Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 28;70(Pt 3):o379–o380. doi: 10.1107/S1600536814004309

5-Chloro-5′′-(4-chloro­benzyl­idene)-4′-(4-chloro­phen­yl)-1′,1′′-dimethyldi­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

I S Ahmed Farag a,, Adel S Girgis b, A A Ramadan c, A M Moustafa a, Ahmed F Mabied a,*
PMCID: PMC3998502  PMID: 24765059

Abstract

The racemic title compound, C30H26Cl3N3O2, comprises two spiro links, the first connecting the piperidine and pyrrolidine rings and the other connecting the indole and pyrrolidine rings. The piperidine ring adopts a half-chair conformation, while the pyrrolidine ring has an envelope conformation with the unsubstituted C atom as the flap. The dihedral angles between the two p-Cl-substituted benzene rings and the indole ring are 33.13 (14) and 54.11 (14)°. In the crystal, mol­ecules form inversion dimers through pairs of N—H⋯O hydrogen bonds [graph set R 2 2(8)]. Aromatic C—H⋯O hydrogen bonds extend these dimers into a ribbon structure, enclosing R 2 2(14) ring motifs, along the a-axis direction.

Related literature  

For the biological activity of related di­spiro-oxindole analogues, see: Girgis et al. (2009a ,b , 2012); George et al. (2013). For related structural studies, see: Farag et al. (2014a ,b ,c ); Moustafa et al. (2012). For the synthesis of the precursor mol­ecule, see: Modzelewska et al. (2006). For graph-set analysis, see: Etter et al. (1990). For details of the weighting scheme used, see: Watkin et al. (1994). H atoms were refined with riding constraints (Cooper et al., 2010).graphic file with name e-70-0o379-scheme1.jpg

Experimental  

Crystal data  

  • C30H26Cl3N3O2

  • M r = 566.91

  • Triclinic, Inline graphic

  • a = 11.2102 (3) Å

  • b = 11.5909 (3) Å

  • c = 12.3569 (4) Å

  • α = 99.0734 (8)°

  • β = 90.1887 (9)°

  • γ = 116.4041 (10)°

  • V = 1415.22 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.35 × 0.19 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997)] T min = 0.630, T max = 0.876

  • 16419 measured reflections

  • 6508 independent reflections

  • 3663 reflections with I > 2σ(I)

  • R int = 0.076

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.111

  • S = 1.01

  • 3663 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: CRYSTALS; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) New_Global_Publ_Block, I. DOI: 10.1107/S1600536814004309/zs2286sup1.cif

e-70-0o379-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004309/zs2286Isup2.hkl

e-70-0o379-Isup2.hkl (404.8KB, hkl)

CCDC reference: 988672

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H61⋯O19i 0.96 2.47 3.168 (5) 130
N30—H301⋯O29ii 0.96 1.90 2.844 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

supplementary crystallographic information

1. Introduction

Spiro­pyrrolidinyl-oxindole represents the main alkaloid skeleton of naturally occurring substances characterized by promising biological and/or pharmacological properties. In continuation of our research program directed towards synthesis of biologically active compounds possessing this motif (Farag et al., 2014a-c; George et al., 2013; Girgis et al., 2012, 2009a,b; Moustafa et al., 2012), a novel analog, C30H26Cl3N3O2, is described in the present study utilizing a facile regio- as well as stereoselective procedure.

2. Experimental

2.1. Synthesis and crystallization

A mixture of equimolar amounts of 3E,5E-3,5-bis­(4-chloro­phenyl­methyl­idene)-1-methyl-4-piperidone (5 mmol) [prepared by a literature procedure (Modzelewska et al., 2006)], 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was heated under reflux for 9 h (TLC monitoring). The separated solid was collected and recrystallized from n-butanol affording the title compound, 5-chloro-5''-(4-chloro­benzyl­idene)-4'-(4-chloro­phenyl)-1',1''-di­methyl­dispiro­[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, as pale-yellow crystals. M.p. 237-239 °C; Yield 81%; Anal. Calcd. for C30H26Cl3N3O2 (566.92): C, 63.56; H, 4.62; N, 7.41. Found: C, 63.69; H, 4.71; N, 7.48. IR: νmax/cm-1 3164 (NH), 1690 (C═O), 1594, 1483 (C═C).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The relatively large ratio of minimum to maximum corrections applied in the multiscan process reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling [DENZO/SCALEPACK (Otwinowski & Minor, 1997)]. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically and initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89, N—H to 0.86 and O—H = 0.82 Å) and U>iso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

