Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 8;70(Pt 4):m125–m126. doi: 10.1107/S160053681400484X

Bis[tris­(phenanthroline-κ2 N,N′)cobalt(II)] undeca­tungsto(VI)vanado(V)phosphate dihydrate

Assia Hajsalem a, Sameh Aoun b, Aurelien Planchat b, Mohamed Rzaigui a, Samah Akriche Toumi a,*
PMCID: PMC3998553  PMID: 24826091

Abstract

In the title hydrated salt, [Co(C12H8N2)3]2[PVW11O40]·2H2O, the complete Kegggin ion is generated by crystallographic inversion symmetry, which imposes statistical disorder on the O atoms of its central PO4 group. The V atom is statistically disordered over all the metal sites of the anion. In the cation, the Co2+ ion is coordinated by three bidentate 1,10-phenanthroline (phen) ligands, generating a distorted CoN6 octa­hedron. Possible very weak intra­molecular C—H⋯π inter­actions occur in the cation. In the crystal, the components are linked by O—H⋯O and C—H⋯O inter­actions, building a three-dimensional network featuring one-dimensional voids along the c-axis direction.

Related literature  

For related vanadium-substituted Keggin-ion structures, see: Glinskaya et al. (1989); Klevtsova et al. (1990, 1991); Li et al. (2008); Radkov & Beer (1995). For IR spectroscopy investigations of Keggin ions, see: Lee & Misono (1997); Deltcheff et al. (1983); Watras & Teplyakov (2005). For bond-valence calculations, see: Brown & Altermatt (1985). For background to polyoxidometalate chemistry, see: Pope & Müller (1991, 1994).graphic file with name e-70-0m125-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C12H8N2)3][PVW11O40]·2H2O

  • M r = 3979.38

  • Monoclinic, Inline graphic

  • a = 19.487 (2) Å

  • b = 18.049 (3) Å

  • c = 25.216 (2) Å

  • β = 100.22 (3)°

  • V = 8728.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.02 mm−1

  • T = 295 K

  • 0.13 × 0.08 × 0.04 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.202, T max = 0.421

  • 62427 measured reflections

  • 11235 independent reflections

  • 8172 reflections with I > 2σ(I)

  • R int = 0.070

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.095

  • S = 1.16

  • 11235 reflections

  • 688 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.51 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400484X/hb7203sup1.cif

e-70-0m125-sup1.cif (42KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400484X/hb7203Isup2.hkl

e-70-0m125-Isup2.hkl (538.4KB, hkl)

CCDC reference: 989480

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co—N3 2.053 (9)
Co—N6 2.060 (8)
Co—N1 2.066 (10)
Co—N4 2.066 (11)
Co—N2 2.078 (10)
Co—N5 2.085 (8)

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1–C4/C12 and N3/C13–C16/C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1E 0.85 (1) 2.17 (11) 2.928 (14) 149 (20)
O1W—H2W1⋯O3E i 0.85 (1) 1.99 (3) 2.836 (13) 173 (17)
C9—H9⋯O5E ii 0.93 2.55 3.208 (15) 128
C26—H26⋯O12iii 0.93 2.46 2.973 (15) 114
C33—H33⋯O5iv 0.93 2.53 3.345 (13) 147
C34—H34⋯O8 0.93 2.43 3.114 (13) 130
C34—H34⋯Cg1 0.93 3.04 3.811 (12) 142
C25—H25⋯Cg2 0.93 2.99 3.777 (13) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors express their appreciation to the CNRS 6230 UFR Sciences and Techniques of Nantes in France for supporting this work.

supplementary crystallographic information

1. Comment

A bibliographic survey shows only a few examples of substituted vanadium keggin-type [XV1W11O40]p- clusters associated to organometallic or organic moieties: such as (C2N2H10)2[VV1W11O40]·6H2O (Glinskaya et al., 1989), [N(CH3)4]4[VV1W11O40]·4.5H2O (Klevtsova et al., 1991),[(CH3)2NCHO]4H4[VV1W11O40].2[(CH3)2NCHO]·2H2O (Klevtsova et al., 1990), [Cu(phen)2]2[PVW11O40] (phen = phenanthroline)(Li et al., 2008),(n-Bu4N)4[PMW11O40] (n-Bu = n-Butyl and M = V, Nb, Ta) (Radkov & Beer, 1995). Here, we report a new monosubstituted vanadium tungstophosphate Keggin-type cluster decorated by mononuclear metal-organic complex [Co(phen)3]2[PVW11O40]·2H2O (phen = phenanthroline) (I).

The asymmetric unit of of I consists of a mononuclear complex [Co(phen)3]2+ cation and a half of Keggin-type [PVW11O40]4- anion and one water molecule. As P atom is located on centre of inversion symmetry, the whole [PVW11O40]4- polyoxidoanion is generated by this element and so is composed of a disordered PO4 tetrahedron surrounded by four vertex-sharing M3O13 (with M = W/V) subunits which result from the association of three edge-sharing MO6 octahedra enwrapping a PO8 cube with oxygen atom site occupancy of 0.5. In the MO6 (with M = W/V) octahedra, the position of metal atom is crystallographically disordered and constrained as 11/12 W and 1/12 V, with occupancies of 0.083 and 0.917 for W and V respectively.

The contents of W and V revealed by X-ray analysis are consistent with the results from elemental analyses and scanning electronic microscopy (Fig. 2) as well as the IR spectroscopy wich shows that the streching vibration of (P—O) splits into two absoption bands at 1095 cm-1 and 1068 cm-1 because of the lower symmetry so as well confirm the presence of monosubstituted vanadium keggin-type clusters in I (Lee et al., 1997; Deltcheff et al., 1983; Watras et al., 2005).

The assignment of oxidation states for the tungsten and vanadium atoms is confirmed by bond valence sum calculations (Brown & Altermatt, 1985)) which show that vanadium atom has +V oxidation state (average 4.98 valence units) while tungsten atoms have +VI oxidation state (average 6.23 valence units). These oxidation states are identical with the charge balance considerations and so consistent with the expected [PV+VW+VI11O40]4- subunits.

The P—O bond distances range 1.481 (11)—1.582 (11) Å and O—P—O bond angles interval 105.5 (6)—112.6 (6) °. Commonly, the M—O bond distances are grouped into three sets: M—Ot, M—Ob and M—Oc (with Ot: terminal oxygen atoms, Oc: central oxygen atoms, Ob: bridging oxygen atoms) which are respectively ranged between 1.667 (8)—1.677 (7) Å, 2.396 (11)—2.526 (12) Å and 1.750 (18)—2.085 (14) Å. With regard to the mononuclear complex,the Co2+ metal is also coordinated by six nitrogen atoms from three chelating 1,10-phenanthroline ligands to form a slightly distorted MN6 octahedron with bond lenghts around Co, are 2.053 (9)—2.085 (8) Å (Co—N) and 80.0 (4)—173.9 (4)° (N—Co—N) (Table 1).

The crystal packing of I shows that the discrete polyoxidoanion subunits are interconnected through water molecules via O—H···O hydrogen bonding interactions with O···O separation ranging from 2.836 (13) to 2.928 (14) Å (Table 2), to perform alternating [PVW11O40(H2O)2]4n- ribbons extending along [110] and [110] crystallographic directions. The so-obtained one-dimensional-subnetworks stack together by the metal-organic moieties thanks to weak C–H···O (mean C···O = 3.144 Å) (Table 1) and electrostatic interactions so as to build three-dimensional-supramolecular network generating vacant one-dimensional-channels along c axis as can be seen in Fig. 3. Very weak intramolecular C—H···π interactions of phen rings (Fig. 4) with mean distances of 3 Å (Table 2) are also observed.

