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Abstract
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast–enhanced
magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early
in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time
of surgery. Thirty-three patients underwent DCE-MRI (to estimate K trans, ve, kep, and vp) and DW-MRI [to estimate
the apparent diffusion coefficient (ADC)] at baseline (t1) and after the first cycle of neoadjuvant chemotherapy (t2).
Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their
ability to predict pCR. First, a region of interest (ROI) level analysis input the mean K trans, ve, kep, vp, and ADC into
the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm
aligned serial parameters to a common space for each patient. The voxels with an increase in kep, K

trans, and vp or
a decrease in ADC or ve were then detected and input into the regression model. In the third analysis, both the ROI
and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data
were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC
curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four ana-
lyses. The combination of kep, ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77-0.98).
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Introduction
Breast cancer is the second leading cause of cancer death among
women in the United States. According to the National Cancer
Institute, more than 232,000 new cases in women were diagnosed
with breast cancer in 2013, and there were nearly 40,000 breast
cancer deaths [1]. On the basis of incidence rates from recent years,
it is currently estimated that one in eight women will be diagnosed
with breast cancer during their lifetime. Although X-ray mammography
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and ultrasound imaging are useful in the evaluation of women with
breast cancer, they do not provide adequate information for predicting
tumor response to therapy to guide clinical decisions. Dynamic contrast–
enhanced magnetic resonance imaging (DCE-MRI) and diffusion-
weighted MRI (DW-MRI) have matured to the point where they are
able to provide quantitative and complimentary information on tumor
status [2]. DCE-MRI involves the rapid, serial acquisition of images of
a region of interest (ROI) before, during, and after injection of a con-
trast agent (CA) into a peripheral vein of a patient. As the CA perfuses
into the ROI, it changes the tissue’s native relaxation times and there-
fore its measured signal intensity. By fitting the signal intensity time
course to an appropriate pharmacokinetic model, physiological para-
meters that relate to tissue perfusion and permeability (K trans), extra-
vascular extracellular volume fraction (ve), blood plasma volume (vp),
and the efflux rate constant (kep = K trans/ve) can be extracted. DW-MRI
allows for the in vivo measurement of the motion of water in tissue.
By applying two or more diffusion-sensitizing gradients with different
amplitudes, the apparent diffusion coefficient (ADC) can be estimated
from the resulting data to describe the rate of water diffusion in cellular
tissues. In well-controlled studies, it has been shown that the ADC
varies inversely with cell density [3].
Parameters derived from DCE-MRI and DW-MRI have been

recently evaluated as surrogate biomarkers for assessing and predicting
the response of breast tumors to neoadjuvant chemotherapy (NAC).
Early DCE-MRI studies focused on semiquantitative analyses
through obtaining changes in tumor size, volume, or morphology to
evaluate treatment response [4–10]. More recent studies have focused
on measuring and tracking changes in K trans, ve, vp, and kep [11–19].
There also have been studies investigating the ability of ADC to sepa-
rate responders from nonresponders after NAC [20–24]. Most of these
studies have tracked changes during the course of treatment in param-
eters obtained from the whole-tumor ROI or histograms describing
their distributions. However, these approaches cannot capture the spa-
tial heterogeneity in tissue characteristics and therefore discard all such
information. Furthermore, most previous studies reported on either
DCE-MRI or DW-MRI and have not evaluated the performance of the
combination of these data.
We have previously proposed and validated a longitudinal regis-

tration technique to allow registration of MRI and positron emission
tomography (PET) data obtained at different time points during
therapy [25–27]. In this study, we applied this registration approach
to longitudinally align multiparametric MRI maps to perform a
novel voxel-by-voxel analysis that incorporates spatial heterogeneity.
We investigate whether this voxel-by-voxel approach outperforms the
ROI-based analysis when attempting to separate pathologic complete
responders (pCR) from nonresponders (non-pCR). Although others
have applied multiparameter voxel level analysis [see, e.g., [28]] to pre-
dict response in patients with glioma, to the best of our knowledge, this
is the first study to integrate multiparametric data analyzed at the voxel
level using a multivariate regression model to optimize the prediction of
the response of breast cancer to NAC.

Methods

Patient Population
Patients with stage II/III breast cancer were enrolled in a pro-

spective, Institutional Review Board (IRB)-approved study that
specified MRI examinations at the following three time points: be-
fore initiating NAC (t1), after one cycle of treatment (t2), and after
all cycles (t3) of NAC. Forty-one patients completed at least one of
the three scans. Data from eight patients were not included for the
following reasons: withdrawal from the study after the first scan
(n = 6), hardware failure on the scanner (n = 1), and issues with
the contrast line (n = 1). All mastectomy specimens were sliced at
5-mm intervals and examined by a breast pathologist for abnormal-
ities. pCR was defined as the absence of any invasive cancer in breast
or lymph nodes at the time of surgery following NAC. Patients with
any residual invasive cancer in the breast or lymph nodes or patients
who progressed before surgery were defined as non-pCR. Determi-
nation of pCR and non-pCR status was performed at the time of
definitive surgery by a breast pathologist. At completion of NAC,
12 patients achieved pCR, whereas 21 patients were non-pCRs.
Table 1 summarizes the salient features of the study population in-
cluding receptor status, age, neoadjuvant treatment regimens, tumor
grade, and the excised tumor size (as measured by a pathologist on
the surgical specimen).

MRI Data Acquisition
DCE-MRI was performed using a Philips 3.0T Achieva MRI

scanner (Philips Healthcare, Best, The Netherlands). A 4-channel
receive double-breast coil covering both breasts was used for 20 patients
(Invivo Inc, Gainesville, FL), whereas a 16-channel double-breast
coil was used for 13 patients. Data for constructing a T 1 map were
acquired with an radio frequency (RF)-spoiled 3-dimensional (3D)
gradient echo multiflip angle approach with repetition time/echo time
(TR/TE) = 7.9 ms/1.3 ms and 10 flip angles from 2 to 20° in 2° incre-
ments. The acquisition matrix was 192 × 192 × 20 (full breast) over a
sagittal square field of view (22 cm2) with slice thickness of 5 mm,
one signal acquisition, and a sensitivity encoding factor of 2 for
an acquisition time of just less than 3 minutes. The dynamic scans
used identical parameters and a flip angle of 20°. Each 20-slice set
was collected in 16 seconds at 25 time points for just less than 7 min-
utes of dynamic scanning. For the DCE study, a catheter placed
within an antecubital vein delivered 0.1 mmol/kg (9-15 ml, depend-
ing on patient weight) of the CA gadopentetate dimeglumine Gado-
linium diethylenetriamine pentaacetic acid (Gd-DTPA; Magnevist,
Wayne, NJ) at 2 ml/s (followed by a saline flush) through a power
injector (Medrad, Warrendale, PA) after the acquisition of three base-
line dynamic scans.

DW-MRI was acquired with a single-shot spin-echo echo-planar
imaging sequence in three orthogonal diffusion–encoding directions
(x, y, and z). For 13 patients, b = 0 and 500 s/mm2, TR/TE = 2500 ms/
45 ms, Δ = 21.4 ms, δ = 10.3 ms, and 10 signal acquisitions were
acquired. For 20 patients, b = 0 and 600 s/mm2, TR/TE = “shortest”
(range, 1800-3083ms/43-60ms),Δ = 20.7 to 29ms, δ = 11.4 to 21ms,
and 10 signal acquisitions were acquired. The total scan time of each
DW-MRI data was 4 minutes and 40 seconds. The acquisition matrix
was 144 × 144 × 12 over a field of view (19.2 cm2) with a slice thickness
of 5 mm.

Quantitative Image Analysis
For each patient at each time point, an ROI was drawn manually

to completely surround the enhancing tumor as seen on each slice.
The tumor was then defined as the voxels in each ROI displaying a
percentage of enhancement larger than 80%, which was the optimal
threshold enhancement level determined by a previous study [29]. The
Extended Tofts-Kety model [30] was used to estimate physiological
parameters from the DCE-MRI data. This pharmacokinetic model
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assumed a linear relationship between the time-varying longitudinal
relaxation time T 1(t), and the concentration of CA in the tissue C t(t):

R1ðtÞ≡1= T1ðtÞ = r1CtðtÞ + R10; ð1Þ

where R10 is the R1 value of the tissue before CA administration and r1
is the relaxivity of the CA. TheC t time course was calculated as follows:

CtðT Þ = K trans∫T0 CpðtÞexp − K trans = veð ÞðT − tÞð Þdt + vpCpðtÞ;
ð2Þ

where K trans is the volume transfer constant, ve is the extravascular
extracellular volume fraction, and vp is the plasma volume fraction.
The arterial input function (AIF) Cp was a population-averaged AIF
constructed from 50 individual AIFs obtained from a total of 24 patients
scanned at different time points. All of the 24 patients were included
in the 41 patients presented in this study. Each AIF was detected
through a semiautomatic AIF-tracking algorithm [31]. The efflux constant
kep (≡ K trans/ve) was then computed after K trans and ve were obtained.

ADC maps were calculated with the following equation: ADC = ln
(S1/S2)/(b2 − b1), where S1 and S2 denote the signal acquired with
b values of b1 and b2, respectively.
Voxels for which either the Extended Tofts-Kety model or the
ADC fitting model did not converge or converged to nonphysical
values (i.e., K trans > 5.0 min−1, ve > 1.0, vp > 1.0, ADC > 3.0 ×
10−3 mm2/s or ADC < 0.01 × 10−3 mm2/s, or any parameter below
0.0) were set equal to zero and not included in subsequent analyses.
Registration Algorithms
A tumor volume–constrained registration algorithm [25,26] was

employed for alignment of breast images acquired during therapy.
First, a rigid body registration algorithm [32] was used to align the
averaged postcontrast images at t1 and t3 to the target images at t2
to obtain a global and rough alignment. This algorithm searched
the optimal rotation and translation parameters through maximiz-
ing the normalized mutual information. A nonrigid registration
method [25], based on the adaptive bases algorithm [33], was then
applied to the images to refine the alignment. The cost function of
this method was composed of the following two terms: the negative
normalized mutual information term and the tumor volume con-
straint term:

fcost = −
H ðAÞ + H ðBÞ

H ðA;BÞ + α∫T jlog JT xð Þð Þjdx; ð3Þ
Table 1. Clinical Features of the Study Population.
Patient No.
 Age (yr)
 Treatment Regimens
 Receptor Status
 Tumor Grade
 Excised Tumor Size (cm)
 Pathologic Response
ER
 PR
 HER2
1
 50
 AC → Taxol*
 +
 +
 −
 3
 0.5
 Residual disease

2
 52
 Taxotere†
 +
 −
 +
 3
 1.5
 Residual disease

3
 60
 AC → Taxol + concurrent trastuzumab
 +
 +
 +
 1
 2.9
 Residual disease

4
 36
 Taxol + cisplatin ± everolimus†
 −
 −
 −
 2
 2.9
 Residual disease

5
 48
 Dose-dense AC → Taxol
 +
 +
 −
 1
 1.3
 Residual disease

6
 43
 Dose-dense AC → Taxol
 +
 +
 −
 2
 2.6
 Residual disease

7
 59
 Dose-dense AC → Taxol
 +
 +
 −
 2
 4.2
 Residual disease

8
 53
 Taxol + cisplatin ± everolimus
 −
 −
 −
 2
 1.3
 Residual disease

9
 35
 Trastuzumab + carboplatin + ixabepilone
 +
 +
 +
 3
 1.4
 Residual disease

10
 28
 Taxol + cisplatin ± everolimus
 −
 −
 −
 3
 0.8
 Residual disease

11
 33
 AC → Taxol
 +
 +
 −
 3
 1.2
 Residual disease

12
 39
 AC → Taxol
 +
 +
 −
 1
 2.5
 Residual disease

13
 57
 AC → Taxol
 −
 −
 −
 3
 N/A§
 Residual disease

14
 67
 Dose-dense AC → Taxol
 −
 −
 +
 3
 1.8
 Residual disease

15
 45
 Taxol + cisplatin ± everolimus
 −
 −
 −
 3
 0.5
 Residual disease

16
 46
 Taxotere + carboplatin + Herceptin¶
 +
 +
 +
 3
 0.3
 Residual disease

17
 47
 Taxotere → AC
 +
 +
 −
 1
 8.0
 Residual disease

18
 36
 AC → Taxol
 +
 +
 +
 2
 1.0
 Residual disease

19
 43
 Cisplatin + Taxol ± everolimus
 −
 −
 +
 3
 0.7
 Residual disease

20
 55
 AC → Taxol
 +
 +
 −
 2
 3.5
 Residual disease

21
 58
 Cisplatin + Taxol ± everolimus
 −
 +
 −
 2
 1.7
 Residual disease

22
 53
 AC → concurrent Taxol + trastuzumab
 −
 −
 +
 3
 0
 pCR

23
 46
 Taxotere → AC
 −
 +
 −
 3
 0
 pCR

24
 46
 AC → concurrent Taxol + trastuzumab
 −
 −
 +
 2
 0
 pCR

25
 33
 AC → weekly Taxol
 −
 −
 −
 3
 0
 pCR

26
 39
 Trastuzumab and Lapatinib
 −
 −
 +
 2
 0
 pCR

27
 46
 AC → Taxol
 +
 −
 −
 3
 0
 pCR

28
 42
 Taxol + cisplatin ± everolimus
 −
 −
 −
 3
 0
 pCR

29
 34
 Taxotere → AC
 −
 −
 −
 3
 0
 pCR

30
 44
 Trastuzumab + Lapatinib
 −
 −
 +
 3
 0
 pCR

31
 37
 Taxol + cisplatin ± everolimus
 −
 −
 −
 3
 0
 pCR

32
 39
 AC → Taxol
 −
 −
 −
 3
 0
 pCR

33
 48
 Taxotere + carboplatin + Herceptin
 −
 −
 +
 3
 0
 pCR
AC indicates adriamycin and cyclophosphamide; HER2, human epidermal growth factor receptor 2.
*paclitaxel (Taxol; HQ SPCLT PHARMA, Paramus, NJ).
†docetaxel (Taxotere; Sanofi-Aventis, Bridgewater, NJ).
‡The study is ongoing, and we are blinded to the randomization.
§This patient was transferred to another hospital, and the tumor size is not available.
¶trastuzumab (Herceptin; Genentech Inc, San Francisco, CA).
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where H (A) and H (B) are the marginal entropy of images A and B,
respectively, and H (A,B) is the joint entropy. JT (x) is the Jacobian
determinant on the tumor area, and α is the parameter to control
the weight of this constraint term; α can be adjusted from 0 to 1 on
the basis of individual data sets. For the patient data sets in this
study, a range of 0.05 to 0.3 was (empirically) selected for the
image sets. The deformation field was modeled by a linear combi-
nation of radial basis functions [34]. Through searching the optimal
coefficients of radial basis functions, the cost function maximally
aligns the breast volumes while minimally distorting the tumor
whose volume should be kept true to what is measured at each time
point. Details of the method can be found elsewhere [25,26].
As the DW- and DCE-MRI data were acquired within the same

imaging session with minimal patient motion, the rigid body registra-
tion [35] mentioned above was used to transform the DW-MRI data
into the DCE-MRI space at each time point. The transformations
obtained from the longitudinal DCE-MRI registration were then
applied to register the DW-MRI data at different time points.

Data Analysis

ROI analysis. Our previous studies [35,36] indicated that the
accuracy of predicting treatment response was superior using the
parameter estimates at t2 rather than those at t1. Thus, in the present
study, we focused on the mean values for each parameter (ADC, K trans,
ve, kep, and vp) in the tumor ROIs at t2 for each patient. The logistic
regression (LR) model was then applied to seven cases: kep, ADC,
K trans, ve, and vp considered individually (five cases), the combination
of kep and ADC, and the combination of all parameters, as follows:

logit½pCR = 1jX � = βX ; ð4Þ

where pCR is a binary outcome variable indicating whether or not a
subject is a responder and X denotes covariates. For example, for the
combination of kep and ADC, βX can be expressed as β0 + β1mkep +
β2mADC, where mkep and mADC are the mean values and βi is the
coefficient of the input variables.

Voxel-based analysis. As described above, the longitudinal regis-
tration algorithm was employed to register the averaged postcon-
trast images obtained at three time points to a common space. The
obtained transformations were then applied to align the serial,
multiparametric maps. This step allowed us to detect the subset
of voxels on the data at t2 that displayed increases in kep, K

trans,
and vp from t1 to t2 and the voxels that displayed decreases in ve
and ADC from t1 to t2. The corresponding percentiles of the sub-
sets of voxels were calculated, and a redundancy analysis [37] was
performed to select the most nonpredictable percentiles from the
remaining percentiles for the given histograms. As described in
[37], after dividing the voxels into 20 equal bins, the most predict-
able percentiles quantified by the coefficient of determination
(equivalent to R2 in linear regression) from the remaining percen-
tiles were removed in a stepwise fashion. Those percentiles selected
as the least predictable served as explanatory variables in the logis-
tic ridge regression (LRR) model in each of the seven cases. In-
stead of regular LR, we employed LRR that has been widely
used to handle a case with small sample size and a large number
of explanatory variables; i.e., this is an example of “small n and large
p” scenario [38]. The difference between the LR and LRR models is
that a penalty is added in the cost function in the LRR model. The
penalty is calculated as βT β and controls the variance of the coeffi-
cients β. The contribution of the penalty to the cost function is regu-
larized by a tuning parameter that can be chosen as described by Cule
et al. [39]. For example, the selected percentiles for both kep and ADC
were input into the model as follows:

logit½pCR = 1jðkep;ADCÞ� = β0 + β1hkep1 + β2hkep2 + …

+ βmhADC1 + βm + 1hADC2 + …βN hADCN ;

ð5Þ

where hkepi and hADCi were the ith percentiles for kep and ADC,
respectively. These analyses were performed in R Statistical Software
version 3.0.2 (http://CRAN.R-project.org; R Foundation for Statistical
Computing, Vienna, Austria).

ROI and voxel analysis. In this approach, for both the single pa-
rameter and the parameter combinations, the predictor variables in
the LRR model were the mean values and the selected percentiles
obtained from the redundancy analysis.

ROI, voxel, and clinical data. In this approach, in addition to the
mean parameters and the selected percentiles, clinical data (patient
age and tumor grade) were also used as explanatory variables in the
LRR model. The deviation of patient age was calculated as the mea-
sure of difference between each patient’s age and the mean age of the
population and input in the LRR model. Each patient’s tumor was
graded using the modified Nottingham method (shown in Table 1)
and recorded as follows: 1 (low grade), 2 (intermediate grade), and 3
(high grade) [40]. Those scores were also input in the LRR model as
predictor variables, as well as the age deviation, the mean parameters,
and the percentiles.
Statistical Analysis
The regression model returned the probabilities of achieving pCRs

for all patients, and receiver-operating characteristic (ROC) analysis
was performed to determine the ability of each analysis to predict
pCR [41]. The areas under the curve (AUCs) were estimated using
the trapezoidal rule. The bootstrap method to correct for overfitting
[42,43] was performed to compute the overfitting-corrected AUC
and its 95% confidence intervals (CIs) with 500 replicates. At each
replicate, a set of bootstrap samples was used to fit an LR (or LRR)
model, and then the fitted model was validated against the original
data set, which in turn resulted in the overfitting-corrected AUC
estimate. This approach is known to be more reliable than the
leave-one-out cross-validation that tends to inflate the variance of
AUC estimates [44].
Results
Figure 1 shows the kep (top row) and ADC (bottom row) maps super-
imposed on the postcontrast DCE-MRI data at the pre-NAC ( first
column), post–one cycle of NAC (second column), and post–all cycles
of NAC (third column) time points for one (representative) patient
achieving pCR. The parametric maps obtained at each imaging ses-
sion were all registered to a common space. The green contour was



Figure 1. The kep (top row) and ADC (bottom row) maps superimposed on the postcontrast DCE-MRI data pre-NAC (first column),
post–one cycle of NAC (second column), and post–all cycles of NAC (third column) for one patient achieving pCR. Multiparametric
maps at different time points were all registered to a common space. The green contour was drawn on the images at t3 and copied to
the images at the other time points. The well-aligned contours at all three times indicate the accuracy of the temporal alignment of the
images. (The area of nonspecific enhancement seen in the medial quadrant of the breast at t3 was biopsied and found to reveal only
benign fibrocystic changes.)
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drawn on the image at t3 and copied to other panels. If the registra-
tion is accurate, the green contour at t3 should also match the con-
tours at t1 and t2 after registration. The figure demonstrates the
accuracy of the alignment of the images across time (i.e., during
NAC). Observe that kep has decreased from 0.42 min−1 at baseline
to 0.31 min−1 after one cycle of therapy, whereas the ADC values
were 1.47 mm2/s × 10−3 and 1.75 mm2/s × 10−3 at the first two time
points, respectively. Figure 2 shows the corresponding data for
one patient who is a non-pCR. In this case, the kep values were
0.26 min−1, 0.32 min−1, and 0.23 min−1, respectively, and the ADC
Figure 2. The kep (top row) and ADC (bottom row) maps superimpose
one cycle of NAC (second column), and post–all cycles of NAC (third
points were all registered to a common space. The green contour wa
time points. The well-aligned contours at all three times indicate the
values were 1.59 mm2/s × 10−3, 1.60 mm2/s × 10−3, 1.51 mm2/s ×
10 sup>−3, respectively, at the three time points. The ROI level analy-
sis is focused on how these averaged values changed over time to pre-
dict eventual therapeutic response. The next level of analysis is to
consider the voxel level data.

Using previously published methods [29], there was not a statistical
difference in tumor volumes at baseline or post–one cycle of NAC
between patients who went on to achieve pCR and those that did not.

Figure 3 shows the kep (top row) and ADC (bottom row) values at
the pre-NAC time point plotted against the kep and ADC values at
d on the postcontrast DCE-MRI data pre-NAC (first column), post–
column) for one non-pCR. Multiparametric maps at different time
s drawn on the images at t3 and copied to the images at the other
accuracy of the temporal alignment of the images.



Figure 3. The kep (top row) and ADC (bottom row) values at the pre-NAC time point were plotted against the kep and ADC values at the
post–one cycle of NAC time point for one pCR (left) and one non-pCR (right); red (blue) points indicate those voxels for which there was
an increase (decrease) in kep or ADC between the two time points. For the pCR (left), 23.7% of tumor voxels are red, and 76.3% of
voxels are blue for kep, whereas 63.0% are red, and 37.0% are blue for ADC. For the non-pCR (right), 49.8% of tumor voxels are red, and
50.2% of voxels are blue for kep, whereas 48.6% of tumor voxels are red, and 51.5% of voxels are blue for ADC, respectively.
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the post–one cycle of NAC time point for one pCR (left ) and one
non-pCR (right); red (blue) points indicate those voxels for which
there was an increase (decrease) in kep between the two time points.
For the pCR (left ), 23.7% of tumor voxels are red, and 76.3% of
voxels are blue for kep, whereas 63.0% are red, and 37.0% are blue
for ADC. For the non-pCR (right), 49.8% of tumor voxels are red,
and 50.2% of voxels are blue for kep, whereas 48.6% of tumor voxels
are red, and 51.5% of voxels are blue for ADC, respectively.
In Figure 4, the left panels show the increased kep histogram

(top) and decreased ADC histogram (bottom) of all tumor voxels
obtained from 21 patients who are non-pCRs (blue) and 12 patients
who achieved pCR (red). The magnified histograms are shown in
the right panel, which demonstrates that kep from the non-pCRs
yielded a wider distribution and a longer tail than the responders.
More specifically, the kurtoses, a measure of the shape of a histo-
gram, of kep were 10.35 and 5.84 for the pCRs and non-pCRs,
respectively, and the kurtoses of ADC were 1.92 and 2.35, respec-
tively. The skewnesses, a measure of the extent of asymmetry of a
probability distribution, of kep were 2.79 and 2.04 for the pCRs
and non-pCRs, whereas the skewnesses of ADC were 0.73 and
0.85, respectively.

Table 2 displays the AUCs, as well as the bootstrapped 95% CIs
of the AUCs, for seven different parameter combinations (rows) and
four different analyses (columns). Considering the first column of the
table, kep and ADC outperformed the other individual parameters,
though not significantly so as evidenced by the overlapping 95%
CIs. When kep and ADC are combined in the regression model,
the resulting AUC (0.82) and 95% CIs (0.67-0.98) indicate a
substantial improvement over the single measures though, again,
not significantly so. Using all five imaging parameters in the regres-
sion model (bottom row of the first column) results in a decrease in the
AUC (0.73) over that achieved by combining only kep and ADC.

The second and third columns display the AUC values when the
voxel level data are used and when both the ROI and voxel level data



Figure 4. The figure shows the increased kep histogram (top) and decreased ADC histogram (bottom) of all tumor voxels obtained from
21 non-pCRs (blue) and 12 pCRs (red). The right panels show the magnified histograms of kep and ADC.
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are used to populate the logistic model, respectively. Finally, the
rightmost column summarizes the results of combing the ROI level
data, voxel level data, and select (available) clinical data into the re-
gression model. Note that the combined ROI and voxel analysis
yielded better AUCs for all parameters than either ROI- or voxel-
based analyses. The best AUC of 0.87 was obtained when both
the ROI and voxel level data were used for the combination of kep
and ADC. In general, there is a substantial improvement in predic-
tive ability of individual parameters as the ROI, voxel, and clinical
data are used. However, as indicated by the overlapping 95% CIs,
there are only a small number of entries that are statistically different.
The combination of ROI, voxel level kep, and ADC data provides an
optimal balance of model complexity and ROC performance. In
addition, by further including K trans, ve, and vp in the regression
Table 2. The AUCs of Different Parameters Using Four Different Analyses.
ROI
 Voxel
 ROI + Voxel
 ROI + Voxel + Clinical Data
AUC
 95% CI
 AUC
 95% CI
 AUC
 95% CI
 AUC
 95% CI
kep
 0.70
 [0.49-0.96]
 0.72
 [0.53-0.91]
 0.72
 [0.52-0.91]
 0.75
 [0.60-0.90]

ADC
 0.77
 [0.40-1.00]
 0.75
 [0.62-0.90]
 0.85
 [0.71-1.00]
 0.84
 [0.55-1.00]

K trans
 0.68
 [0.47-0.93]
 0.66
 [0.47-0.85]
 0.71
 [0.52-0.90]
 0.77
 [0.62-0.93]

ve
 0.49
 [0.29-0.71]
 0.42
 [0.22-0.64]
 0.70
 [0.52-0.89]
 0.74
 [0.56-0.93]

vp
 0.68
 [0.39-0.96]
 0.62
 [0.33-0.96]
 0.71
 [0.52-0.90]
 0.77
 [0.64-0.91]

kep and ADC
 0.82
 [0.67-0.98]
 0.75
 [0.60-0.92]
 0.87
 [0.77-0.98]
 0.81
 [0.67-0.93]

kep, ADC, K trans, ve, and vp
 0.73
 [0.49-0.95]
 0.72
 [0.51-0.96]
 0.77
 [0.58-0.98]
 0.81
 [0.65-0.97]



Figure 5. The figure displays the density distribution of the AUC
differences between the ROI analysis and the combined ROI
and voxel analysis for the combination of kep and ADC. The areas
outside the 95% CIs are shadowed for the distribution. The 95%
CIs of the AUC differences were (−0.18-0.075), indicating a mod-
erate trend approaching significance.
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model, the AUC values decrease with the increased number of param-
eters involved in the model.
Figure 5 displays the density distributions of the AUC differ-

ences between the ROI and the combined ROI and voxel analyses
for the combination of kep and ADC. Specifically, 500 AUCs were
generated through the bootstrap method for the analysis, and the
AUC differences between the two analyses were calculated; the fig-
ure displays the probability density functions, which described the
density distributions of the AUC differences. The 95% CIs of the
AUC differences were (−0.18-0.075). For clarity, the areas outside
the 95% CIs are shadowed for the distribution. Note that the
shadowed areas on the right side are close to zero (the reference
line), indicating a moderate trend approaching significance be-
tween the ROI and the combined ROI and voxel data analyses.
[CIs (95%) that lie completely to the left or right of the zero mark
would indicate a significant difference between two methods at the
P < .05 level.] When these data are combined with those in Table 2,
they support the selection of the logistic model that includes kep
and ADC as the most preferable, as they combine the desirable fea-
tures of being the most parsimonious approach with the greatest
ROC performance.

Discussion
To the best of our knowledge, this is the first report to indicate that
integrating spatial information characterizing intratumoral heteroge-
neity improves the ability of quantitative MRI to predict the response
of breast tumors to NAC. A longitudinal registration technique was
employed to spatially align parametric maps obtained at the pre–one
cycle and post–one cycle of NAC time points, thereby enabling sub-
sets of voxels to be selected on the basis of their changes in parameter
values. By incorporating the ROI and voxel level data into the LRR
model, the overall predictive ability was quite strong (AUC = 0.87).
It is important to note that the methodology presented here is readily
generalizable to include other data types including, for example, other
imaging modalities or genomic data.
There are some limitations in the present study. First, although
these initial results are encouraging, future work needs to investigate
the proposed approach on a larger cohort of patients. Second, the
temporal resolution of 16 seconds is not optimal for characterizing
the AIF, and this can confound a quantitative DCE-MRI analysis.
(This temporal resolution was chosen as a compromise between
temporal and spatial resolution and field-of-view coverage; details
on this technical point are available in [29].) Third, the NAC regi-
mens used in this study were left to the discretion of the treating
physicians and were therefore quite varied. It is certainly possible that
the imaging biomarkers could vary both by the biology of the disease
and by the agents used. A final limitation in the approach outlined
here concerns the registration method itself. It is important to note
that, although previous studies [25–27,45] have shown that longitu-
dinal registration of the breast MRI data can be done accurately and
robustly, it remains quite challenging. The improved AUCs also
indicated the importance of longitudinal registration and thus war-
rant further investigation. One difficulty of the algorithm is that, for
some data sets, it is not straightforward to find an optimal registra-
tion parameter setting (e.g., the number of radial basis functions, the
number of resolution levels, or the weight of the constraint term) to
deform the healthy tissues while simultaneously constraining the
tumor to minimize its distortion. Once the registration is complete,
the optimal approach for analyzing the aligned parametric maps has
also yet to be established; in particular, the method proposed in the
present study may simply not be the best. Hence, future work in-
cludes the investigation of different approaches to analyze the aligned
parameter maps.

In conclusion, our study shows that tumor heterogeneity contains
important information related to treatment response and should be
included with ROI level data to maximize the ability of quantitative
MRI to predict the response of breast tumors to NAC.
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