3. (Results and Discussion)

In the racemic title molecule (Fig. 1), two spiro links exist, one in which the piperidine and pyrrolidine rings are connected at C12, the other with the pyrrolidine ring and indole residue connected at C11. The piperidine ring adopts a half-chair conformation where the C13 atom lies 0.75 (2) Å out of the mean plane of the remaining five atoms (C12–N14) with maximum deviation 0.086 (2) at C16. The pyrrolidine ring has an envelope conformation with the flap atom being C9 which lies 0.608 (3) Å out of the mean plane of the remaining four atoms (C8–N10), in which the maximum deviation [0.088 (3)] is at C11. The two 4-chloro-substituted benzene rings defined by (C2–C7) and (C21–C27) make dihedral angles of 33.1 (14) and 54.11 (14)°, respectively, with the indole ring. In the crystal, the molecules form centrosymmetric cyclic dimers through duplex inter­molecular N30—H···O29i hydrogen bonds (Table 1) [graph set R22(8) (Etter et al., 1990)]. Centrosymmetric duplex aromatic C6—H···O19ii hydrogen-bonding associations [graph set R22(14)] extend these dimers into a one-dimensional ribbon structure extending along a (Fig. 2) (for symmetry codes, see Table 1). Also present in the molecule is an intra­molecular C38—H···π inter­action with the ring centroid (Cg) of the five-membered C28–N30 ring.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound, showing the N—H···O and C—H···O hydrogen bonds and the C—H..π interaction as violet, turquoise and green dashed lines, respectively.