2. Experimental

A reaction mixture of Na2WO4·2H2O (2 g, 6.064 mmol), NaH2PO4·2H2O (0.1034 g, 0.6628 mmol), CoCl2·6H2O (0.1951 g, 0.8196 mmol), V2O5 (0,0455 g; 0.25 mmol) and phen·H2O (0.3196 g, 1.7758 mmol) were added to water (10 ml). The mixture was adjusted to pH = 5.5 by the addition of 4M HCl aqueous solution then stirred for 30 min in air. The mixture solution was transferred into a 23 ml Teflon-lined autoclave and crystallized at 180°C for 4 days. Then the autoclave was cooled at 10°C.h-1 to room temperature. The resulting dark yellow block crystals of I were filtered off, washed with water, and dried at ambient temperature to give yields of 68% based on W. Anal. Calc. For C72H52N12Co2O42PVW11 (%): C 21.79, H 1.27, N 4.20, W 50.92, V 1.28, P 0.78, Co 2.96; Found C 21.71, H 1.31, N 4.25, W 50.80, V 1.31, P 3/4, Co 2.98; IR (KBr, cm-1): 966 ν(M=Ot), 887 ν(M—Ob—M), 799 ν(M—Oc—M) with M=W/V and 1095 and 1068 ν(P—O).

3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Many trials of crystal growing are unsuccessful and despite the good quality of selected crystal for experimental X-Ray,the largest isolated one has a relatively small size (crystal size: 0.04 × 0.08 × 0.013 mm), which lead to the poor diffraction at higher angles.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]

Fig. 2.

Fig. 2.

EDAX pattern of I

Fig. 3.

Fig. 3.

Packing diagram of I viewed along c axis showing a three-dimensional-supramolecular structure featuring the voids represented as large yellow ball. The H-atoms not included in H-bond scheme are omitted.

Fig. 4.

Fig. 4.

View of intramolecular C—H···π interaction in (I). The H-atoms not included in H-bond scheme are omitted.

Crystal data

[Co(C12H8N2)3][PVW11O40]·2H2O F(000) = 7240
Mr = 3979.38 Dx = 3.028 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 19.487 (2) Å Cell parameters from 25 reflections
b = 18.049 (3) Å θ = 9–11°
c = 25.216 (2) Å µ = 15.02 mm1
β = 100.22 (3)° T = 295 K
V = 8728.4 (18) Å3 PRISM, yellow
Z = 4 0.13 × 0.08 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer 11235 independent reflections
Radiation source: fine-focus sealed tube 8172 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromator Rint = 0.070
Detector resolution: 9 pixels mm-1 θmax = 28.8°, θmin = 6.4°
CCD rotation images, thick slices scans h = −26→25
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −24→24
Tmin = 0.202, Tmax = 0.421 l = −34→32
62427 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + 250.0304P] where P = (Fo2 + 2Fc2)/3
11235 reflections (Δ/σ)max = 0.002
688 parameters Δρmax = 1.39 e Å3
3 restraints Δρmin = −1.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
W1 0.90431 (2) 0.16939 (2) 0.468951 (18) 0.03506 (10) 0.91
V1 0.90431 (2) 0.16939 (2) 0.468951 (18) 0.03506 (10) 0.09
W2 0.91248 (2) 0.27877 (3) 0.587700 (17) 0.03574 (11) 0.91
V2 0.91248 (2) 0.27877 (3) 0.587700 (17) 0.03574 (11) 0.09
W3 0.83223 (2) 0.10207 (3) 0.579002 (19) 0.04092 (12) 0.92
V3 0.83223 (2) 0.10207 (3) 0.579002 (19) 0.04092 (12) 0.08
W4 0.82438 (2) 0.32068 (3) 0.391898 (18) 0.04283 (12) 0.92
V4 0.82438 (2) 0.32068 (3) 0.391898 (18) 0.04283 (12) 0.08
W5 0.67180 (3) 0.07254 (3) 0.48920 (2) 0.04756 (13) 0.92
V5 0.67180 (3) 0.07254 (3) 0.48920 (2) 0.04756 (13) 0.08
W6 0.74373 (3) 0.14331 (3) 0.380723 (19) 0.04799 (13) 0.92
V6 0.74373 (3) 0.14331 (3) 0.380723 (19) 0.04799 (13) 0.08
O1E 0.9773 (4) 0.1310 (5) 0.4547 (4) 0.072 (3)
O2E 0.9883 (4) 0.2925 (5) 0.6293 (3) 0.064 (2)
O3E 0.8718 (5) 0.0319 (5) 0.6152 (3) 0.066 (2)
O4E 0.8576 (4) 0.3557 (5) 0.3403 (3) 0.057 (2)
O5E 0.6360 (4) −0.0117 (4) 0.4862 (3) 0.052 (2)
O6E 0.7424 (5) 0.0939 (5) 0.3244 (3) 0.069 (3)
O1 0.9412 (4) 0.2330 (4) 0.5277 (3) 0.051 (2)
O2 0.8823 (4) 0.1027 (4) 0.5215 (3) 0.053 (2)
O3 0.8945 (5) 0.2558 (5) 0.4245 (3) 0.073 (3)
O4 0.8351 (5) 0.1247 (5) 0.4175 (4) 0.079 (3)
O5 0.8869 (4) 0.1821 (4) 0.6090 (3) 0.053 (2)
O6A 0.8877 (8) 0.3591 (10) 0.5382 (7) 0.038 (4) 0.50
O6B 0.9132 (8) 0.3772 (9) 0.5575 (6) 0.030 (3) 0.50
O7 0.8556 (4) 0.3900 (6) 0.4469 (4) 0.081 (3)
O8 0.7761 (5) 0.2355 (5) 0.3599 (3) 0.072 (3)
O9A 0.8604 (7) 0.3245 (9) 0.6394 (6) 0.032 (3) 0.50
O9B 0.8340 (7) 0.3084 (10) 0.6198 (6) 0.035 (4) 0.50
O10 0.7634 (4) 0.1309 (7) 0.6194 (4) 0.086 (4)
O11A 0.7035 (10) 0.0633 (11) 0.4178 (7) 0.041 (4) 0.50
O11B 0.7226 (10) 0.0845 (10) 0.4384 (7) 0.038 (4) 0.50
O12 0.7599 (4) 0.0525 (6) 0.5323 (4) 0.081 (3)
P 0.7500 0.2500 0.5000 0.0229 (6)
O1C 0.7595 (6) 0.3206 (7) 0.4667 (4) 0.028 (3) 0.50
O3C 0.7921 (6) 0.2294 (7) 0.4564 (5) 0.028 (3) 0.50
O4C 0.8176 (6) 0.2148 (7) 0.5224 (4) 0.027 (3) 0.50
O2C 0.7968 (6) 0.3041 (7) 0.5406 (4) 0.028 (3) 0.50
O1W 1.0714 (7) 0.1131 (6) 0.3771 (6) 0.098 (4)
H1W1 1.033 (6) 0.115 (9) 0.388 (8) 0.147*
H2W1 1.092 (8) 0.071 (5) 0.380 (9) 0.147*
Co 0.80233 (7) 0.31178 (8) 0.15603 (5) 0.0367 (3)
N1 0.8600 (5) 0.2468 (6) 0.2151 (4) 0.051 (2)
N2 0.7596 (5) 0.2088 (5) 0.1326 (4) 0.047 (2)
N3 0.8759 (5) 0.3135 (5) 0.1070 (3) 0.041 (2)
N4 0.8545 (6) 0.4082 (6) 0.1827 (4) 0.054 (3)
N5 0.7316 (4) 0.3680 (5) 0.0981 (3) 0.0375 (19)
N6 0.7208 (4) 0.3243 (5) 0.1973 (3) 0.0365 (19)
C1 0.9090 (6) 0.2668 (9) 0.2556 (5) 0.064 (4)
H1 0.9240 0.3158 0.2573 0.077*
C2 0.9398 (8) 0.2178 (13) 0.2961 (6) 0.083 (5)
H2 0.9743 0.2340 0.3239 0.099*
C3 0.9184 (9) 0.1468 (12) 0.2937 (6) 0.085 (5)
H3 0.9379 0.1135 0.3203 0.102*
C4 0.8660 (7) 0.1226 (8) 0.2505 (5) 0.061 (3)
C5 0.8418 (9) 0.0467 (8) 0.2431 (6) 0.075 (4)
H5 0.8620 0.0104 0.2671 0.089*
C6 0.7912 (9) 0.0282 (8) 0.2025 (6) 0.073 (4)
H6 0.7755 −0.0205 0.1995 0.088*
C7 0.7601 (7) 0.0823 (7) 0.1630 (5) 0.060 (3)
C8 0.7059 (8) 0.0667 (8) 0.1192 (6) 0.070 (4)
H8 0.6881 0.0190 0.1136 0.084*
C9 0.6808 (8) 0.1224 (9) 0.0859 (6) 0.072 (4)
H9 0.6444 0.1135 0.0574 0.086*
C10 0.7080 (7) 0.1908 (8) 0.0936 (5) 0.060 (3)
H10 0.6891 0.2279 0.0698 0.072*
C11 0.7863 (6) 0.1554 (6) 0.1681 (4) 0.046 (3)
C12 0.8393 (6) 0.1741 (8) 0.2123 (5) 0.054 (3)
C13 0.8843 (6) 0.2656 (7) 0.0680 (5) 0.052 (3)
H13 0.8576 0.2226 0.0639 0.062*
C14 0.9317 (6) 0.2776 (8) 0.0331 (5) 0.059 (3)
H14 0.9351 0.2440 0.0057 0.071*
C15 0.9731 (6) 0.3399 (7) 0.0398 (5) 0.058 (3)
H15 1.0055 0.3478 0.0174 0.069*
C16 0.9669 (6) 0.3917 (7) 0.0805 (5) 0.051 (3)
C17 1.0060 (6) 0.4588 (7) 0.0903 (6) 0.060 (3)
H17 1.0397 0.4700 0.0696 0.072*
C18 0.9948 (6) 0.5058 (7) 0.1291 (6) 0.064 (4)
H18 1.0210 0.5491 0.1347 0.077*
C19 0.9437 (6) 0.4915 (7) 0.1621 (5) 0.057 (3)
C20 0.9284 (8) 0.5398 (8) 0.2027 (6) 0.066 (4)
H20 0.9512 0.5851 0.2089 0.079*
C21 0.8798 (9) 0.5191 (8) 0.2324 (6) 0.073 (4)
H21 0.8715 0.5488 0.2607 0.087*
C22 0.8431 (8) 0.4549 (7) 0.2207 (5) 0.063 (4)
H22 0.8084 0.4435 0.2403 0.076*
C23 0.9041 (6) 0.4266 (6) 0.1535 (4) 0.046 (3)
C24 0.9158 (5) 0.3752 (6) 0.1129 (4) 0.043 (2)
C25 0.7358 (7) 0.3868 (7) 0.0480 (5) 0.057 (3)
H25 0.7775 0.3777 0.0361 0.068*
C26 0.6827 (7) 0.4185 (7) 0.0127 (5) 0.058 (3)
H26 0.6883 0.4298 −0.0222 0.069*
C27 0.6220 (7) 0.4333 (7) 0.0292 (5) 0.059 (3)
H27 0.5860 0.4561 0.0058 0.071*
C28 0.6129 (6) 0.4147 (6) 0.0813 (4) 0.044 (3)
C29 0.5491 (6) 0.4251 (8) 0.1015 (5) 0.063 (4)
H29 0.5109 0.4472 0.0800 0.076*
C30 0.5453 (6) 0.4023 (9) 0.1519 (6) 0.069 (4)
H30 0.5036 0.4096 0.1643 0.083*
C31 0.6020 (5) 0.3676 (8) 0.1873 (5) 0.054 (3)
C32 0.6007 (6) 0.3421 (9) 0.2395 (5) 0.067 (4)
H32 0.5605 0.3479 0.2541 0.080*
C33 0.6570 (6) 0.3094 (8) 0.2688 (5) 0.060 (3)
H33 0.6559 0.2934 0.3037 0.072*
C34 0.7170 (6) 0.2996 (7) 0.2464 (4) 0.049 (3)
H34 0.7552 0.2753 0.2662 0.058*
C35 0.6646 (5) 0.3573 (6) 0.1679 (4) 0.036 (2)
C36 0.6705 (5) 0.3812 (6) 0.1147 (4) 0.036 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
W1 0.0286 (2) 0.0352 (2) 0.0414 (2) 0.00378 (18) 0.00621 (17) −0.00271 (19)
V1 0.0286 (2) 0.0352 (2) 0.0414 (2) 0.00378 (18) 0.00621 (17) −0.00271 (19)
W2 0.0295 (2) 0.0391 (2) 0.0366 (2) 0.00004 (18) 0.00030 (17) 0.00294 (18)
V2 0.0295 (2) 0.0391 (2) 0.0366 (2) 0.00004 (18) 0.00030 (17) 0.00294 (18)
W3 0.0345 (2) 0.0374 (3) 0.0478 (3) 0.00344 (19) −0.00085 (19) 0.0026 (2)
V3 0.0345 (2) 0.0374 (3) 0.0478 (3) 0.00344 (19) −0.00085 (19) 0.0026 (2)
W4 0.0409 (3) 0.0558 (3) 0.0327 (2) −0.0115 (2) 0.00890 (19) 0.0005 (2)
V4 0.0409 (3) 0.0558 (3) 0.0327 (2) −0.0115 (2) 0.00890 (19) 0.0005 (2)
W5 0.0452 (3) 0.0292 (2) 0.0711 (3) −0.0081 (2) 0.0181 (2) −0.0074 (2)
V5 0.0452 (3) 0.0292 (2) 0.0711 (3) −0.0081 (2) 0.0181 (2) −0.0074 (2)
W6 0.0643 (3) 0.0444 (3) 0.0366 (2) −0.0025 (2) 0.0124 (2) −0.0138 (2)
V6 0.0643 (3) 0.0444 (3) 0.0366 (2) −0.0025 (2) 0.0124 (2) −0.0138 (2)
O1E 0.042 (5) 0.056 (5) 0.129 (8) 0.000 (4) 0.046 (5) −0.017 (5)
O2E 0.047 (5) 0.093 (7) 0.044 (4) −0.032 (5) −0.013 (4) −0.003 (4)
O3E 0.094 (7) 0.044 (5) 0.062 (5) 0.022 (5) 0.021 (5) 0.014 (4)
O4E 0.046 (4) 0.082 (6) 0.042 (4) −0.008 (4) 0.010 (4) 0.019 (4)
O5E 0.042 (4) 0.029 (4) 0.079 (6) −0.007 (3) −0.003 (4) −0.001 (4)
O6E 0.071 (6) 0.080 (7) 0.055 (5) −0.003 (5) 0.005 (4) −0.041 (5)
O1 0.077 (5) 0.044 (4) 0.034 (4) −0.018 (4) 0.017 (4) −0.006 (3)
O2 0.079 (6) 0.042 (4) 0.041 (4) −0.023 (4) 0.021 (4) −0.011 (3)
O3 0.084 (6) 0.053 (5) 0.062 (5) −0.022 (5) −0.038 (5) 0.019 (4)
O4 0.097 (7) 0.047 (5) 0.072 (6) −0.027 (5) −0.045 (5) 0.011 (4)
O5 0.077 (6) 0.043 (4) 0.043 (4) −0.024 (4) 0.021 (4) −0.004 (3)
O6A 0.024 (9) 0.051 (11) 0.039 (10) −0.005 (7) 0.003 (7) 0.003 (8)
O6B 0.028 (9) 0.032 (9) 0.028 (9) 0.005 (7) −0.002 (6) 0.006 (6)
O7 0.029 (4) 0.124 (9) 0.091 (7) −0.010 (5) 0.010 (4) −0.070 (6)
O8 0.081 (6) 0.050 (5) 0.066 (5) −0.024 (5) −0.039 (5) 0.019 (4)
O9A 0.019 (8) 0.043 (9) 0.031 (8) 0.003 (7) −0.006 (6) 0.003 (7)
O9B 0.009 (7) 0.063 (11) 0.028 (8) −0.004 (7) −0.007 (5) −0.003 (7)
O10 0.027 (4) 0.137 (9) 0.092 (7) −0.007 (5) 0.008 (4) −0.070 (7)
O11A 0.041 (10) 0.039 (11) 0.044 (12) 0.000 (8) 0.009 (8) −0.012 (8)
O11B 0.044 (11) 0.045 (11) 0.029 (9) 0.006 (8) 0.019 (8) −0.010 (7)
O12 0.033 (4) 0.112 (8) 0.095 (7) −0.008 (5) 0.004 (4) −0.068 (6)
P 0.0258 (15) 0.0167 (14) 0.0257 (15) −0.0004 (12) 0.0030 (12) −0.0015 (12)
O1C 0.027 (6) 0.031 (7) 0.022 (6) 0.001 (5) −0.003 (5) 0.005 (5)
O3C 0.026 (6) 0.030 (7) 0.030 (6) 0.005 (5) 0.010 (5) −0.004 (5)
O4C 0.020 (6) 0.038 (7) 0.025 (6) 0.000 (5) 0.008 (5) −0.001 (5)
O2C 0.025 (6) 0.031 (7) 0.022 (6) −0.009 (5) −0.010 (5) −0.006 (5)
O1W 0.109 (10) 0.069 (7) 0.129 (10) 0.024 (7) 0.057 (8) 0.007 (7)
Co 0.0363 (7) 0.0382 (8) 0.0355 (7) 0.0024 (6) 0.0067 (6) 0.0015 (6)
N1 0.036 (5) 0.074 (7) 0.045 (5) 0.006 (5) 0.013 (4) −0.004 (5)
N2 0.047 (5) 0.048 (6) 0.048 (5) 0.002 (4) 0.014 (4) 0.000 (4)
N3 0.047 (5) 0.034 (5) 0.041 (5) 0.007 (4) 0.002 (4) 0.000 (4)
N4 0.070 (7) 0.051 (6) 0.039 (5) 0.017 (5) 0.009 (5) −0.001 (4)
N5 0.041 (5) 0.036 (5) 0.035 (4) −0.004 (4) 0.005 (4) 0.006 (4)
N6 0.035 (4) 0.043 (5) 0.030 (4) 0.006 (4) 0.000 (3) −0.005 (4)
C1 0.048 (7) 0.091 (11) 0.056 (8) 0.008 (7) 0.017 (6) 0.000 (7)
C2 0.051 (8) 0.139 (17) 0.058 (9) 0.012 (10) 0.007 (7) −0.007 (10)
C3 0.076 (11) 0.114 (15) 0.067 (10) 0.040 (11) 0.020 (8) 0.025 (10)
C4 0.070 (9) 0.067 (9) 0.048 (7) 0.029 (7) 0.017 (6) 0.013 (6)
C5 0.103 (12) 0.060 (9) 0.069 (9) 0.040 (9) 0.040 (9) 0.019 (7)
C6 0.099 (12) 0.052 (8) 0.078 (10) 0.022 (8) 0.042 (9) 0.000 (7)
C7 0.077 (9) 0.049 (7) 0.064 (8) 0.008 (7) 0.038 (7) −0.007 (6)
C8 0.082 (10) 0.057 (9) 0.079 (10) −0.015 (8) 0.037 (8) −0.028 (8)
C9 0.080 (10) 0.081 (11) 0.053 (8) −0.001 (8) 0.006 (7) −0.028 (8)
C10 0.060 (8) 0.069 (9) 0.050 (7) −0.020 (7) 0.007 (6) −0.018 (6)
C11 0.054 (7) 0.045 (7) 0.044 (6) 0.008 (5) 0.023 (5) 0.002 (5)
C12 0.049 (7) 0.068 (9) 0.049 (7) 0.010 (6) 0.020 (6) 0.007 (6)
C13 0.053 (7) 0.041 (7) 0.062 (7) 0.007 (5) 0.013 (6) −0.005 (6)
C14 0.044 (7) 0.064 (8) 0.068 (8) 0.020 (6) 0.005 (6) −0.017 (7)
C15 0.041 (6) 0.064 (8) 0.066 (8) 0.017 (6) 0.007 (6) −0.010 (7)
C16 0.040 (6) 0.054 (7) 0.058 (7) 0.018 (6) 0.005 (5) 0.012 (6)
C17 0.038 (6) 0.048 (7) 0.093 (10) 0.011 (6) 0.009 (6) 0.003 (7)
C18 0.040 (7) 0.043 (7) 0.102 (11) 0.006 (6) −0.006 (7) 0.015 (7)
C19 0.048 (7) 0.044 (7) 0.070 (8) 0.012 (6) −0.014 (6) 0.004 (6)
C20 0.065 (9) 0.054 (8) 0.068 (9) 0.010 (7) −0.022 (7) 0.000 (7)
C21 0.097 (12) 0.055 (9) 0.057 (8) 0.024 (8) −0.012 (8) −0.012 (7)
C22 0.085 (10) 0.049 (8) 0.055 (7) 0.017 (7) 0.009 (7) −0.006 (6)
C23 0.044 (6) 0.045 (6) 0.043 (6) 0.011 (5) −0.005 (5) 0.005 (5)
C24 0.032 (5) 0.040 (6) 0.053 (6) 0.007 (5) −0.005 (5) −0.006 (5)
C25 0.068 (8) 0.059 (8) 0.044 (6) −0.004 (7) 0.014 (6) 0.007 (6)
C26 0.068 (8) 0.057 (8) 0.046 (7) 0.004 (6) 0.005 (6) 0.029 (6)
C27 0.058 (8) 0.049 (7) 0.060 (8) −0.010 (6) −0.014 (6) 0.024 (6)
C28 0.044 (6) 0.038 (6) 0.044 (6) −0.010 (5) −0.010 (5) 0.001 (5)
C29 0.032 (6) 0.083 (10) 0.068 (8) 0.004 (6) −0.010 (6) 0.013 (7)
C30 0.030 (6) 0.104 (12) 0.069 (9) 0.016 (7) −0.001 (6) −0.006 (8)
C31 0.030 (5) 0.085 (9) 0.047 (6) −0.006 (6) 0.010 (5) −0.012 (6)
C32 0.037 (6) 0.116 (12) 0.050 (7) 0.001 (7) 0.015 (6) −0.005 (7)
C33 0.052 (7) 0.093 (10) 0.036 (6) −0.010 (7) 0.010 (5) 0.006 (6)
C34 0.044 (6) 0.069 (8) 0.031 (5) 0.001 (6) 0.005 (5) 0.001 (5)
C35 0.032 (5) 0.037 (5) 0.038 (5) −0.002 (4) 0.002 (4) 0.002 (4)
C36 0.030 (5) 0.035 (5) 0.041 (5) −0.010 (4) −0.004 (4) −0.002 (4)

Geometric parameters (Å, º)

W1—O1E 1.677 (7) N2—C11 1.355 (14)
W1—O4 1.880 (8) N3—C13 1.342 (13)
W1—O2 1.895 (7) N3—C24 1.350 (13)
W1—O3 1.909 (8) N4—C22 1.325 (14)
W1—O1 1.912 (7) N4—C23 1.357 (15)
W1—O4C 2.481 (11) N5—C25 1.323 (13)
W2—O2E 1.672 (7) N5—C36 1.352 (12)
W2—O1 1.893 (7) N6—C34 1.328 (13)
W2—O5 1.917 (7) N6—C35 1.348 (12)
W2—O6A 1.917 (18) C1—C2 1.40 (2)
W2—O9A 1.971 (15) C1—H1 0.9300
W2—O4C 2.526 (12) C2—C3 1.35 (2)
W3—O3E 1.667 (8) C2—H2 0.9300
W3—O5 1.873 (7) C3—C4 1.42 (2)
W3—O2 1.886 (7) C3—H3 0.9300
W3—O12 1.893 (8) C4—C12 1.373 (17)
W3—O10 1.896 (8) C4—C5 1.45 (2)
W3—O1Ci 2.396 (11) C5—C6 1.33 (2)
W3—O4C 2.473 (12) C5—H5 0.9300
W4—O4E 1.676 (7) C6—C7 1.45 (2)
W4—O3 1.875 (9) C6—H6 0.9300
W4—O7 1.887 (8) C7—C11 1.412 (17)
W4—O10i 1.897 (9) C7—C8 1.41 (2)
W4—O8 1.905 (8) C8—C9 1.35 (2)
W4—O1C 2.451 (12) C8—H8 0.9300
W5—O5E 1.669 (7) C9—C10 1.344 (19)
W5—O6Ai 1.750 (18) C9—H9 0.9300
W5—O12 1.897 (9) C10—H10 0.9300
W5—O7i 1.908 (8) C11—C12 1.421 (17)
W5—O11A 2.012 (19) C13—C14 1.401 (17)
W5—O1Ci 2.494 (12) C13—H13 0.9300
W6—O6E 1.673 (7) C14—C15 1.376 (18)
W6—O4 1.885 (9) C14—H14 0.9300
W6—O8 1.887 (8) C15—C16 1.410 (17)
W6—O11A 1.96 (2) C15—H15 0.9300
W6—O9Ai 2.085 (14) C16—C24 1.426 (16)
O6A—W5i 1.750 (18) C16—C17 1.429 (17)
O6B—V5i 2.064 (15) C17—C18 1.342 (18)
O7—V5i 1.908 (8) C17—H17 0.9300
O7—W5i 1.908 (8) C18—C19 1.429 (19)
O9A—W6i 2.085 (14) C18—H18 0.9300
O9B—V6i 1.746 (15) C19—C23 1.397 (17)
O10—V4i 1.897 (9) C19—C20 1.417 (19)
O10—W4i 1.897 (9) C20—C21 1.36 (2)
P—O4C 1.481 (11) C20—H20 0.9300
P—O4Ci 1.481 (11) C21—C22 1.37 (2)
P—O3C 1.530 (11) C21—H21 0.9300
P—O3Ci 1.530 (11) C22—H22 0.9300
P—O1Ci 1.554 (12) C23—C24 1.430 (15)
P—O1C 1.554 (12) C25—C26 1.366 (16)
P—O2C 1.582 (11) C25—H25 0.9300
P—O2Ci 1.582 (11) C26—C27 1.347 (18)
O1C—O4Ci 1.698 (16) C26—H26 0.9300
O1C—W3i 2.396 (11) C27—C28 1.399 (16)
O1C—W5i 2.494 (12) C27—H27 0.9300
O4C—O1Ci 1.698 (16) C28—C36 1.413 (14)
O2C—V6i 2.453 (12) C28—C29 1.436 (17)
O2C—V5i 2.462 (12) C29—C30 1.351 (18)
O1W—H1W1 0.851 (10) C29—H29 0.9300
O1W—H2W1 0.851 (10) C30—C31 1.436 (17)
Co—N3 2.053 (9) C30—H30 0.9300
Co—N6 2.060 (8) C31—C32 1.398 (17)
Co—N1 2.066 (10) C31—C35 1.406 (14)
Co—N4 2.066 (11) C32—C33 1.346 (17)
Co—N2 2.078 (10) C32—H32 0.9300
Co—N5 2.085 (8) C33—C34 1.398 (16)
N1—C1 1.318 (16) C33—H33 0.9300
N1—C12 1.369 (16) C34—H34 0.9300
N2—C10 1.318 (14) C35—C36 1.432 (14)
O1E—W1—O4 102.0 (5) W3—O4C—W1 91.2 (4)
O1E—W1—O2 101.1 (4) P—O4C—W2 123.5 (7)
O4—W1—O2 89.3 (4) O1Ci—O4C—W2 129.3 (7)
O1E—W1—O3 102.3 (5) W3—O4C—W2 90.2 (4)
O4—W1—O3 87.7 (3) W1—O4C—W2 90.8 (4)
O2—W1—O3 156.6 (4) P—O2C—V6i 122.1 (6)
O1E—W1—O1 101.4 (4) P—O2C—V5i 120.4 (6)
O4—W1—O1 156.7 (4) V6i—O2C—V5i 91.7 (4)
O2—W1—O1 86.5 (3) H1W1—O1W—H2W1 116 (2)
O3—W1—O1 87.1 (3) N3—Co—N6 170.4 (3)
O1E—W1—O4C 159.7 (5) N3—Co—N1 95.4 (3)
O4—W1—O4C 92.4 (5) N6—Co—N1 93.8 (3)
O2—W1—O4C 64.5 (4) N3—Co—N4 80.0 (4)
O3—W1—O4C 92.4 (4) N6—Co—N4 97.0 (4)
O1—W1—O4C 65.1 (4) N1—Co—N4 94.0 (4)
O2E—W2—O1 102.2 (4) N3—Co—N2 97.5 (3)
O2E—W2—O5 101.8 (4) N6—Co—N2 86.3 (3)
O1—W2—O5 87.4 (3) N1—Co—N2 80.6 (4)
O2E—W2—O6A 112.9 (6) N4—Co—N2 173.9 (4)
O1—W2—O6A 83.5 (6) N3—Co—N5 90.9 (3)
O5—W2—O6A 145.3 (6) N6—Co—N5 80.1 (3)
O2E—W2—O9A 91.4 (5) N1—Co—N5 171.6 (4)
O1—W2—O9A 166.4 (5) N4—Co—N5 92.5 (4)
O5—W2—O9A 90.3 (5) N2—Co—N5 93.1 (4)
O6A—W2—O9A 90.8 (7) C1—N1—C12 117.9 (12)
O2E—W2—O4C 160.0 (4) C1—N1—Co 129.0 (10)
O1—W2—O4C 64.3 (3) C12—N1—Co 112.9 (8)
O5—W2—O4C 64.5 (4) C10—N2—C11 118.0 (11)
O6A—W2—O4C 81.4 (6) C10—N2—Co 130.3 (9)
O9A—W2—O4C 102.7 (5) C11—N2—Co 111.2 (8)
O3E—W3—O5 100.9 (4) C13—N3—C24 118.0 (10)
O3E—W3—O2 100.0 (4) C13—N3—Co 128.4 (8)
O5—W3—O2 88.3 (3) C24—N3—Co 113.4 (7)
O3E—W3—O12 101.7 (5) C22—N4—C23 117.6 (12)
O5—W3—O12 157.3 (4) C22—N4—Co 129.5 (10)
O2—W3—O12 87.4 (4) C23—N4—Co 112.8 (7)
O3E—W3—O10 102.5 (5) C25—N5—C36 117.2 (9)
O5—W3—O10 88.7 (4) C25—N5—Co 130.4 (8)
O2—W3—O10 157.5 (5) C36—N5—Co 112.2 (6)
O12—W3—O10 86.8 (4) C34—N6—C35 119.1 (9)
O3E—W3—O1Ci 159.8 (4) C34—N6—Co 127.5 (7)
O5—W3—O1Ci 93.8 (4) C35—N6—Co 113.2 (6)
O2—W3—O1Ci 94.0 (4) N1—C1—C2 123.2 (15)
O12—W3—O1Ci 64.3 (4) N1—C1—H1 118.4
O10—W3—O1Ci 63.9 (5) C2—C1—H1 118.4
O3E—W3—O4C 159.3 (4) C3—C2—C1 118.6 (15)
O5—W3—O4C 66.2 (4) C3—C2—H2 120.7
O2—W3—O4C 64.8 (4) C1—C2—H2 120.7
O12—W3—O4C 91.9 (5) C2—C3—C4 120.0 (15)
O10—W3—O4C 93.7 (5) C2—C3—H3 120.0
O1Ci—W3—O4C 40.8 (4) C4—C3—H3 120.0
O4E—W4—O3 103.0 (4) C12—C4—C3 117.4 (14)
O4E—W4—O7 101.6 (5) C12—C4—C5 118.4 (13)
O3—W4—O7 88.7 (4) C3—C4—C5 124.1 (14)
O4E—W4—O10i 99.9 (5) C6—C5—C4 121.0 (13)
O3—W4—O10i 157.1 (5) C6—C5—H5 119.5
O7—W4—O10i 88.2 (4) C4—C5—H5 119.5
O4E—W4—O8 101.9 (4) C5—C6—C7 121.5 (15)
O3—W4—O8 87.0 (4) C5—C6—H6 119.3
O7—W4—O8 156.5 (4) C7—C6—H6 119.3
O10i—W4—O8 86.8 (4) C11—C7—C8 117.7 (13)
O4E—W4—O1C 157.0 (4) C11—C7—C6 117.8 (14)
O3—W4—O1C 95.6 (4) C8—C7—C6 124.5 (14)
O7—W4—O1C 65.0 (4) C9—C8—C7 118.6 (13)
O10i—W4—O1C 62.7 (4) C9—C8—H8 120.7
O8—W4—O1C 92.4 (4) C7—C8—H8 120.7
O5E—W5—O6Ai 112.5 (6) C10—C9—C8 120.3 (14)
O5E—W5—O12 100.4 (4) C10—C9—H9 119.9
O6Ai—W5—O12 146.1 (6) C8—C9—H9 119.9
O5E—W5—O7i 100.6 (4) N2—C10—C9 124.4 (14)
O6Ai—W5—O7i 79.6 (7) N2—C10—H10 117.8
O12—W5—O7i 86.8 (4) C9—C10—H10 117.8
O5E—W5—O11A 94.4 (6) N2—C11—C7 121.0 (11)
O6Ai—W5—O11A 89.5 (8) N2—C11—C12 119.3 (11)
O12—W5—O11A 96.1 (6) C7—C11—C12 119.7 (12)
O7i—W5—O11A 164.0 (7) N1—C12—C4 122.8 (12)
O5E—W5—O1Ci 155.8 (4) N1—C12—C11 115.7 (11)
O6Ai—W5—O1Ci 84.0 (6) C4—C12—C11 121.4 (13)
O12—W5—O1Ci 62.1 (4) N3—C13—C14 122.7 (11)
O7i—W5—O1Ci 63.8 (4) N3—C13—H13 118.6
O11A—W5—O1Ci 103.7 (6) C14—C13—H13 118.6
O6E—W6—O4 101.1 (5) C15—C14—C13 119.1 (12)
O6E—W6—O8 100.9 (5) C15—C14—H14 120.4
O4—W6—O8 87.8 (4) C13—C14—H14 120.4
O6E—W6—O11A 93.7 (6) C14—C15—C16 120.5 (12)
O4—W6—O11A 93.3 (6) C14—C15—H15 119.8
O8—W6—O11A 164.8 (6) C16—C15—H15 119.8
O6E—W6—O9Ai 94.2 (5) C15—C16—C24 115.9 (11)
O4—W6—O9Ai 164.3 (5) C15—C16—C17 125.1 (12)
O8—W6—O9Ai 92.6 (5) C24—C16—C17 119.0 (11)
O11A—W6—O9Ai 82.3 (7) C18—C17—C16 120.7 (12)
W2—O1—W1 139.3 (4) C18—C17—H17 119.7
W3—O2—W1 138.9 (5) C16—C17—H17 119.7
W4—O3—W1 139.2 (6) C17—C18—C19 122.0 (13)
W1—O4—W6 139.7 (6) C17—C18—H18 119.0
W3—O5—W2 138.3 (4) C19—C18—H18 119.0
W5i—O6A—W2 149.7 (10) C23—C19—C20 116.5 (13)
W4—O7—V5i 138.9 (5) C23—C19—C18 118.9 (12)
W4—O7—W5i 138.9 (5) C20—C19—C18 124.5 (13)
V5i—O7—W5i 0.00 (3) C21—C20—C19 119.0 (14)
W6—O8—W4 139.3 (5) C21—C20—H20 120.5
W2—O9A—W6i 123.3 (7) C19—C20—H20 120.5
W3—O10—V4i 138.7 (6) C20—C21—C22 120.2 (14)
W3—O10—W4i 138.7 (6) C20—C21—H21 119.9
V4i—O10—W4i 0.00 (3) C22—C21—H21 119.9
W6—O11A—W5 125.4 (9) N4—C22—C21 123.2 (14)
W3—O12—W5 139.9 (6) N4—C22—H22 118.4
O4C—P—O4Ci 180.0 (8) C21—C22—H22 118.4
O4C—P—O3C 67.4 (6) N4—C23—C19 123.3 (11)
O4Ci—P—O3C 112.6 (6) N4—C23—C24 116.6 (11)
O4C—P—O3Ci 112.6 (6) C19—C23—C24 120.1 (11)
O4Ci—P—O3Ci 67.4 (6) N3—C24—C16 123.8 (10)
O3C—P—O3Ci 180.000 (3) N3—C24—C23 116.9 (10)
O4C—P—O1Ci 68.0 (6) C16—C24—C23 119.3 (11)
O4Ci—P—O1Ci 112.0 (6) N5—C25—C26 124.1 (12)
O3C—P—O1Ci 108.6 (6) N5—C25—H25 117.9
O3Ci—P—O1Ci 71.4 (6) C26—C25—H25 117.9
O4C—P—O1C 112.0 (6) C27—C26—C25 119.2 (11)
O4Ci—P—O1C 68.0 (6) C27—C26—H26 120.4
O3C—P—O1C 71.4 (6) C25—C26—H26 120.4
O3Ci—P—O1C 108.6 (6) C26—C27—C28 120.5 (11)
O1Ci—P—O1C 180.0 (7) C26—C27—H27 119.8
O4C—P—O2C 69.2 (6) C28—C27—H27 119.8
O4Ci—P—O2C 110.8 (6) C27—C28—C36 116.3 (11)
O3C—P—O2C 107.1 (6) C27—C28—C29 124.3 (11)
O3Ci—P—O2C 72.9 (6) C36—C28—C29 119.4 (10)
O1Ci—P—O2C 105.5 (6) C30—C29—C28 119.3 (11)
O1C—P—O2C 74.5 (6) C30—C29—H29 120.4
O4C—P—O2Ci 110.8 (6) C28—C29—H29 120.4
O4Ci—P—O2Ci 69.2 (6) C29—C30—C31 123.6 (11)
O3C—P—O2Ci 72.9 (6) C29—C30—H30 118.2
O3Ci—P—O2Ci 107.1 (6) C31—C30—H30 118.2
O1Ci—P—O2Ci 74.5 (6) C32—C31—C35 116.5 (11)
O1C—P—O2Ci 105.5 (6) C32—C31—C30 126.1 (11)
O2C—P—O2Ci 180.0 (7) C35—C31—C30 117.4 (11)
P—O1C—O4Ci 54.0 (6) C33—C32—C31 120.8 (11)
P—O1C—W3i 126.0 (6) C33—C32—H32 119.6
O4Ci—O1C—W3i 72.0 (6) C31—C32—H32 119.6
P—O1C—W4 122.9 (7) C32—C33—C34 119.5 (11)
O4Ci—O1C—W4 135.7 (7) C32—C33—H33 120.2
W3i—O1C—W4 94.1 (4) C34—C33—H33 120.2
P—O1C—W5i 120.0 (6) N6—C34—C33 121.5 (11)
O4Ci—O1C—W5i 129.8 (7) N6—C34—H34 119.2
W3i—O1C—W5i 93.4 (4) C33—C34—H34 119.2
W4—O1C—W5i 91.9 (4) N6—C35—C31 122.5 (9)
P—O4C—O1Ci 58.0 (5) N6—C35—C36 117.2 (9)
P—O4C—W3 125.2 (6) C31—C35—C36 120.3 (9)
O1Ci—O4C—W3 67.2 (5) N5—C36—C28 122.7 (9)
P—O4C—W1 125.4 (6) N5—C36—C35 117.3 (9)
O1Ci—O4C—W1 132.1 (7) C28—C36—C35 119.9 (9)
N3—Co—N1—C1 83.6 (10) Co—N1—C12—C4 −173.8 (9)
N6—Co—N1—C1 −94.0 (10) C1—N1—C12—C11 179.9 (10)
N4—Co—N1—C1 3.3 (10) Co—N1—C12—C11 4.1 (12)
N2—Co—N1—C1 −179.7 (10) C3—C4—C12—N1 −1.5 (18)
N5—Co—N1—C1 −138 (2) C5—C4—C12—N1 −178.5 (11)
N3—Co—N1—C12 −101.2 (7) C3—C4—C12—C11 −179.3 (11)
N6—Co—N1—C12 81.2 (7) C5—C4—C12—C11 3.8 (17)
N4—Co—N1—C12 178.5 (7) N2—C11—C12—N1 −0.5 (15)
N2—Co—N1—C12 −4.5 (7) C7—C11—C12—N1 −177.9 (10)
N5—Co—N1—C12 37 (3) N2—C11—C12—C4 177.4 (10)
N3—Co—N2—C10 −89.4 (10) C7—C11—C12—C4 0.0 (16)
N6—Co—N2—C10 81.8 (10) C24—N3—C13—C14 −1.0 (16)
N1—Co—N2—C10 176.3 (10) Co—N3—C13—C14 172.4 (9)
N4—Co—N2—C10 −155 (3) N3—C13—C14—C15 2.1 (18)
N5—Co—N2—C10 1.9 (10) C13—C14—C15—C16 −1.4 (18)
N3—Co—N2—C11 98.4 (7) C14—C15—C16—C24 −0.2 (16)
N6—Co—N2—C11 −90.4 (7) C14—C15—C16—C17 −178.5 (11)
N1—Co—N2—C11 4.1 (7) C15—C16—C17—C18 177.9 (11)
N4—Co—N2—C11 33 (4) C24—C16—C17—C18 −0.3 (17)
N5—Co—N2—C11 −170.3 (7) C16—C17—C18—C19 −0.1 (19)
N6—Co—N3—C13 −105 (2) C17—C18—C19—C23 −0.3 (18)
N1—Co—N3—C13 88.7 (10) C17—C18—C19—C20 −178.3 (12)
N4—Co—N3—C13 −178.2 (10) C23—C19—C20—C21 3.5 (17)
N2—Co—N3—C13 7.5 (10) C18—C19—C20—C21 −178.4 (12)
N5—Co—N3—C13 −85.8 (9) C19—C20—C21—C22 −4.4 (19)
N6—Co—N3—C24 68 (2) C23—N4—C22—C21 −1.6 (18)
N1—Co—N3—C24 −97.7 (7) Co—N4—C22—C21 −176.6 (10)
N4—Co—N3—C24 −4.5 (7) C20—C21—C22—N4 4 (2)
N2—Co—N3—C24 −178.8 (7) C22—N4—C23—C19 0.8 (16)
N5—Co—N3—C24 87.9 (7) Co—N4—C23—C19 176.6 (8)
N3—Co—N4—C22 −180.0 (11) C22—N4—C23—C24 179.7 (10)
N6—Co—N4—C22 9.2 (11) Co—N4—C23—C24 −4.5 (12)
N1—Co—N4—C22 −85.2 (10) C20—C19—C23—N4 −1.8 (16)
N2—Co—N4—C22 −113 (3) C18—C19—C23—N4 −179.9 (10)
N5—Co—N4—C22 89.5 (10) C20—C19—C23—C24 179.3 (10)
N3—Co—N4—C23 4.8 (7) C18—C19—C23—C24 1.1 (16)
N6—Co—N4—C23 −166.0 (7) C13—N3—C24—C16 −0.8 (15)
N1—Co—N4—C23 99.7 (8) Co—N3—C24—C16 −175.2 (8)
N2—Co—N4—C23 71 (4) C13—N3—C24—C23 177.9 (9)
N5—Co—N4—C23 −85.6 (8) Co—N3—C24—C23 3.5 (11)
N3—Co—N5—C25 6.6 (10) C15—C16—C24—N3 1.4 (16)
N6—Co—N5—C25 −176.6 (10) C17—C16—C24—N3 179.8 (10)
N1—Co—N5—C25 −132 (2) C15—C16—C24—C23 −177.3 (10)
N4—Co—N5—C25 86.7 (10) C17—C16—C24—C23 1.1 (15)
N2—Co—N5—C25 −90.9 (10) N4—C23—C24—N3 0.7 (14)
N3—Co—N5—C36 −179.0 (7) C19—C23—C24—N3 179.7 (9)
N6—Co—N5—C36 −2.3 (7) N4—C23—C24—C16 179.5 (9)
N1—Co—N5—C36 42 (3) C19—C23—C24—C16 −1.5 (15)
N4—Co—N5—C36 −98.9 (7) C36—N5—C25—C26 0.2 (17)
N2—Co—N5—C36 83.5 (7) Co—N5—C25—C26 174.4 (9)
N3—Co—N6—C34 −162.2 (18) N5—C25—C26—C27 1 (2)
N1—Co—N6—C34 3.7 (10) C25—C26—C27—C28 −1.6 (19)
N4—Co—N6—C34 −90.8 (9) C26—C27—C28—C36 0.9 (17)
N2—Co—N6—C34 84.0 (10) C26—C27—C28—C29 −176.9 (13)
N5—Co—N6—C34 177.8 (10) C27—C28—C29—C30 177.4 (13)
N3—Co—N6—C35 23 (2) C36—C28—C29—C30 −0.4 (19)
N1—Co—N6—C35 −171.4 (7) C28—C29—C30—C31 0 (2)
N4—Co—N6—C35 94.0 (7) C29—C30—C31—C32 −179.1 (15)
N2—Co—N6—C35 −91.2 (7) C29—C30—C31—C35 0 (2)
N5—Co—N6—C35 2.7 (7) C35—C31—C32—C33 0 (2)
C12—N1—C1—C2 −1.2 (17) C30—C31—C32—C33 179.1 (14)
Co—N1—C1—C2 173.8 (9) C31—C32—C33—C34 −1 (2)
N1—C1—C2—C3 0 (2) C35—N6—C34—C33 −2.3 (17)
C1—C2—C3—C4 0 (2) Co—N6—C34—C33 −177.2 (9)
C2—C3—C4—C12 0 (2) C32—C33—C34—N6 2 (2)
C2—C3—C4—C5 177.0 (14) C34—N6—C35—C31 0.8 (16)
C12—C4—C5—C6 −5.0 (19) Co—N6—C35—C31 176.4 (9)
C3—C4—C5—C6 178.3 (13) C34—N6—C35—C36 −178.3 (9)
C4—C5—C6—C7 2 (2) Co—N6—C35—C36 −2.7 (11)
C5—C6—C7—C11 1.5 (18) C32—C31—C35—N6 0.5 (17)
C5—C6—C7—C8 −179.5 (13) C30—C31—C35—N6 −178.9 (11)
C11—C7—C8—C9 −2.1 (18) C32—C31—C35—C36 179.6 (11)
C6—C7—C8—C9 178.9 (12) C30—C31—C35—C36 0.1 (17)
C7—C8—C9—C10 2 (2) C25—N5—C36—C28 −1.0 (15)
C11—N2—C10—C9 −1.5 (18) Co—N5—C36—C28 −176.1 (8)
Co—N2—C10—C9 −173.2 (10) C25—N5—C36—C35 176.7 (10)
C8—C9—C10—N2 0 (2) Co—N5—C36—C35 1.5 (11)
C10—N2—C11—C7 0.8 (15) C27—C28—C36—N5 0.4 (15)
Co—N2—C11—C7 174.1 (8) C29—C28—C36—N5 178.4 (10)
C10—N2—C11—C12 −176.5 (10) C27—C28—C36—C35 −177.2 (10)
Co—N2—C11—C12 −3.3 (12) C29—C28—C36—C35 0.7 (15)
C8—C7—C11—N2 0.9 (16) N6—C35—C36—N5 0.8 (13)
C6—C7—C11—N2 180.0 (10) C31—C35—C36—N5 −178.4 (10)
C8—C7—C11—C12 178.3 (10) N6—C35—C36—C28 178.5 (9)
C6—C7—C11—C12 −2.7 (16) C31—C35—C36—C28 −0.6 (15)
C1—N1—C12—C4 2.0 (16)

Symmetry code: (i) −x+3/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N1/C1–C4/C12 and N3/C13–C16/C24 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O1E 0.85 (1) 2.17 (11) 2.928 (14) 149 (20)
O1W—H2W1···O3Eii 0.85 (1) 1.99 (3) 2.836 (13) 173 (17)
C9—H9···O5Eiii 0.93 2.55 3.208 (15) 128
C26—H26···O12iv 0.93 2.46 2.973 (15) 114
C33—H33···O5i 0.93 2.53 3.345 (13) 147
C34—H34···O8 0.93 2.43 3.114 (13) 130
C34—H34···Cg1 0.93 3.04 3.811 (12) 142
C25—H25···Cg2 0.93 2.99 3.777 (13) 143

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+2, −y, −z+1; (iii) x, −y, z−1/2; (iv) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7203).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  4. Deltcheff, C. R., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem. 22, 207–216.
  5. Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
  6. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Glinskaya, L. A., Yurchenko, É. N., Klevtsova, R. F., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1989). J. Struct. Chem. 30, 427–432.
  9. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Klevtsova, R. F., Glinskaya, L. A., Yurchenko, E. N., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1990). J. Struc. Chem. 31, 285–291.
  11. Klevtsova, R. F., Glinskaya, L. A., Yurchenko, É. N. & Gutsul, T. D. (1991). J. Struct. Chem 32, 687–692.
  12. Lee, K. Y. & Misono, M. (1997). Heteropoly compounds, in Handbook of Heterogeneous Catalysis, edited by G. Ertl, H. Knozinger & J. Weitkamp, pp. 118–131. Berlin: VCH.
  13. Li, C., Cao, R., O’Halloran, K. P., Ma, H. & Wu, L. (2008). Electrochim. Acta, 54, 484–489.
  14. Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.
  15. Pope, M. T. & Müller, A. (1994). In Polyoxometalates: from platonic solids to anti-retroviral activity Dordrecht: Kluwer Academic Publishers.
  16. Radkov, E. & Beer, R. H. (1995). Polyhedron, 14, 2139–2143.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Watras, M. J. & Teplyakov, A. V. (2005). J. Phys. Chem. B, 109, 8928–8934. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400484X/hb7203sup1.cif

e-70-0m125-sup1.cif (42KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400484X/hb7203Isup2.hkl

e-70-0m125-Isup2.hkl (538.4KB, hkl)

CCDC reference: 989480

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES