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Abstract
MATERIALS AND METHODS: We examined pretreatment magnetic resonance imaging (MRI) examinations from
32 patients with glioblastoma multiforme (GBM) enrolled in The Cancer Genome Atlas (TCGA). Spatial variations in
T1 post-gadolinium and either T2-weighted or fluid attenuated inversion recovery sequences from each tumor MRI
study were used to characterize each small region of the tumor by its local contrast enhancement and edema/
cellularity (“habitat”). The patient cohort was divided into group 1 (survival < 400 days, n = 16) and group 2 (survival
> 400 days, n= 16). RESULTS: Histograms of relative values in each sequence demonstrated that the tumor regions
were consistently divided into high and low blood contrast enhancement, each of which could be subdivided into
regions of high, low, and intermediate cell density/interstitial edema. Group 1 tumors contained greater volumes of
habitats with low contrast enhancement but intermediate and high cell density (not fully necrotic) than group 2. Both
leave-one-out and 10-fold cross-validation schemes demonstrated that individual patients could be correctly assigned
to the short or long survival group with 81.25% accuracy. CONCLUSION: We demonstrate that novel image analytic
techniques can characterize regional habitat variations in GBMs using combinations of MRI sequences. A preliminary
study of 32 patients from the TCGA database found that the distribution of MRI-defined habitats varied significantly
among the different survival groups. Radiologically defined ecological tumor analysis may provide valuable prognostic
and predictive biomarkers in GBM and other tumors.
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Introduction
Intratumoral and intertumoral heterogeneities are well recognized at
molecular, cellular, and tissue scales [1–6]. This is clearly evident in
the imaging characteristics of glioblastoma multiforme, which typically
include regions of high and low contrast enhancement as well as high
and low interstitial edema and cell density. Several recent molecular
studies have clearly demonstrated that there is also significant genetic
variation among cells in different tumors and even in different regions
of the same tumor [3–5]. In one study, for example, samples from
spatially separated sites within glioblastoma multiforme (GBM) tumors
found that multiple molecular subtypes were present in all of the
examined tumors [3]. It is clear that this molecular heterogeneity
may significantly limit efforts to personalize cancer treatment based
on the use of molecular profiling to identify druggable targets [7–9].
However, there has, thus far, been little effort to relate the spatial
heterogeneity observed in clinical imaging with the genetic hetero-
geneity found in molecular studies.

Temporal and spatial cellular heterogeneities are typically ascribed to
clonal evolution generated by accumulating random mutations in
cancer cell populations [3,10,11]. However, Darwinian dynamics are



Figure 1. An example of an analysis from a single axial plane MRI image from a patient with GBM. For the first row: (A) Yellow boundary
outlines the tumor region including enhancement and non-enhancement. (B, C) The corresponding axial plane FLAIR and T2 scans,
respectively. The second row illustrates the associated pixel histogram distribution (tumor region).

Figure 2. Survival time distribution demonstrating a broad scale
from 16 to 1730 days.
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ultimately governed by the interactions of local environmental selection
forces with cell phenotypes (not genotypes) [12,13]. That is, while
mutations may occur randomly, proliferation of that clone will pro-
ceed only if its corresponding phenotype is more fit than extant popu-
lations within the context of the local adaptive landscape. Because of
this evolutionary triage of each heritable (i.e., genetic or epigenetic)
event, we have proposed that intratumoral evolution is fundamentally
linked to the regional variations in microenvironmental selection
forces that ultimately determine the fitness of any genotype/phenotype
[12–14]. We hypothesize that the Darwinian dynamics that link
genetic changes with environmental conditions will permit the charac-
terization of regional variations in the molecular properties of cancer
cells with environmental conditions (such as blood flow, edema, and
cell density) that can be determined with clinical imaging [15].

Spatial heterogeneity in tumor characteristics is well recognized in
cross-sectional clinical imaging (Figure 1). Many tumors exhibit sig-
nificant regional differences in contrast enhancement along with
variations in cellular density, water content, fibrosis, and necrosis. In
clinical practice, this heterogeneity is typically described in non-
quantitative terms. More recently, metrics [16,17] of heterogeneity,
such as Shannon entropy, have been developed and can be correlated
with tumor molecular features [18–21] and clinical outcomes [22–24].
However, metrics that assign a single value to heterogeneity tacitly
assume that the tumor is “well mixed” and thus does not capture
spatial distributions of specific tumor properties.

Here, our general goal is to develop a spatially explicit approach
that identifies and quantifies specific subregions of the tumor based
on clinical imaging metrics that may provide information about the
underlying evolutionary dynamics. In this approach, we hypothesize
that tumors will generally possess subregions with variable Darwinian
dynamics, including environmental selection forces and phenotypic
adaptation to those forces [15]. Our approach here generates radio-
logically defined “habitats” by spatially superimposing two different



Figure 3. Two-dimensional histogram distribution. In the responding group, the distribution of normalized values of T1 post-gadolinium,
T2-weighted, and FLAIR images was plotted, respectively. Each group was shown as a normalized cumulative histogram.
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magnetic resonance imaging (MRI) sequences from the same tumor.Our
goal in this initial work is to examine regional variations in perfusion/
extravasation based on T1 post-gadolinium images and interstitial
edema/cell density determined by fluid attenuated inversion recovery
(FLAIR) and T2 images. Clearly, a full characterization of Darwinian
dynamics in intratumor habitats will require more extensive imaging
probably from multiple modalities [e.g., positron emission tomog-
raphy (PET), MRI, and computed tomography (CT)] or other MRI
sequences (particularly apparent diffusion coefficient maps). Never-
theless, in this preliminary study, we ask the following questions: 1)
Can GBMs be consistently divided into some small number of specific
radiologically defined habitats based on combinations of images sensi-
tive to blood flow and edema? 2) Does the distribution of these regions
vary among tumors in different survival groups?

This work builds on prior studies using regional variations in
MRI appearance to correlate with genetic and histologic tumor
characteristics [25–29]. Here, we explicitly apply a novel ecological/
evolutionary perspective that allows clinical imaging characteristics
to define regional variations in intratumoral Darwinian dynamics
that govern intratumoral molecular heterogeneity. In the preliminary
studies, we demonstrate that the distribution of these radiologically
defined habitats can be correlated with clinical outcomes.
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Materials and Methods

Patient Information
A data set of 32 patients was collected between January and December

2012 from the publicly available The Cancer Genome Atlas (TCGA;
http://cancerimagingarchive.net/) database for our preliminary study.
Although the database contains more than 500 cases, full imaging sets
were often not available. Patients were included if they 1) had complete
MRI studies that included post-contrast T1-weighted, FLAIR, and T2-
weighted sequences and 2) had clinical survival time. Patients were
excluded if they had multiple tumors or if the tumor was too small
to analyze (<2 cm in diameter). A subset of 66 cases (43 cases with less
than 400 days survival and 23 cases with more than 400 days survival)
satisfied these two conditions. In our initial analysis, we selected a
balanced data set (Figure 2) that included 16 cases each in group 1
(survival time below 400 days) and group 2 (survival time above
400 days), respectively. The latter 16 were arbitrarily chosen. All of
the images had a 200 mm × 200 mm field of view and 5-mm slice
thickness, with 256 × 256 or 512 × 512 acquisition matrices. To ensure
uniform resolution of intravariation of each sequence, for each case,
three channels were registered by bilinear interpolation. Since the enrolled
patients were from multiple institutions, the studies were performed
on a wide range of MRI units with some variations in technique.

Image Normalization
To enable consistent evaluations for all cases, the obtained MRI

imaging data were processed by standardizing the intensity scales
Figure 4. In the top figure, the frequency of the normalized values of a
model [34], the histogram was divided into two Gaussian populations
then plotted in the high and low groups. The result suggests that G
and high and low cell density and three with low blood flow and high
[30]. We employed the linear normalization on each volume. The
voxels of each volume of the tumor region were independently nor-
malized into the scale from 0 to 1. Thus, the normalization captured
the local tumor variations of specific patients in the standard range.
Tumor Identification
For consistency, the regions of interest were segmented by manu-

ally drawn masks on the post-gadolinium T1-weighted images as
shown in Figure 1. Although automated tumor segmentation meth-
ods have been described [31,32], they can be unpredictably inaccu-
rate and appeared to offer no advantage over manual segmentation in
GBMs where tumor edges are characteristically well defined in T1
post-gadolinium sequences.
Histogram Analysis
For our initial analysis, we generated two-dimensional (2D) histo-

grams (Figures 3 and 4) of the cumulative voxel intensities for all
tumors. To perform a cohort analysis, the frequencies were rescaled
into a range [0,1] using the normalization described above. In the
histograms, the y-axis represent the frequency with which a particular
MRI sequence intensity (x-axis) was observed.

In addition, 3D histograms (Figure 5) were used to visually observe
variations in tumor heterogeneity. The x- and y-axes consisted of the
available pairs of MRI modalities: post-gadolinium T1-weighted and
FLAIR, post-gadolinium T1-weighted and T2-weighted, or FLAIR
ll T1 post-gadolinium images was plotted. Using a Gaussian mixture
with a separation point of 0.26. The normalized FLAIR signal was

BMs consist of five dominant habitats—two with high blood flow
, low, and intermediate cell densities.



Figure 5. Three-dimensional histogram distribution shows the relative distribution of combinations of perfusion and cell density in the two
groups of GBMs. For each group, we plotted the joint cumulative 3D histogram by summing all cases of 3D histograms of each class. The
third dimension is the frequency distribution. Group 2 cases are relatively homogenous with most regions clustering in habitats of high perfu-
sion and intermediate cell density. Group 1 cases show greater heterogeneity with more areas of decreased perfusion withmixed cell density.
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and T2-weighted. We used a joint histogram that considered the cross-
distribution of each modality. For instance, considering the pair of
post-gadolinium T1-weighted and FLAIR modalities, an aggregated his-
togram was formed by counting the joint intensity of each voxel (xi, xj),
where xi was denoted as the T1-weighted intensity signal and xj was the
associated FLAIR intensity signal. The z-axis dimension represented the
joint distribution of each voxel. The remaining combinations followed
a similar process to obtain the 3D histogram representation.
Survival Time Criterion
The clinical survival time (Figure 2) was defined as the number of days

between the date of the initial pathologic diagnosis and the time to death
obtained from the patient demographics in the TCGA database.We used
theMRI imaging data that were obtained at the initial diagnosis, thus the
possible influence of the following clinical therapy was not accounted for
in our study. Since there was no explicit prior study suggesting the pre-
cise survival threshold for different survival groups, we chose to approxi-
mately follow the overall statistics in the study [33], where a reported
median value of survival time for malignant brain tumor was 12 to
14 months. In our study, the patient cohort was initially divided into
two equal groups: group 1 (survival time < 400 days) and group 2 (survival
time > 400 days), thus the criterion used here differs from that used
in another study [34], which defined long-term survival as more than
3 years (36 months); only 2% to 5% of patients were in this group.
Results

Demographic Data
Figure 2 and Tables 1–3 summarize the clinical and molecular data.

The group with survival time < 400 days were slightly older (mean age
62) and had more total mutations (n = 29) than the group with sur-
vival time > 400 days (mean age 60, total mutations = 25). Only limited
Table 1. Data Set of Demographic Information.
Survival < 400 Days (n = 16)
 Survival > 400 Days (n = 16)
Age: Range, median
 47–80, 62
 18–78, 60

Sex
 8M, 8F
 10M, 6F

Histology
 Available in n = 9
 Available in n = 11

Classical
 1/9
 2/11

Mesenchymal
 4/9
 6/11

Proneural
 3/9
 2/11

Neural
 1/9
 1/11
Mutations

CDKN2A
 8
 11

EGFR
 6
 8

PTEN
 4
 3

PDGFRA
 2
 2

TP53
 3
 1

CDK4
 3
 0

NF1
 2
 1

CDK6
 1
 0
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information was available on molecular subtype, although we note
that recent investigations have shown that multiple subtypes are char-
acteristically observed in each tumor [4]. The mean tumor diameter
and overall volume was slightly greater in group 1, but the difference
was not statistically significant. All patients were treated with radiation
therapy, chemotherapy, and surgery, although details were not available.

Variations in Blood Flow and Cellular Density
Figure 3 demonstrates variation in the normalized values of T1

post-gadolinium, T2-weighted, and FLAIR images in different survival
groups. In the T1 post-gadolinium images, there are two populations
that are roughly Gaussian distributions around high and low means.
This suggests that GBMs are generally divided into regions of high
and low contrast enhancement that we view as an approximate mea-
sure of blood flow. That is, while the dynamics leading to contrast
enhancement includes blood flow and vascular integrity (extravasation),
we assume in our bifurcated classification that the nonenhancing
regions have poorer blood flow than the enhancing regions. Group 1
demonstrates a shift in the distribution of these enhancement regions
from high to low.

The T2-weighted and FLAIR distributions suggest that group 1
tumors actually contain habitats that are either not present or rare
within long-term survival tumors. For both FLAIR and T2-weighted
histograms, the tumor volume is dominated by a single population,
probably with one other smaller population leading to some asym-
metry of the Gaussian distribution. In group 1, tumor set distribution
is significantly more heterogeneous with at least three distinct regions.
Initial Spatial Analysis
Since the T1 post-gadolinium images were consistently divided into

two regions, we used this as a starting point for combining sequences.
All of the tumors were divided spatially into high and low enhancement
regions using a normalized intensity of 0.26 as the dividing point. The
threshold was found by fitting a Gaussian mixture model [35,36] to a
cumulative histogram of all T1 post-gadolinium images and finding
where two classes intersected. After this spatial division, FLAIR values
were projected onto the high and low enhancement groups. As shown
in Figure 4, this resulted in clear separation of the GBM images into
five distinct radiologically defined combinations of contrast enhance-
ment and interstitial edema. In the high enhancement (i.e., high T1
post-gadolinium) regions, there is a region with low FLAIR signal in-
dicating cell density and interstitial edema comparable to normal brain
tissue. However, a second habitat with higher FLAIR signal indicates
that some tumor regions with high levels of enhancement have lower
cell density and higher interstitial edema than normal tissue. Similarly,
in the low enhancement regions of the tumor, one subregion shows
very high FLAIR signal representing necrosis. However, two additional
subregions each with less water and more apparent cellularity are also
present. We interpret this to indicate the presence of viable cell popula-
tions that have adapted to local environmental conditions generated
by low flow (e.g., hypoxia and acidosis).
Applying Spatial Analysis to Clinical Response
The two groups were analyzed using 3D graphs that plotted

the relative frequency of regions with specific combinations of T1
post-gadolinium signal and either FLAIR or T2-weighted signal. As
shown in Figure 4, group 2 tumors typically consist of tumor habitats
with high enhancement (i.e., >0.26) and relatively high cell density.
Group 1 tumors had increased regions of low enhancement. Interest-
ingly, while these often corresponded to high T2-weighted or FLAIR
signal indicating necrosis, regions with low enhancement and relatively
high cell density were frequently present.
Statistical Analysis and Clinical Survival Time
Group Prediction

To test the predicative capability, a binary classification scheme
(e.g., group 1 and group 2) was formulated. We used the machine
learning classifier, support vector machines [38,39], to classify sam-
ples by using a Gaussian kernel function to project features into
a high-dimensional space. Both leave-one-out and 10-fold cross-
validation schemes were used for performance evaluation. We de-
termined the accuracy (81.25% for leave-one-out), specificity, and
sensitivity values with results summarized in Table 4. In addition,
Table 2. Distribution of Gene Mutations in Group 1.
Tumor ID
 CDKN2A
 EGFR
 PTEN
 PDGFRA
 TP53
 CDK4
 NF1
 CDK6
 Total
1
 X
 X
 X
 3

2
 X
 1

3
 X
 1

4
 X
 X
 X
 3

5
 X
 X
 X
 X
 4

6
 X
 X
 2

7
 0

8
 X
 X
 X
 2

9
 X
 1

10
 X
 1

11
 X
 X
 X
 3

12
 0

13
 X
 X
 2

14
 0

15
 X
 X
 2

16
 X
 X
 X
 3

Total
 8
 6
 4
 2
 3
 3
 2
 1
 29
Table 3. Distribution of Gene Mutations in Group 2.
Tumor ID
 CDKN2A
 EGFR
 PTEN
 PDGFRA
 TP53
 CDK4
 NF1
 CDK6
 Total
1
 X
 X
 2

2
 X
 X
 2

3
 X
 X
 X
 X
 X
 5

4
 X
 X
 2

5
 X
 X
 2

6
 X
 1

7
 X
 X
 2

8
 0

9
 0

10
 X
 X
 2

11
 X
 X
 2

12
 0

13
 X
 X
 2

14
 X
 X
 2

15
 X
 1

16
 X
 1

Total
 11
 8
 3
 2
 1
 0
 1
 0
 25
Table 4. Prediction Performance.
Cross-Validation
 Accuracy
 Specificity
 Sensitivity
 Area Under the Curve Values
Leave-one-out
 81.25%
 77.78%
 85.71%
 0.86

10-fold
 78.13%
 73.68%
 84.62%
 0.83



Figure 6. Prediction results. Both leave-one-out and 10-fold cross-
validation schemeswere used to validate the prediction performance .
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we show receiver operator curve (ROC) curves in Figure 6, and the
associated area under the curve values are also given.
Spatial Mapping
To examine the spatial clustering of habitats, we divided the com-

bined imaging data sets into four arbitrary habitats—high and low
blood flow and high and low cell density. These were then projected
back onto the MRI studies. In detail, the nonparametric Otsu segmen-
tation approach [40] was used for the intratumor segmentation. Given
Figure 7. The block diagram of spatial mapping. For input brain tumo
obtained by using the nonparametric Otsu algorithm [39] from each m
following spatial mapping procedure was conducted by an intersect
color codes.
a modality, after setting the number of groups (two groups in our
study) to be segmented, the Otsu algorithm iteratively searched for
an optimal decision boundary until convergence. As shown in Figure 7,
habitats generally clustered into spatial groups after an intersection
operation between two MRI modalities. The choice of modalities
and mapping procedure can be varied according to the needs of the
specific task. In short, as a tool for brain tumor heterogeneity analy-
sis, the design of the spatial habitat concept gave rise to various op-
portunities for quantitative measurement (i.e., using these habitats
to quantitatively observe tumor evolution progress). The detailed
spatial relationships of the different groups will be the subject of
future investigations.
Discussion
Multiple recent studies have demonstrated marked genetic hetero-
geneity between and within tumors. This is typically ascribed to clonal
evolution driven by random mutations. However, genetic muta-
tions simply represent one component (“a mechanism of inheritance”)
of Darwinian dynamics, which are ultimately governed by pheno-
typic heterogeneity and variations in environmental selection forces
[12]. While genetic heterogeneity clearly poses a challenge to molecu-
larly based targeted therapy, we hypothesize that these variations,
rather than a stochastic process governed by random mutations, may
represent predictable and reproducible outcomes from identifiable
Darwinian dynamics.

In our model, intratumoral evolution is fundamentally governed
by variations in environmental selection forces that are largely de-
pendent on local blood flow. That is, while changes in cancer cells
may be the result of random genetic or epigenetic events, clonal
expansion of each new genotype is entirely dependent on its fitness
r data (e.g., T1-weighted and FLAIR), two intratumor habitats were
odality separately (as seen from blue and red dashed curves). The
ion operation. The visual habitats are shown in the last block with
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within the context of the local environment and the fitness of the
competing tumor populations. Thus, the dominant cancer pheno-
type and genotype within each tumor region is largely determined
by their ability to adapt to environmental conditions that are gen-
erally governed by blood flow including oxygen, glucose, H+, and
serum growth factors. This suggests that only limited numbers of
general adaptive strategies are necessary—i.e., evolving the capacity
to survive and proliferate in hypoxia. However, the phenotypic
expression of those strategies is a much larger set of possibilities
and the genetic pathway to those phenotypes is likely very much
larger [13]. Thus, the genetic variation among cancer cells could
look chaotic even when the underlying evolutionary dynamics are
fairly straightforward.

This connection between environmental selection forces and pheno-
typic adaptations/genetic heterogeneity provides a theoretical bridge
between radiologic imaging and cellular evolution within tumors.
Thus, we hypothesized that radiographic manifestation of blood flow
and interstitial edema can identify and map distinctive variations in
environmental selection forces (“habitats”) within each tumor.

To evaluate the potential role of habitat variations in survival, we
arbitrarily divided our study group into two groups based on survival
time. Our results demonstrate that group 1 and group 2 GBMs have
distinctly different patterns of vascularity and cellular density. As shown
in Figure 4, GBMs consistently divide into five MRI-defined com-
binations of blood flow and cellular density. At present, the underlying
evolutionary dynamics cannot be determined unambiguously. Clearly,
the expected patterns are high blood flow and high cell density and
low blood flow with low cell density. The three additional regions of
apparent mismatch between blood flow and cellular density will require
further investigation. In general, it is likely that they represent two
possible “ecologies”: 1) cellular evolution. This could result in adap-
tive strategies that permit increased proliferation in regions of poor
perfusion or increased utilization of substrate (because of Warburg
physiology, for example) that increases glucose uptake and toxic
acid production in regions that are well perfused. 2) Temporal varia-
tions in regional perfusion. This would result in cycles of normoxia
and hypoxia so that the average perfusion results in greater or lesser
cellularity than expected based on a single observation.

As shown in Figure 5, we find that group 2 tumors are more
homogeneous with a dominant habitat in which there is high blood
flow and intermediate cell density. Group 1 tumors, however, contain
relatively high volumes of low blood flow habitats that may have very
low cell density indicating necrosis but often exhibit cell densities
comparable to those seen in well-perfused regions.

This suggests a clear need to further investigate the reason(s) these
habitats confer a poor prognosis. Multiple factors may be involved
including poor perfusion and hypoxia, which may limit the effec-
tiveness of chemotherapy or radiation therapy. Furthermore, hypoxia-
adapted cells often exhibit more stem-like behavior with up-regulation
of survival pathways that confers resistance to treatments.

Our study represents only a preliminary test of our underlying
hypothesis and suffers from a number of limitations. Since this is an
initial retrospective study using a publicly available database, clinical
and imaging data were significantly limited. In particular, the absence
of apparent diffusion coefficient maps did not permit estimates of
regional variations in cell density. The MRI scans were performed on
a wide range of imaging platforms with some variations in technique.
The details of therapy were not available and so we cannot estimate
the potential role of treatment variations in survival data. Furthermore,
a large number of factors in addition to the tumor characteristics may
influence survival. In particular, some of the short-term survivors may
have died from complications of therapy. Finally, the analyzed cohort
is relatively small and our results will need to be confirmed in larger
retrospective and prospective studies.

Nevertheless, we show here that clinical imaging can be used to
gain insight into the evolutionary dynamics within tumors. Our re-
sults suggest that combinations of sequences from standard MRI im-
aging can define spatially and physiologically distinct regions or habitats
within the ecology of GBMs and that this may be useful as a patient-
specific prognostic biomarker. Ultimately, many other combinations of
imaging characteristics including other modalities such as FDG PET
should be investigated and may provide greater information regarding
intratumoral evolution. Finally, we note that changes in intratumoral
habitats during therapy may provide useful information regarding
response and the evolution of adaptive strategies.
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