Crystal data

C30H26Cl3N3O2 Z = 2
Mr = 566.91 F(000) = 588
Triclinic, P1 Dx = 1.330 Mg m3
Hall symbol: -P 1 Melting point = 510–512 K
a = 11.2102 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.5909 (3) Å Cell parameters from 8506 reflections
c = 12.3569 (4) Å θ = 3–27°
α = 99.0734 (8)° µ = 0.36 mm1
β = 90.1887 (9)° T = 298 K
γ = 116.4041 (10)° Plate, pale yellow
V = 1415.22 (7) Å3 0.35 × 0.19 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer 3663 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.076
φ and ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan [Görbitz (1999) and DENZO/SCALEPACK (Otwinowski & Minor, 1997)] h = −14→13
Tmin = 0.630, Tmax = 0.876 k = −14→15
16419 measured reflections l = −13→16
6508 independent reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 Method, part 1, Chebychev polynomial, (Watkin et al., 1994) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 100. 168. 111. 49.9 14.3
wR(F2) = 0.111 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.55 e Å3
3663 reflections Δρmin = −0.54 e Å3
344 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 400 (70)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.60430 (10) 0.03618 (8) 0.26749 (8) 0.0754
C2 0.6044 (3) 0.1352 (3) 0.3894 (3) 0.0503
C3 0.6541 (3) 0.1232 (3) 0.4866 (3) 0.0529
C4 0.6557 (3) 0.2027 (3) 0.5831 (3) 0.0487
C5 0.6067 (3) 0.2943 (2) 0.5838 (2) 0.0417
C6 0.5543 (3) 0.3014 (3) 0.4848 (2) 0.0492
C7 0.5530 (3) 0.2237 (3) 0.3873 (3) 0.0542
C8 0.6072 (2) 0.3840 (2) 0.6877 (2) 0.0409
C9 0.5750 (3) 0.3253 (3) 0.7914 (3) 0.0516
N10 0.6166 (2) 0.4411 (2) 0.8759 (2) 0.0492
C11 0.7498 (3) 0.5363 (2) 0.8520 (2) 0.0397
C12 0.7408 (2) 0.5121 (2) 0.7215 (2) 0.0354
C13 0.8657 (2) 0.5050 (2) 0.6782 (2) 0.0400
N14 0.9809 (2) 0.6228 (2) 0.73096 (19) 0.0418
C15 1.1053 (3) 0.6102 (3) 0.7277 (3) 0.0639
C16 0.9952 (3) 0.7356 (2) 0.6850 (2) 0.0432
C17 0.8667 (3) 0.7462 (2) 0.6750 (2) 0.0367
C18 0.7363 (3) 0.6297 (2) 0.6818 (2) 0.0374
O19 0.63054 (19) 0.62778 (19) 0.65825 (18) 0.0539
C20 0.8581 (3) 0.8543 (2) 0.6587 (2) 0.0402
C21 0.9613 (3) 0.9854 (3) 0.6496 (2) 0.0406
C22 1.0951 (3) 1.0193 (3) 0.6338 (2) 0.0477
C23 1.1861 (3) 1.1452 (3) 0.6272 (3) 0.0532
C24 1.1446 (3) 1.2413 (3) 0.6355 (3) 0.0522
Cl25 1.25982 (10) 1.40017 (8) 0.62645 (10) 0.0835
C26 1.0126 (3) 1.2121 (3) 0.6494 (3) 0.0598
C27 0.9234 (3) 1.0851 (3) 0.6562 (3) 0.0521
C28 0.8616 (3) 0.5122 (3) 0.9037 (2) 0.0482
O29 0.8737 (2) 0.4106 (2) 0.88320 (18) 0.0582
N30 0.9342 (3) 0.6146 (2) 0.9844 (2) 0.0591
C31 0.8905 (3) 0.7109 (3) 0.9914 (3) 0.0578
C32 0.7834 (3) 0.6724 (3) 0.9147 (2) 0.0466
C33 0.7187 (3) 0.7487 (3) 0.9109 (3) 0.0559
C34 0.7670 (5) 0.8668 (3) 0.9847 (3) 0.0756
Cl35 0.68788 (17) 0.96581 (12) 0.98031 (12) 0.1253
C36 0.8741 (5) 0.9054 (4) 1.0601 (3) 0.0925
C37 0.9380 (5) 0.8278 (4) 1.0642 (3) 0.0812
C38 0.6049 (4) 0.4161 (4) 0.9884 (3) 0.0741
H31 0.6875 0.0600 0.4875 0.0634*
H41 0.6912 0.1947 0.6508 0.0584*
H61 0.5179 0.3622 0.4839 0.0591*
H71 0.5171 0.2309 0.3194 0.0651*
H81 0.5398 0.4108 0.6738 0.0490*
H91 0.6249 0.2780 0.8011 0.0619*
H92 0.4813 0.2684 0.7906 0.0619*
H131 0.8702 0.4292 0.6959 0.0480*
H132 0.8631 0.5003 0.5999 0.0480*
H151 1.1779 0.6908 0.7637 0.0769*
H152 1.0970 0.5405 0.7648 0.0769*
H153 1.1224 0.5912 0.6526 0.0769*
H161 1.0599 0.8133 0.7317 0.0518*
H162 1.0265 0.7293 0.6131 0.0518*
H201 0.7683 0.8438 0.6517 0.0482*
H221 1.1247 0.9526 0.6274 0.0572*
H231 1.2778 1.1659 0.6168 0.0638*
H261 0.9835 1.2790 0.6542 0.0717*
H271 0.8317 1.0649 0.6659 0.0624*
H331 0.6431 0.7215 0.8593 0.0669*
H361 0.9045 0.9868 1.1105 0.1110*
H371 1.0133 0.8547 1.1160 0.0974*
H381 0.6343 0.4974 1.0388 0.0890*
H382 0.6594 0.3746 1.0027 0.0890*
H383 0.5134 0.3597 0.9977 0.0890*
H301 1.0063 0.6204 1.0307 0.0710*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0825 (6) 0.0603 (5) 0.0685 (6) 0.0259 (4) 0.0069 (5) −0.0100 (4)
C2 0.0439 (16) 0.0407 (15) 0.0535 (19) 0.0097 (13) 0.0027 (14) 0.0021 (13)
C3 0.0552 (19) 0.0391 (15) 0.067 (2) 0.0250 (14) 0.0025 (16) 0.0058 (14)
C4 0.0498 (17) 0.0480 (16) 0.0542 (18) 0.0276 (14) −0.0035 (14) 0.0085 (14)
C5 0.0327 (14) 0.0361 (13) 0.0516 (17) 0.0129 (11) −0.0049 (12) 0.0032 (12)
C6 0.0486 (17) 0.0442 (15) 0.0554 (19) 0.0226 (13) −0.0095 (14) 0.0053 (14)
C7 0.0500 (18) 0.0528 (17) 0.056 (2) 0.0208 (15) −0.0087 (14) 0.0062 (15)
C8 0.0321 (14) 0.0375 (13) 0.0520 (17) 0.0160 (11) −0.0036 (12) 0.0044 (12)
C9 0.0406 (16) 0.0400 (15) 0.065 (2) 0.0101 (13) 0.0063 (14) 0.0100 (14)
N10 0.0506 (14) 0.0472 (13) 0.0492 (15) 0.0193 (11) 0.0139 (11) 0.0150 (11)
C11 0.0409 (15) 0.0392 (13) 0.0391 (16) 0.0179 (12) 0.0033 (12) 0.0083 (11)
C12 0.0338 (14) 0.0341 (12) 0.0392 (15) 0.0161 (11) −0.0021 (11) 0.0067 (11)
C13 0.0385 (15) 0.0359 (13) 0.0483 (17) 0.0200 (12) −0.0008 (12) 0.0055 (12)
N14 0.0338 (12) 0.0379 (11) 0.0572 (15) 0.0182 (10) 0.0009 (10) 0.0117 (10)
C15 0.0433 (17) 0.0531 (18) 0.105 (3) 0.0271 (15) 0.0038 (18) 0.0238 (19)
C16 0.0409 (15) 0.0358 (13) 0.0547 (18) 0.0187 (12) 0.0050 (13) 0.0090 (12)
C17 0.0420 (14) 0.0401 (14) 0.0332 (14) 0.0227 (12) 0.0008 (11) 0.0072 (11)
C18 0.0391 (15) 0.0421 (14) 0.0345 (14) 0.0222 (12) −0.0022 (11) 0.0043 (11)
O19 0.0432 (12) 0.0533 (12) 0.0723 (15) 0.0251 (10) −0.0040 (10) 0.0206 (10)
C20 0.0426 (15) 0.0426 (14) 0.0399 (16) 0.0227 (12) 0.0008 (12) 0.0091 (12)
C21 0.0491 (17) 0.0409 (14) 0.0338 (15) 0.0222 (13) −0.0027 (12) 0.0059 (11)
C22 0.0560 (18) 0.0423 (15) 0.0528 (18) 0.0289 (14) 0.0095 (14) 0.0096 (13)
C23 0.0528 (18) 0.0480 (16) 0.064 (2) 0.0260 (15) 0.0117 (15) 0.0129 (14)
C24 0.0551 (19) 0.0389 (14) 0.060 (2) 0.0192 (13) 0.0050 (15) 0.0075 (13)
Cl25 0.0753 (6) 0.0397 (4) 0.1315 (9) 0.0217 (4) 0.0239 (6) 0.0166 (5)
C26 0.066 (2) 0.0391 (15) 0.080 (2) 0.0298 (15) 0.0029 (17) 0.0089 (15)
C27 0.0483 (17) 0.0483 (16) 0.066 (2) 0.0277 (14) −0.0018 (14) 0.0101 (14)
C28 0.0530 (18) 0.0491 (16) 0.0441 (17) 0.0219 (14) 0.0003 (13) 0.0164 (14)
O29 0.0642 (14) 0.0510 (12) 0.0678 (14) 0.0315 (11) −0.0091 (11) 0.0171 (10)
N30 0.0666 (17) 0.0545 (15) 0.0520 (16) 0.0234 (13) −0.0198 (13) 0.0101 (13)
C31 0.074 (2) 0.0489 (17) 0.0404 (17) 0.0196 (16) −0.0052 (15) 0.0071 (14)
C32 0.0567 (17) 0.0461 (15) 0.0370 (16) 0.0218 (14) 0.0102 (13) 0.0110 (13)
C33 0.074 (2) 0.0544 (17) 0.0493 (19) 0.0361 (16) 0.0206 (16) 0.0134 (14)
C34 0.115 (3) 0.059 (2) 0.066 (2) 0.050 (2) 0.029 (2) 0.0090 (19)
Cl35 0.1911 (15) 0.0969 (8) 0.1324 (11) 0.1058 (10) 0.0520 (10) 0.0150 (8)
C36 0.153 (4) 0.057 (2) 0.054 (2) 0.040 (3) 0.007 (3) −0.0053 (18)
C37 0.119 (3) 0.061 (2) 0.043 (2) 0.025 (2) −0.011 (2) −0.0012 (17)
C38 0.085 (3) 0.074 (2) 0.062 (2) 0.030 (2) 0.0281 (19) 0.0254 (19)

Geometric parameters (Å, º)

Cl1—C2 1.743 (3) C16—H162 0.960
C2—C3 1.375 (4) C17—C18 1.500 (4)
C2—C7 1.386 (4) C17—C20 1.345 (3)
C3—C4 1.382 (4) C18—O19 1.209 (3)
C3—H31 0.960 C20—C21 1.467 (4)
C4—C5 1.394 (4) C20—H201 0.960
C4—H41 0.960 C21—C22 1.395 (4)
C5—C6 1.386 (4) C21—C27 1.389 (4)
C5—C8 1.517 (4) C22—C23 1.376 (4)
C6—C7 1.382 (4) C22—H221 0.960
C6—H61 0.960 C23—C24 1.375 (4)
C7—H71 0.960 C23—H231 0.960
C8—C9 1.514 (4) C24—Cl25 1.739 (3)
C8—C12 1.563 (3) C24—C26 1.381 (4)
C8—H81 0.960 C26—C27 1.380 (4)
C9—N10 1.452 (4) C26—H261 0.960
C9—H91 0.960 C27—H271 0.960
C9—H92 0.960 C28—O29 1.230 (3)
N10—C11 1.474 (3) C28—N30 1.352 (4)
N10—C38 1.459 (4) N30—C31 1.397 (4)
C11—C12 1.588 (4) N30—H301 0.960
C11—C28 1.556 (4) C31—C32 1.385 (4)
C11—C32 1.521 (4) C31—C37 1.378 (5)
C12—C13 1.532 (4) C32—C33 1.376 (4)
C12—C18 1.540 (3) C33—C34 1.393 (5)
C13—N14 1.450 (3) C33—H331 0.960
C13—H131 0.960 C34—Cl35 1.741 (4)
C13—H132 0.960 C34—C36 1.376 (6)
N14—C15 1.464 (3) C36—C37 1.382 (6)
N14—C16 1.452 (3) C36—H361 0.960
C15—H151 0.960 C37—H371 0.960
C15—H152 0.960 C38—H381 0.960
C15—H153 0.960 C38—H382 0.960
C16—C17 1.505 (4) C38—H383 0.960
C16—H161 0.960
Cl1—C2—C3 119.5 (2) C17—C16—H161 108.5
Cl1—C2—C7 119.7 (3) N14—C16—H162 108.5
C3—C2—C7 120.8 (3) C17—C16—H162 108.5
C2—C3—C4 119.5 (3) H161—C16—H162 109.5
C2—C3—H31 120.2 C16—C17—C18 119.6 (2)
C4—C3—H31 120.2 C16—C17—C20 124.7 (2)
C3—C4—C5 121.2 (3) C18—C17—C20 115.6 (2)
C3—C4—H41 119.4 C12—C18—C17 117.8 (2)
C5—C4—H41 119.4 C12—C18—O19 120.7 (2)
C4—C5—C6 117.8 (3) C17—C18—O19 121.5 (2)
C4—C5—C8 122.9 (3) C17—C20—C21 131.5 (3)
C6—C5—C8 119.3 (2) C17—C20—H201 114.2
C5—C6—C7 121.9 (3) C21—C20—H201 114.3
C5—C6—H61 119.0 C20—C21—C22 125.7 (2)
C7—C6—H61 119.0 C20—C21—C27 117.8 (3)
C2—C7—C6 118.7 (3) C22—C21—C27 116.5 (2)
C2—C7—H71 120.6 C21—C22—C23 122.1 (3)
C6—C7—H71 120.7 C21—C22—H221 119.0
C5—C8—C9 116.7 (2) C23—C22—H221 119.0
C5—C8—C12 115.4 (2) C22—C23—C24 119.4 (3)
C9—C8—C12 104.3 (2) C22—C23—H231 120.3
C5—C8—H81 106.6 C24—C23—H231 120.3
C9—C8—H81 106.6 C23—C24—Cl25 119.3 (2)
C12—C8—H81 106.6 C23—C24—C26 120.7 (3)
C8—C9—N10 101.9 (2) Cl25—C24—C26 120.1 (2)
C8—C9—H91 111.3 C24—C26—C27 118.8 (3)
N10—C9—H91 111.3 C24—C26—H261 120.6
C8—C9—H92 111.3 C27—C26—H261 120.6
N10—C9—H92 111.3 C21—C27—C26 122.5 (3)
H91—C9—H92 109.5 C21—C27—H271 118.7
C9—N10—C11 107.0 (2) C26—C27—H271 118.7
C9—N10—C38 114.9 (2) C11—C28—O29 125.7 (3)
C11—N10—C38 115.6 (3) C11—C28—N30 108.9 (2)
N10—C11—C12 103.0 (2) O29—C28—N30 125.0 (3)
N10—C11—C28 110.9 (2) C28—N30—C31 111.0 (2)
C12—C11—C28 113.1 (2) C28—N30—H301 124.5
N10—C11—C32 110.3 (2) C31—N30—H301 124.5
C12—C11—C32 119.1 (2) N30—C31—C32 110.5 (3)
C28—C11—C32 100.6 (2) N30—C31—C37 128.0 (3)
C8—C12—C11 103.6 (2) C32—C31—C37 121.5 (3)
C8—C12—C13 115.0 (2) C11—C32—C31 108.8 (2)
C11—C12—C13 111.2 (2) C11—C32—C33 130.2 (3)
C8—C12—C18 111.9 (2) C31—C32—C33 120.7 (3)
C11—C12—C18 108.90 (19) C32—C33—C34 117.6 (3)
C13—C12—C18 106.2 (2) C32—C33—H331 121.2
C12—C13—N14 107.5 (2) C34—C33—H331 121.2
C12—C13—H131 109.9 C33—C34—Cl35 118.5 (4)
N14—C13—H131 109.9 C33—C34—C36 121.5 (3)
C12—C13—H132 110.0 Cl35—C34—C36 120.0 (3)
N14—C13—H132 110.0 C34—C36—C37 120.6 (3)
H131—C13—H132 109.5 C34—C36—H361 119.7
C13—N14—C15 113.2 (2) C37—C36—H361 119.7
C13—N14—C16 111.3 (2) C36—C37—C31 118.1 (4)
C15—N14—C16 110.6 (2) C36—C37—H371 121.0
N14—C15—H151 109.5 C31—C37—H371 121.0
N14—C15—H152 109.5 N10—C38—H381 109.5
H151—C15—H152 109.5 N10—C38—H382 109.5
N14—C15—H153 109.4 H381—C38—H382 109.5
H151—C15—H153 109.5 N10—C38—H383 109.4
H152—C15—H153 109.5 H381—C38—H383 109.5
N14—C16—C17 113.3 (2) H382—C38—H383 109.5
N14—C16—H161 108.5
Cl1—C2—C7—C6 −179.9 (3) C11—C32—C33—C34 175.1 (3)
C34—C36—C37—C31 −0.1 (6) C20—C21—C27—C26 179.6 (3)
C12—C13—N14—C15 160.2 (2) O29—C28—N30—C31 −175.9 (3)
C8—C12—C18—O19 20.1 (3) N30—C31—C32—C11 1.4 (4)
N14—C16—C17—C18 −16.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H61···O19i 0.96 2.47 3.168 (5) 130
N30—H301···O29ii 0.96 1.90 2.844 (5) 167
C38—H381···Cg 0.95 2.63 2.818 (5) 91 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2286).

References

  1. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  2. Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22–o23. [DOI] [PMC free article] [PubMed]
  6. Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43–o44. [DOI] [PMC free article] [PubMed]
  7. Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014c). Acta Cryst. E70, o70–o71. [DOI] [PMC free article] [PubMed]
  8. George, R. F., Ismail, N. S. M., Stawinski, J. & Girgis, A. S. (2013). Eur. J. Med. Chem. 68, 339–351. [DOI] [PubMed]
  9. Girgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91–100. [DOI] [PubMed]
  10. Girgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257–1264. [DOI] [PubMed]
  11. Girgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312–322. [DOI] [PubMed]
  12. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  13. Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495. [DOI] [PubMed]
  14. Moustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197–o2198. [DOI] [PMC free article] [PubMed]
  15. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  18. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  19. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) New_Global_Publ_Block, I. DOI: 10.1107/S1600536814004309/zs2286sup1.cif

e-70-0o379-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004309/zs2286Isup2.hkl

e-70-0o379-Isup2.hkl (404.8KB, hkl)

CCDC reference: 988672

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES