1$	0.93	2.55	3.031 (3)	112

H...4

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

organic compounds

The authors are grateful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal grant 6577818477962764–01), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PqG grant 1016236) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PROEX).

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2509).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2006). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costa, D. P. da, Nobre, S. M., Lisboa, B. G., Vicenti, J. R. de M. & Back, D. F. (2013). Acta Cryst. E69, o201.

Flores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184–193.

- Flores, A. F. C., Malavolta, J. L., Souto, A. A., Goularte, R. B., Flores, D. C. & Piovesan, L. A. (2013). J. Braz. Chem. Soc. 24, 580–584.
- Hachuła, B., Polasz, A., Dzida, M., Nowak, M. & Kusz, J. (2013). Acta Cryst. E69, 01406.
- Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m722-m723.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Pojarová, M., Fejfarová, K. & Makrlík, E. (2010). Acta Cryst. E66, o3341o3342.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, o169-o170 [doi:10.1107/S1600536814000154]

(*S*,*Z*)-3-Phenyl-2-[(1,1,1-trichloro-7-methoxy-2,7-dioxohept-3-en-4-yl)amino]propanoic acid monohydrate

Alex Fabiani Claro Flores, Juliano Rosa de Menezes Vicenti, Lucas Pizzuti and Patrick Teixeira Campos

1. Comment

Dielectrophiles derived from levulinic acid (Hachuła *et al.*, 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of heterocyclic compounds. Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores *et al.*, 2008; Flores *et al.*, 2013). As a part of our studies, we report in this paper the crystal structure of (*S*,*Z*)-3-phenyl-2-(1,1,1-tri-chloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and *L*-phenylalanine.

In the crystal structure of the title compound, the asymmetric unit is composed of the whole chiral organic molecule, C₁₇H₁₈Cl₃NO₅, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová *et al.*, 2010]. Additionally, *S*(6) and *S*(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41 —H41···O21 [2.672 (3) Å] and C3—H3···C11 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa *et al.*, 2013).

There is also a weak C6—H6A···Cl1ⁱ intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the crystal structure by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the *ab* plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ⁱⁱ, 2.766 (4) Å] and ketone [O33—H33A···O21ⁱⁱⁱ, 2.815 (3) Å]. Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x* + 1, *y*, *z*; (iii) *x*, *y* + 1, *z*. A super cell central projection of the crystal structure can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic *a* axis.

2. Experimental

To a stirred solution of methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate (5 mmol, 1.52 g) and *L*-phenylalanine (5.5 mmol, 0.91 g), at 25 °C, was added a solution of 1 mol·*L*⁻¹ NaOH. There was an immediate formation of a yellow precipitate and the mixture was further stirred for 30 minutes. A solution of 50% HCl was added until the pH \approx 1, when there was complete precipitation of the yellow solid. The solid was extracted with ethyl acetate, and this solution was dried over anhydrous MgSO₄. The ethyl acetate was removed on a rotary evaporator to give the product as a yellow solid. Yield: 79%. m. p. 120 – 123 °C. ¹H NMR (400 MHz, DMSO-D₆, TMS): δ 2.17 (m, 2H, CH₂), 2.44 (m, 2H, CH₂), 3.06 (dd, 1H, ³*J*=9.1 Hz, ²*J*=14 Hz, CH₂Ph), 3.37 (dd, 1H, ³*J*=9.1 Hz, ²*J*=14 Hz, CH₂Ph), 3.66 (s, 3H, OMe), 4.53 (m, 1H,

CH_{chiral}), 5.60 (s, 1H, =CH), 7.22–7.33 (m, 5H, Ph), 10.9 (d, 1H, ${}^{3}J$ = 10 Hz, NH) p.p.m.; ${}^{13}C$ NMR (100 MHz, DMSO-D₆): δ 26.8, 31.5, 39.9, 52.2, 58.1, 86.0, 96.9, 127.5, 128.9, 129.5, 135.4, 169.9, 172.0, 173.2, 181.2 p.p.m.. Crystals were grown from a methanol solution, which was slowly evaporated at room temperature.

3. Refinement

All H atoms attached to carbon were positioned with idealized geometry and were refined isotropically. For H atoms of CH₃ group, $U_{iso}(H)$ was set to $1.5U_{eq}(C)$ using a riding model with C—H = 0.96 Å. For all remaining H atoms attached to C atoms, $U_{iso}(H)$ was set to $1.2U_{eq}(C)$ using a riding model with the following C—H distances: C—H (CH) = 0.93 Å, C—H (CH_{chiral}) = 0.98 Å and C—H (CH₂) = 0.97 Å. H atoms attached to nitrogen, H atoms of the water molecule and the H atom of the carboxylic acid fragment were located in difference Fourier maps, and were refined with U_{iso} values set to $1.5U_{eq}$ of the parent atom. Reflections (001) and (001) were omitted due to the large difference observed between F_o^2 and Fc².

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

An ellipsoid plot (50% probability) showing the asymmetric unit. Hydrogen bonds are represented as dashed lines. Symmetry codes: (i) x-1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z.

Figure 2

Packing of molecules along the [100] direction through intermolecular hydrogen bonds, represented with dashed lines. Some hydrogen atoms were omitted for clarity.

|--|

Crystal data	
$C_{17}H_{18}Cl_3NO_5 \cdot H_2O$	F(000) = 228
$M_r = 440.69$	$D_{\rm x} = 1.461 {\rm Mg} {\rm m}^{-3}$
Triclinic, P1	Melting point: 393 K
a = 5.6684 (16) Å	Mo <i>Ka</i> radiation, $\lambda = 0.71073$ Å
b = 8.601 (3) Å	Cell parameters from 3866 reflections
c = 10.336 (3) Å	$\theta = 3.0-25.5^{\circ}$
$\alpha = 87.720 \ (19)^{\circ}$	$\mu=0.49~\mathrm{mm^{-1}}$
$\beta = 85.696 \ (17)^{\circ}$	T = 296 K
$\gamma = 85.649 (17)^{\circ}$	Blade, colorless
$V = 500.8 (2) \text{ Å}^3$	$0.98 \times 0.30 \times 0.12 \text{ mm}$
Z = 1	
Data collection	
Bruker APEXII CCD	13424 measured reflections
diffractometer	6020 independent reflections
Radiation source: fine-focus sealed tube	4784 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\text{max}} = 30.7^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: gaussian	$h = -8 \rightarrow 8$
(XPREP; Bruker, 2006)	$k = -12 \rightarrow 12$
$T_{\min} = 0.881, \ T_{\max} = 1$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.0376P]$
$wR(F^2) = 0.105$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
6020 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
3 restraints	Absolute structure: Flack parameter determined
Hydrogen site location: mixed	using 1984 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons <i>et al.</i> , 2013)
	Absolute structure parameter: 0.04 (2)

Special details

Experimental. Absorption correction: XPREP (Bruker, 2006) was used to perform the Gaussian absorption correction based on the face-indexed crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O33	0.4813 (5)	1.0147 (3)	0.9230 (3)	0.0554 (6)
H33B	0.629 (11)	0.977 (6)	0.919 (5)	0.083*
H41	0.147 (9)	0.465 (6)	0.794 (5)	0.083*
H33A	0.458 (10)	1.092 (7)	0.887 (5)	0.083*
H92	0.352 (9)	0.869 (6)	0.864 (5)	0.083*
Cl1	0.75049 (16)	0.24572 (10)	0.42096 (9)	0.0652 (3)
Cl2	0.50084 (18)	0.01516 (11)	0.57338 (11)	0.0759 (3)
C13	0.88358 (15)	0.16349 (14)	0.67617 (11)	0.0742 (3)
N41	0.1053 (4)	0.5403 (3)	0.7462 (2)	0.0403 (5)
C1	0.6395 (5)	0.1924 (3)	0.5785 (3)	0.0432 (6)
C7	-0.1436 (5)	0.7761 (4)	0.3642 (3)	0.0424 (6)
C9	0.0625 (5)	0.7901 (3)	0.8625 (3)	0.0439 (6)
C3	0.3699 (5)	0.4434 (3)	0.5739 (3)	0.0412 (6)
H3	0.4282	0.4569	0.4880	0.049*
C10	-0.0576 (5)	0.6530 (3)	0.8145 (3)	0.0402 (6)
H10	-0.1704	0.6956	0.7526	0.048*
C5	0.1234 (5)	0.6912 (3)	0.5398 (3)	0.0414 (6)
H5A	0.2526	0.7135	0.4764	0.050*
H5B	0.0854	0.7828	0.5913	0.050*
C111	-0.0514 (5)	0.4758 (4)	1.0193 (3)	0.0455 (6)
C2	0.4540 (5)	0.3128 (3)	0.6460 (3)	0.0386 (5)
C6	-0.0917 (6)	0.6567 (4)	0.4700 (3)	0.0472 (7)
H6A	-0.0645	0.5545	0.4328	0.057*
H6B	-0.2285	0.6543	0.5321	0.057*
C11	-0.2023 (5)	0.5712 (4)	0.9264 (3)	0.0475 (7)
H11A	-0.3005	0.6496	0.9745	0.057*
H11B	-0.3071	0.5033	0.8897	0.057*

~				
C112	0.0981 (7)	0.5453 (4)	1.0959 (3)	0.0584 (8)
H112	0.1040	0.6532	1.0916	0.070*
C8	-0.4279 (7)	0.8699 (5)	0.2188 (4)	0.0649 (10)
H8A	-0.5833	0.8501	0.1953	0.097*
H8B	-0.3165	0.8573	0.1446	0.097*
H8C	-0.4299	0.9745	0.2481	0.097*
C116	-0.0616 (8)	0.3156 (4)	1.0306 (4)	0.0638 (9)
H116	-0.1627	0.2664	0.9813	0.077*
C115	0.0793 (10)	0.2279 (5)	1.1156 (4)	0.0792 (13)
H115	0.0718	0.1202	1.1222	0.095*
C113	0.2391 (9)	0.4563 (6)	1.1789 (4)	0.0734 (11)
H113	0.3422	0.5039	1.2280	0.088*
C114	0.2259 (9)	0.2964 (6)	1.1884 (4)	0.0774 (13)
H114	0.3183	0.2363	1.2450	0.093*
O72	-0.3587 (4)	0.7608 (3)	0.3218 (2)	0.0535 (5)
O92	0.2915 (4)	0.7852 (3)	0.8366 (3)	0.0554 (5)
O91	-0.0517 (4)	0.8944 (3)	0.9190 (3)	0.0591 (6)
O71	-0.0124 (5)	0.8698 (3)	0.3220 (3)	0.0637 (7)
C4	0.2004 (5)	0.5547 (3)	0.6269 (3)	0.0370 (5)
O21	0.3934 (4)	0.2806 (2)	0.7613 (2)	0.0473 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
033	0.0494 (13)	0.0492 (13)	0.0673 (15)	-0.0017 (11)	-0.0076 (11)	0.0051 (11)
Cl1	0.0759 (6)	0.0560 (5)	0.0586 (5)	0.0031 (4)	0.0241 (4)	-0.0061 (4)
Cl2	0.0741 (6)	0.0476 (4)	0.1050 (8)	-0.0204 (4)	0.0308 (5)	-0.0288 (5)
C13	0.0413 (4)	0.0946 (7)	0.0838 (6)	0.0154 (4)	-0.0058 (4)	-0.0032 (5)
N41	0.0439 (13)	0.0350 (11)	0.0398 (12)	0.0079 (10)	-0.0005 (9)	0.0012 (9)
C1	0.0375 (14)	0.0379 (14)	0.0531 (16)	-0.0024 (11)	0.0056 (11)	-0.0056 (11)
C7	0.0410 (14)	0.0435 (15)	0.0412 (14)	0.0029 (12)	-0.0024 (11)	0.0028 (11)
C9	0.0441 (14)	0.0397 (14)	0.0459 (15)	0.0077 (11)	-0.0048 (11)	0.0056 (12)
C3	0.0417 (14)	0.0403 (14)	0.0398 (13)	0.0013 (11)	0.0024 (10)	0.0017 (11)
C10	0.0375 (13)	0.0376 (13)	0.0444 (14)	0.0073 (11)	-0.0052 (11)	-0.0035 (11)
C5	0.0419 (14)	0.0338 (13)	0.0481 (15)	-0.0020 (10)	-0.0039 (11)	0.0043 (11)
C111	0.0480 (15)	0.0477 (16)	0.0385 (13)	0.0000 (13)	0.0078 (12)	-0.0018 (12)
C2	0.0349 (12)	0.0363 (13)	0.0440 (14)	0.0022 (10)	-0.0012 (10)	-0.0049 (10)
C6	0.0478 (16)	0.0414 (15)	0.0532 (16)	-0.0051 (12)	-0.0114 (13)	0.0081 (13)
C11	0.0387 (14)	0.0508 (17)	0.0516 (16)	0.0032 (12)	0.0001 (12)	-0.0028 (13)
C112	0.075 (2)	0.0510 (19)	0.0489 (17)	-0.0038 (17)	-0.0081 (16)	0.0032 (14)
C8	0.063 (2)	0.081 (3)	0.0495 (18)	0.0133 (19)	-0.0149 (15)	0.0064 (17)
C116	0.082 (3)	0.0495 (19)	0.059 (2)	-0.0072 (17)	0.0021 (18)	-0.0027 (15)
C115	0.115 (4)	0.049 (2)	0.069 (3)	0.007 (2)	0.006 (3)	0.0063 (18)
C113	0.084 (3)	0.085 (3)	0.052 (2)	-0.004 (2)	-0.0171 (19)	0.0069 (19)
C114	0.093 (3)	0.078 (3)	0.055 (2)	0.026 (2)	-0.002 (2)	0.013 (2)
O72	0.0482 (12)	0.0614 (14)	0.0511 (12)	-0.0012 (10)	-0.0121 (9)	0.0063 (10)
O92	0.0449 (12)	0.0501 (13)	0.0709 (14)	-0.0013 (10)	-0.0017 (10)	-0.0073 (11)
O91	0.0540 (13)	0.0445 (12)	0.0778 (16)	0.0107 (10)	-0.0050 (11)	-0.0166 (11)
O71	0.0538 (14)	0.0628 (15)	0.0738 (16)	-0.0076 (11)	-0.0098 (12)	0.0244 (12)
C4	0.0379 (12)	0.0331 (13)	0.0400 (13)	-0.0025 (10)	-0.0037 (10)	0.0014 (10)

021	0.0524 (12)	0.0423 (11)	0.0432 (11)	0.0133 (9)	0.0038 (8)	0.0029 (9)
Geomet	ric parameters (Å,	. ?)				
033—H	133B	0.87 (6)		С5—Н5В		0.9700
033—I	133A	0.76 (6)		C111—C116		1.384 (5)
C11—C	1	1.757 (3)		C111—C112		1.385 (5)
Cl2—C	1	1.772 (3)		C111—C11		1.510 (4)
Cl3—C	1	1.770 (3)		C2—O21		1.241 (4)
N41—0	C4	1.314 (4)		С6—Н6А		0.9700
N41—0	C10	1.453 (3)		C6—H6B		0.9700
N41—H	1 41	0.83 (5)		C11—H11A		0.9700
C1—C2	2	1.564 (4)		C11—H11B		0.9700
С7—О́	71	1.186 (4)		C112—C113		1.385 (5)
С7—О́	72	1.343 (4)		C112—H112		0.9300
С7—Се	6	1.500 (4)		С8—072		1.448 (4)
С9—09	91	1.209 (4)		C8—H8A		0.9600
С9—О	92	1.303 (4)		C8—H8B		0.9600
С9—С	10	1.523 (4)		C8—H8C		0.9600
C3—C2	2	1.397 (4)		C116—C115		1.393 (6)
C3—C4	1	1.401 (4)		C116—H116		0.9300
С3—Н3	3	0.9300		C115—C114		1.344 (7)
C10—C	C11	1.545 (4)		С115—Н115		0.9300
C10—H	H10	0.9800		C113—C114		1.382 (7)
C5—C4	1	1.509 (4)		С113—Н113		0.9300
С5—Се	6	1.517 (4)		C114—H114		0.9300
С5—Н	5A	0.9700		О92—Н92		0.89 (5)
H33B-	-O33—H33A	115 (6)		С7—С6—Н6А		109.2
C4—N4	41—C10	126.9 (2)		С5—С6—Н6А		109.2
C4—N4	41—H41	121 (4)		С7—С6—Н6В		109.2
C10-N	V41—H41	112 (4)		С5—С6—Н6В		109.2
C2—C	I—Cl1	116.0 (2)		H6A—C6—H6B		107.9
C2—C1	I—Cl3	107.9 (2)		C111—C11—C10		113.8 (2)
Cl1—C	1—Cl3	107.55 (1	6)	C111-C11-H11A		108.8
C2—C1	I—Cl2	107.0 (2)		C10-C11-H11A		108.8
Cl1—C	1—Cl2	109.06 (1	7)	C111—C11—H11B		108.8
C13—C	1—Cl2	109.22 (1	7)	C10-C11-H11B		108.8
071—0	C7—O72	124.4 (3)		H11A—C11—H11B	5	107.7
071—0	С7—С6	125.1 (3)		C111—C112—C113		120.9 (4)
072—0	С7—С6	110.5 (2)		C111—C112—H112	2	119.6
091—0	C9—O92	124.1 (3)		С113—С112—Н112	2	119.6
091—0	C9—C10	121.0 (3)		O72—C8—H8A		109.5
092—0	C9—C10	114.9 (3)		O72—C8—H8B		109.5
C2—C3	3—C4	122.1 (3)		H8A—C8—H8B		109.5
C2—C3	3—Н3	119.0		O72—C8—H8C		109.5
C4—C3	3—Н3	119.0		H8A—C8—H8C		109.5
N41—0	С10—С9	113.6 (2)		H8B—C8—H8C		109.5
N41—0	C10—C11	110.4 (2)		C111—C116—C115	i	120.1 (4)
C9—C1	10—C11	111.3 (2)		C111-C116-H116	<u>,</u>	119.9

supplementary materials

N41—C10—H10	107.1	C115—C116—H116	119.9
С9—С10—Н10	107.1	C114—C115—C116	121.0 (4)
C11—C10—H10	107.1	C114—C115—H115	119.5
C4—C5—C6	110.9 (2)	C116—C115—H115	119.5
C4—C5—H5A	109.5	C114—C113—C112	119.7 (4)
С6—С5—Н5А	109.5	C114—C113—H113	120.1
C4—C5—H5B	109.5	C112—C113—H113	120.1
С6—С5—Н5В	109.5	C115—C114—C113	119.9 (4)
H5A—C5—H5B	108.0	C115—C114—H114	120.1
C116—C111—C112	118.3 (3)	C113—C114—H114	120.1
C116—C111—C11	120.3 (3)	C7—O72—C8	115.5 (3)
C112—C111—C11	121.4 (3)	С9—О92—Н92	111 (3)
O21—C2—C3	125.9 (3)	N41—C4—C3	122.1 (2)
O21—C2—C1	115.3 (2)	N41—C4—C5	120.6 (2)
C3—C2—C1	118.7 (3)	C3—C4—C5	117.4 (2)
C7—C6—C5	112.0 (2)		
C4—N41—C10—C9	-76.6 (4)	N41—C10—C11—C111	54.1 (3)
C4—N41—C10—C11	157.5 (3)	C9-C10-C11-C111	-73.0 (3)
O91—C9—C10—N41	178.7 (3)	C116—C111—C112—C113	1.9 (6)
O92—C9—C10—N41	-0.6 (4)	C11—C111—C112—C113	-178.7 (4)
O91—C9—C10—C11	-56.0 (3)	C112—C111—C116—C115	-1.1 (5)
O92—C9—C10—C11	124.7 (3)	C11—C111—C116—C115	179.5 (4)
C4—C3—C2—O21	-0.5 (5)	C111—C116—C115—C114	0.3 (7)
C4—C3—C2—C1	178.8 (3)	C111—C112—C113—C114	-1.9 (7)
Cl1—C1—C2—O21	-173.6 (2)	C116—C115—C114—C113	-0.3 (7)
Cl3—C1—C2—O21	-53.0 (3)	C112—C113—C114—C115	1.0 (7)
Cl2—C1—C2—O21	64.5 (3)	O71—C7—O72—C8	-0.8 (5)
Cl1—C1—C2—C3	7.0 (4)	C6—C7—O72—C8	-179.7 (3)
Cl3—C1—C2—C3	127.7 (3)	C10—N41—C4—C3	175.1 (3)
Cl2—C1—C2—C3	-114.9 (3)	C10—N41—C4—C5	-7.0 (4)
O71—C7—C6—C5	13.3 (5)	C2-C3-C4-N41	-2.2 (5)
O72—C7—C6—C5	-167.8 (3)	C2—C3—C4—C5	179.8 (3)
C4—C5—C6—C7	-168.9 (3)	C6—C5—C4—N41	-86.6 (3)
C116—C111—C11—C10	-115.5 (3)	C6—C5—C4—C3	91.4 (3)
C112—C111—C11—C10	65.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C6—H6A···Cl1 ⁱ	0.97	2.94	3.774 (3)	145
O33—H33 <i>B</i> ···O91 ⁱⁱ	0.87 (6)	1.89 (6)	2.766 (4)	177 (5)
N41—H41…O21	0.83 (5)	2.05 (6)	2.672 (3)	131 (5)
O33—H33A···O21 ⁱⁱⁱ	0.76 (6)	2.06 (6)	2.815 (3)	171 (6)
О92—Н92…О33	0.89 (5)	1.66 (5)	2.542 (4)	175 (5)
C3—H3…Cl1	0.93	2.55	3.031 (3)	112

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*.