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Abstract

The role of macrophages in homeostatic conditions and the immune system range from clearing

debris to recognizing and killing pathogens. While classically activated macrophages (CAMacs)

are induced by T helper type 1 (Th1) cytokines and exhibit microbicidal properties, Th2 cytokines

promote alternative activation of macrophages (AAMacs). AAMacs contribute to the killing of

helminth parasites and mediate additional host-protective processes such as regulating

inflammation and wound healing. Yet, other parasites susceptible to Th1 type responses can

exploit alternative activation of macrophages to diminish Th1 immune responses and prolong

infection. In this review, we will delineate the factors that mediate alternative activation (e.g. Th2

cytokines and chitin) and the resulting downstream signaling events (e.g. STAT6 signaling). Next,

the specific AAMac-derived factors (e.g. Arginase1) that contribute to resistance or susceptibility

to parasitic infections will be summarized. Finally, we will conclude with the discussion of

additional AAMac functions beyond immunity to parasites, including the regulation of

inflammation, wound healing and the regulation of metabolic disorders.
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Introduction

Parasites afflict billions of people worldwide; helminths infect 1.5 billion people, malaria

affects over 200 million people, and over 1 billion people are infected with Toxoplasma sp.

[1]. In addition to morbidity associated with infection, parasites contribute to over 1.6

million deaths a year. Understanding how the host eliminates these pathogens and develops

long-lasting immunity could offer new treatment strategies to eradicate parasitic disease.

Macrophages are a major component of the innate immune response to parasitic infections.

Originally discovered by Elie Metchnikoff [2], macrophages are a heterogeneous family of

phagocytic immune cells capable of a battery of homeostatic, housekeeping, and infection-
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induced functions. These responsibilities include responding to and destroying pathogens,

clearing debris caused by apoptotic cells, and regulating the host immune response.

Following parasite infection, infection-induced signals, including pathogen associated

molecular patterns (PAMPs) and cytokines, instruct macrophage activation. In response to T

helper type 1 (Th1) cytokines such as IFNγ, classically activated macrophages (CAMac)

provide protection against intracellular parasites via phagocytosis and elimination by the

production of microbicidal products [3]. As a counterpart to CAMacs, alternatively activated

macrophages (AAMac) are elicited by Th2 cytokines, including IL-4, IL-13, IL-21 and

IL-33, which are highly produced following helminth infection [4–7].

Our understanding of the multiple functions of parasite-induced AAMacs has benefited from

animal models of parasite infection and the use of transgenic mice that are deficient in

macrophages or macrophage-specific factors (Table 1). Additionally, patient studies

investigating areas where parasite infections are endemic have revealed increased helminth-

induced AAMac responses [8]. AAMacs express several signature proteins including the

mannose receptor, Arginase1, RELMα, and chitinases [4]. Together, they act to promote

immunity to helminth parasites, regulate inflammation or mediate wound healing. Although

AAMacs can be host-protective in helminth infection, AAMac activation can impede

protective immunity to protozoan parasites [9]. These contrasting functions have important

implications for understanding how the host generates an ideal immune response when faced

with multiple infections. Given the high incidence of co-infection [1], a better understanding

of the specific AAMac-derived proteins that mediate helminth clearance and/or prevent

protozoan parasite killing, may allow the design of more targeted treatment strategies for

multiple infections. In addition to potent effects in regulating the immune response to

parasites, AAMacs are extensively studied in metabolic disorders such as diabetes. The

effect of parasite-induced AAMacs in regulating metabolic function is a new and active area

of research [10].

In this review, we will explore AAMac activation and function following parasitic

infections. We will first summarize the factors (i.e. cytokines and antigens) and resulting

downstream signaling events that trigger AAMac activation and expansion. Second, we will

describe the main AAMac-derived proteins, how they affect immunity to helminths or

protozoan parasites, and the implication for co-infection studies. Third, we will discuss the

emerging evidence supporting additional functions for AAMacs beyond immunity to

parasites. These include dampening inflammation, promoting wound healing and regulating

metabolism.

AAMac activation and expansion

AAMac activation

Alternative activation of macrophages is a prominent immune response observed in

helminth infections and many chronic protozoan parasite infections [11, 12]. CD4+ Th2 cells

and innate cells such as eosinophils, basophils and mast cells secrete the cytokines IL-4 and

IL-13, which induce alternative activation of macrophages (Fig. 1.1). Additional cytokine/

receptor pathways that contribute to AAMac activation include IL-21/IL-21R and IL-33/ST2

(Fig. 1.2). For example, IL-21 promotes the host Th2 immune response to helminth
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Nippostrongylus brasiliensis [13] and protozoan parasite Toxoplasma gondii [14]. Here,

IL-21 may promote AAMac activation indirectly by inducing macrophage expression of

IL-4Rα and IL-13Rα1 expression, thereby promoting responsiveness to these Th2 cytokines

[6]. IL-33 can directly induce AAMac gene expression and also activates innate lymphoid

cells and CD4+ Th2 cells to promote the type 2 cytokine environment allowing the control

of helminths including gastrointestinal nematode Trichuris muris [7, 15].

Both IL-4 and IL-13 bind to the common receptor IL-4Rα, activating the Signal Transducer

and Activator of Transcription (STAT) 6 signaling pathway for AAMac specific gene

expression and proliferation [16]. STAT6−/− mice exhibit defective Th2-mediated immune

responses and AAMac expansion in numerous helminth infections including N. brasiliensis

and Heligmosomoides polygyrus [17, 18]. While STAT6 directly promotes expression of

AAMac signature genes, such as Arginase1 and Resistin-like molecule (RELM) α, it also

augments AAMac polarization indirectly, by binding to the promoter region of other

transcription factors that induce AAMac gene expression (Fig. 1.3). These include

Peroxisome Proliferator-Activated Receptor (PPAR) γ, Krüppel-like Factor (KLF) 4, and

Interferon regulatory factor (Irf) 4 [19–21].

The PPAR family contains nuclear receptors found on many leukocytes, including

macrophages and T cells, and binds to fatty acids and eicosanoids [22]. In macrophages,

PPARγ can be activated by IL-4/IL-13 [23], or indirectly via prostaglandins (e.g. 15d-PGJ2)

or eicosanoids (e.g. PGI2). As transcription factors, PPARs form heterodimers with the

retinoid X receptor (RXR) [24] to promote AAMac gene expression (e.g. Arginase1) [23].

In infection with the filarial nematode Brugia malayi, arachidonic acid metabolism was

induced in macrophages, resulting in increased levels of PGI2 and PPARγ-mediated

AAMac activation [25]. PPARγ also acts synergistically with STAT6 to promote

macrophage alternative activation. Indeed, the binding ability of PPARγ to promoter sites is

improved when it interacts with STAT6 [19]. PPARγ activity is also regulated by 12/15

lipoxygenase (12/15 LOX), an enzyme that catalyzes the oxygenation of fatty acids. During

chronic infection with Taenia crassiceps, AAMac-derived 12/15 LOX catalyzes the

production of 13-hydroxyoctadecadienoic acid, which acts as a ligand to PPARγ [26]. In

this chronic infection setting, the 12/15 LOX effects on PPARγ are anti-inflammatory, and

inhibit T cell proliferation by blocking the transcription factors NFAT and NFκB, which

mediate expression of the mitogenic cytokine IL-2 [27].

Phosphorylated STAT6 also induces expression of KLF4, a member of the Krüppel-like

family of transcription factors that regulates cellular differentiation and growth. In LysMCre/

KLF4Flox mice, there were significant increases in CAMacs and delayed wound healing,

characteristic of a deficiency in AAMacs [20]. Similar to PPARγ, 15d-PGJ2 can activate

KLF4, although this pathway is independent of PPAR but instead signals through MAPK

and ERK [28]. Maximal Arginase1 expression is reliant on the binding of the STAT6-KLF4

heterodimer to the Arginase1 promoter region [20]. Although the synergistic effect of KLF4

and STAT6 in AAMac activation and function is clear, the significance of KLF4 in parasitic

infections is unknown.
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Irf4, another target of STAT6, can also mediate alternative macrophage activation by direct

binding to the promoter region of AAMac signature genes. In Irf4−/− mice, expression of

Arginase1, Ym1, and RELMα was significantly lower compared to wild-type mice [29] in

response to allergen challenge. Irf4 gene expression is also epigenetically regulated by

Jumonji domain containing-3 (Jmjd3), a H3K27 demethylation enzyme. Following N.

brasiliensis infection or treatment with the allergen chitin, Jmjd3−/− mice exhibited defective

AAMac responses [29]. Mechanistically, Jmjd3 demethylates the histone region in the Irf4

promoter, allowing access for binding to phosphorylated STAT6 and subsequent Irf4

expression [21] (Fig. 1.4). Epigenetic regulation of AAMac markers is not limited to histone

demethylation. For example, employing mice with a macrophage-specific deletion in histone

deacetylase 3 (HDAC3), we observed that cell-intrinsic expression of HDAC3 inhibited

AAMac responses following challenge with helminth Schistosoma mansoni ova [30].

AAMac activation can also occur independently of STAT6, and is mediated instead by

phosphorylation of the transcription factor, CCAAT-enhancer-binding protein β (C/EBPβ).

For example, adenosine, a purine nucleoside that is typically upregulated during hypoxia

and tissue injury, can augment the polarization of AAMac via a C/EBPβ-dependent

mechanism [31] (Fig. 1.5).

In addition to parasitic infection, Th2 cytokines are produced in situations where there is

physiologic stress to the body, potentially in an attempt to maintain the body’s homeostatic

condition. The upregulation of these Th2 cytokines polarize AAMacs to perform several

different homeostatic functions (e.g. glucose homeostasis or response to thermal stress) [32],

along with host protective functions following injury (e.g. wound healing). This

heterogeneity in AAMac function and its relevance in helminth infection will be discussed

later.

AAMac expansion

Increased macrophage frequency at the site of infection is observed in several protozoan and

helminth infections [11, 12]. However, whether these macrophages arise from blood

monocytes or from proliferation at the site of infection has been the subject of several new

studies [33–36]. As part of the mononuclear phagocyte system, hematopoietic stem cells in

the bone marrow give rise to macrophage precursors called monocytes. These monocytes are

released into the circulation system, where they are able to travel to all parts of the body to

replenish the body’s macrophages and dendritic cells. During an acute Th1 inflammatory

response, monocytes are recruited from the blood followed by differentiation into

macrophages (CAMac) [33, 34]. This recruitment and differentiation process is dependent

on the macrophage colony stimulating factor (CSF)-1. In contrast, two recent studies

showed Th2 cytokine-induced AAMac responses resulted from local proliferation at the site

of infection as an alternative mechanism to recruitment from the blood [35, 36]. Using

intravenous injection of clodronate liposomes to deplete macrophages from the blood, Allen

and colleagues observed that CAMac, but not AAMac, expansion was impaired, suggesting

that AAMac expansion was independent of monocyte precursors from the bloodstream.

Instead, AAMac expansion resulted from IL-4 induced proliferation of resident tissue

macrophages, which occurred independently of CSF-1. Following acute inflammatory

Jang and Nair Page 4

Curr Immunol Rev. Author manuscript; available in PMC 2014 April 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



stimuli however, studies by Davies et al. showed that tissue resident macrophages also

proliferated in the tissue, but independently of IL-4 [33]. Together, these studies reveal

complexity in the regulation of tissue macrophage expansion, and suggest that AAMacs

arise from IL-4 dependent tissue resident macrophage proliferation, while CAMac

expansion occurs via CSF-1 mediated macrophage proliferation and bone marrow

precursors. A previous study identified a distinct population of yolk sac macrophages that

pre-dates and operates outside the mononuclear phagocyte system and gives rise to certain

tissue-specific macrophages [37]. It is plausible that AAMacs may derive, in part, from this

newly identified macrophage population.

AAMac function in helminth infection

Helminths elicit a canonical Th2 signaling cascade leading to eventual expulsion or killing

of worms. Amongst many other Th2 cytokine-mediated effector mechanisms, including

epithelial cell activation and turnover [38, 39], AAMacs also contribute to immunity to

certain helminths. In a secondary infection with H. polygyrus, a model used to study

vaccination strategies against helminths, or following infection with N. brasiliensis,

AAMacs were critical in mediating worm expulsion [40, 41]. Another study examined the

human parasite Strongyloides stercoralis, where both humans and mouse AAMacs acted in

concert with neutrophils to kill S. stercoralis larvae [42]. Following T. muris infection,

macrophage-specific deletion in SH2-containing inositol 5’-phosphatase 1 (Ship1) resulted

in impaired worm expulsion due to excessive CAMac activation [43], suggesting that the

balance between classical and alternative activation is critically involved in immunity to

helminth parasites.

AAMac-derived proteins

AAMacs are characterized by the expression of several signature proteins including the

mannose receptor, Arginase1, chitinases and RELMα, all of which are critically dependent

on Th2 cytokines [4, 44, 45]. The contributions of these AAMac-derived factors to the host

immune response to parasites are summarized below.

The macrophage mannose receptor (MMR) is a pattern recognition receptor of the innate

immune system that binds to mannose, a sugar found on many pathogens including Candida

albicans and HIV. Following helminth infection, MMR is involved in the immune

recognition of S. mansoni larvae and T. muris [46, 47]. MMR exposure to S. mansoni

excretory/secretory material increases antigen presentation and dampens pro-inflammatory

Th1 cytokine expression. For instance, in the absence of the mannose receptor, there is an

increase in CD4+ T cell expression of IFN-γ and a decrease in IL-4 [46]. Following

infection with intestinal nematode T. muris, MMR−/− mice were equally capable of worm

expulsion compared to their wild-type counterparts, suggesting that MMR may instead

regulate parasite-induced inflammatory responses in certain heminth infections.

While there are two arginase enzymes found in the body, Arginase1 is the main enzyme

associated with AAMac and Th2 cytokines. Arginase expression in the liver is constitutive

and essential, as it catalyzes the formation of urea to help the body expel ammonia. In

AAMacs, Arginase1 catalyzes the breakdown of arginine to prolines and polyamines. NOS2
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and Arginase1 both compete for the substrate arginine to create nitric oxide (NOS2) or

ornithine/urea (Arginase1), respectively. In the context of helminth infection, studies

employing Arginase1-deficient bone marrow chimeras or macrophage-specific Arginase1

deficient mice support the hypothesis that Arginase1 is anti-inflammatory and host-

protective. Following S. mansoni infection, Arginase1 suppressed the helminth egg-induced

acute intestinal inflammation and hemorrhaging, potentially via inhibition of

proinflammatory cytokines such as IL-12/IL-23p40. Further, employing macrophage-

specific Arginase1 knockout mice (LysMCre/Arg1Flox or Tie2Cre/Arg1Flox), Wynn and

colleagues demonstrated an important function for macrophage-derived Arginase1 in

dampening S. mansoni granulomatous pathology in the liver and Th2 immune responses

[48]. The importance of Arginase1 in the immune response to helminths may depend on the

helminth. For instance, macrophage-specific Arginase1 expression was dispensable for T.

muris expulsion [49]. In contrast, both AAMac and arginase-depleted mice are unable to

expel H. polygyrus [40], and during N. brasiliensis infection, AAMacs promote intestinal

smooth muscle contractility, thereby aiding worm expulsion, via a mechanism that is partly

dependent on Arginase1 [41].

Chitinase, an enzyme that cleaves and breaks down the chitin found on fungi, worms, and

other organisms, has been implicated in Th2 immune responses during allergic reactions and

parasitic infections. Since chitin is present in many parasites, chitinase may have evolved as

a way to control these parasites [50]. Two chitinase family members, Ym1, a chitin-binding

protein without chitinase activity, and acidic mammalian chitinase (AMCase), are expressed

by AAMacs. Ym1 was originally discovered as an eosinophil chemotactic factor [51], and is

also chemotactic for T cells and other bone marrow cells. Functionally, Ym1 may promote

host effector responses to parasites by mediating eosinophil accumulation in the infected

tissue. For example, eosinophils are a dominant cell type in the Schistosoma sp. induced

granulomas, where they produce Th2 cytokines that contribute to the granulomatous tissue

[52, 53]. In addition, in vitro studies have shown that eosinophils can mediate helminth

killing by binding to and releasing toxic granules for killing of the S. mansoni [54], B.

pahangi, and B. malayi larvae [55]. Ym1 can also augment Th2 cytokine signaling through

inhibition of 12/15 LOX [56]. Despite these studies showing that Ym1 promotes protective

Th2 immune responses following helminth infection, there is currently no evidence that

AAMacs mediate immunity to helminths via Ym1. Instead, it is likely that AAMac-derived

Ym1 contributes to the regulation of helminth-induced inflammation and pathology rather

than worm killing. Similarly, AMCase, which is a functional chitinase, is highly upregulated

in helminth infection and acts to breakdown chitin, thereby reducing the inflammatory

effects of this allergen [57]. Although the importance of AMCase in immunity to helminths

is unknown, in protozoan parasite infections, AMCase can promote T. gondii killing

(discussed in the next section).

The RELM family of proteins was originally identified in allergen-induced pulmonary

inflammation [58]. Originally called FIZZ (found in inflammatory zone), this family of

cysteine-rich proteins contains RELMα, RELMβ, and RELMγ. RELMα is expressed by

AAMacs, eosinophils and epithelial cells, and is predominantly found in the lungs in

response to allergens and helminth infections. Studies from our lab and others employing
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RELM−/− mice revealed that RELMα inhibited type 2 inflammation in multiple helminth

infection models [59, 60]. Rather than promoting immunity to helminths, RELMα-mediated

regulation of Th2 immune responses may instead impede worm clearance, and RELMα−/−

mice exhibited more rapid expulsion of N. brasiliensis [59]. Consistent with the hypothesis

that parasites may modulate host proteins to regulate host protective immunity, S. mansoni-

derived hemozoin downregulated RELMα expression in macrophages, which could have

inhibitory effects on the subsequent Th2 immune response [61].

AAMacs in humans

Functional studies using mice are models to set a framework for helminth infections in

humans. Similar to mouse models, CD14+ blood monocytes from filaria-infected patients

had increased AAMac gene expression compared to uninfected individuals. This included

expression of Mannose receptor C type 1, macrophage Galactose type C lectin, Resistin and

Arginase1 [62]. With well over 1.5 billion people infected with helminths, elucidating the

immune response to these parasites and the importance of AAMacs could have significant

medical implications.

AAMac function in protozoan parasite infection

Not all infections rely on AAMacs for clearance and AAMacs are detrimental to the host in

several infections. Protozoan parasites, such as Trypanosoma cruzi, Leishmania sp., and

Plasmodium sp., elicit a strong type 1 immune response during the acute stages of infection,

characterized by the phagocytosis of parasites by macrophages, reactive oxygen species

(ROS) production and heavy pro-inflammatory signaling. However, if the infection becomes

chronic, the immune response shifts toward a Th2 type response [63]. In these cases, a Th2

response is necessary to counterbalance the inflammatory type 1 cytokines and prevent

excessive inflammation and collateral damage to the host. Alternatively activated

macrophages - also known as regulatory or M2 macrophages in this context - can mediate

these regulatory effects through the production of IL-10 and transforming growth factor

(TGF)-β. This balance is temporally sensitive, as early expression of type 2 cytokines

increases susceptibility to infection by counteracting the parasite-killing type 1 immune

response. For example IL-10 promotes Leishmania sp. growth by inhibiting classical

activation of macrophages and subsequent intracellular parasite killing [64]. Likewise, early

TGF-β expression by macrophages results in an increase in malaria parasite growth [65]. In

Leishmania infection, mice in which macrophages had defective PPARγ signaling exhibited

reduced AAMac responses and increased resistance to L. major. Further, in a hamster model

of visceral leishmaniasis with L. donovani, STAT6 dependent AAMacs impaired parasite

clearance via production of Arginase [66]. Arginase is also a susceptibility factor for T.

gondii and Trypanosoma sp., where it acts twofold to prevent production of microbicidal

nitric oxide while generating polyamines, which are essential nutrients for the parasite [67–

69]. Protozoan parasites may even directly promote AAMac differentiation through the

secretion of host modulatory proteins. For example, T. gondii secretes effector proteins from

organelles called rhoptries that can determine the virulence of the parasite. ROP16 is one

such effector protein that directly phosphorylates STAT6 [70] to shift the activation of

macrophages from CAMac to AAMac, thereby aiding parasite survival [71]. On the other
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hand, AAMacs can help protozoan pathogens killing in certain circumstances. During

chronic T. gondii infection in the brain, alternatively activated macrophages combat this

infection by producing AMCase to lyse the chitin-rich cysts, exposing the parasites to allow

immune-mediated killing [72]. In L. infantum infection, expression of MMR and Dectin-1,

another pathogen recognition receptor that is upregulated by Th2 cytokines, promoted

parasite killing [73]. Dectin-1 and MMR–dependent immunity was associated with the

production of ROS and IL-1β, through activation of the caspase-1 dependent inflammasome.

Infectious diseases often have overlapping geographical ranges, where several individuals

are co-infected with different parasites. Co-infection studies allow us to study the dichotomy

between Th1 and Th2 type signaling and their interactions with each other, with the ultimate

goal of identifying the ideal immune response that promotes host survival and fitness. In N.

brasiliensis and Mycobacteria tuberculosis (Mtb) co-infection studies, mice exhibited

increased susceptibility to Mtb that was mediated by AAMacs [74]. This impaired resistance

to Mtb was dependent on IL-4Rα signaling, as IL-4Rα−/− co-infected mice were equally

capable of controlling infection compared to Mtb alone-infected mice. Similar results were

found in T. crassiceps and Leishmania sp. co-infected mice, where increased AAMac

responses correlated with more severe Leishmania-induced lesions [75]. However, not all

co-infections lead to detrimental outcomes; in some instances, one infection may protect the

host from a second infection. For instance, mice co-infected with N. brasiliensis and P.

chabaudi exhibited a slight amelioration in malaria-induced anemia [76].

AAMac function in regulating inflammation

In any type of infection, controlling the rate and amount of inflammation is instrumental for

host survival. Rather than mediating parasite killing, the most critical function of AAMacs

might be to protect the host from parasite-induced inflammation and damage. Following S.

mansoni infection, macrophage-specific IL-4Rα−/− mice (LysMCre/IL-4RαFlox) succumbed

to acute infection associated with increased inflammation, including increased Th1 cytokine

production, NOS2 activity and sepsis [77]. These studies support an essential role for

AAMacs in protection against lethal infection-induced inflammation. In N. brasiliensis

infection, AAMacs were essential to dampen the infection-induced lung inflammatory

response; both IL-4R−/− mice and CD11b-DTR transgenic infected mice suffered from

exacerbated lung hemorrhaging that was alleviated with the transfer of IL-4R responsive

macrophages [78]. Finally, in a mouse model of colitis induced by the chemical dextran

sodium sulfate, macrophages from S. mansoni infected mice ameliorated intestinal

inflammation [79]. Harnessing the anti-inflammatory potential of helminths could provide

new strategies to treat inflammatory diseases. In particular, a filarial nematode-derived

protein – chitohexaose – may have therapeutic properties in limiting septic shock and

endotoxemia by blocking TLR4 signaling and instead promoting AAMac activation [80].

Mechanistically, AAMacs dampen inflammation through the production of several

immunoregulatory mediators including cytokines, receptors and enzymes. In N. brasiliensis

infection, AAMac-induced IL-10 and Insulin-like Growth Factor (IGF) 1 dampened

inflammatory Th17 cell and neutrophil responses [78].

Jang and Nair Page 8

Curr Immunol Rev. Author manuscript; available in PMC 2014 April 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



AAMac-derived Arginase1 acts to inhibit inflammatory responses both by inhibiting

proinflammatory cytokine expression and by blocking T cell proliferation. For instance,

arginase catalyzes the production of polyamines, which can antagonize Th1 associated

inflammatory genes [81]. In S.mansoni infection, arginase inhibited inflammation by

blocking IL-12 and IL-23p40 production associated with neutrophil inflammation [82]. As

excessive Th2 associated inflammation can also be detrimental to the host, the Th2 immune

response can be negatively regulated by AAMac production of RELMα [59, 60]. Inhibition

of Th2 type immunity was mediated through direct binding of RELMα to macrophages,

dendritic cells and Th2 cells, followed by induction of Bruton’s tyrosine kinase (BTK)

signaling [60]. As RELMα can also bind to B7-H3 [83], an inhibitor of T cells [84], it is

also possible that the anti-inflammatory function of RELMα is dependent on the B7-H3

pathway. Surprisingly, in other inflammatory settings such as allergen-induced airway

inflammation or intestinal inflammation, RELMα is proinflammatory, suggesting that the

immunoregulatory effects of RELMα may depend on the tissue site and the infectious agent

[85, 86].

In addition to secretion of immunoregulatory cytokines, Brugia malayi-induced AAMacs

inhibited T cell proliferation via a cell-to-cell contact-dependent mechanism [87]. One

mechanism of AAMac-mediated suppression may include expression of the inhibitory

surface molecule Programmed Death Ligand 2 (PD-L2) [88]. PD-L1 and PD-L2 bind to the

same receptor (PD-1) and are differentially expressed by CAMacs and AAMacs respectively

[89]. STAT6-dependent expression of PD-L2 in AAMacs is observed in multiple helminth

infection models including S. mansoni, T. crassiceps, B. malayi, and N. brasiliensis [87, 88,

90, 91]. Another AAMac dependent mechanism for regulating inflammation is through the

induction of regulatory T cells; in S. mansoni infection, AAMacs synthesize retinoic acid,

which acts in conjunction with TGF-β to promote Foxp3+ regulatory T cells [92].

AAMac function in wound healing

As helminths burrow into tissue, they can cause significant tissue damage and

hemorrhaging. As a result, the type 2 immune response may have evolved to mediate wound

repair caused by helminth infection [93]. AAMacs express a variety of proteins that

contribute to wound healing. These factors mediate wound repair directly, or indirectly, via

angiogenesis or activation of fibroblasts. Angiogenesis, the formation of blood vessels, is an

essential wound healing step, allowing vascularization of the new tissue for access to

nutrients and oxygen [94]. Fibroblast activation is also critical for wound healing, and

initiates the scaffolding of the collagen fibers to build the extracellular matrix (ECM)

foundation for the new tissue [95]. The main AAMac-derived factors that contribute to

wound healing are summarized below and include Arginase, RELMα, metalloproteinases

and growth factors.

Arginase catalyzes the production of prolines and polyamines to resolve damage by

formation of collagen and by induction of cell proliferation. RELMα induces collagen

production and differentiation of myofibroblasts, both of which contribute to formation of

the ECM [96]. Additionally, the expression of a number of matrix metalloproteinases and

tissue inhibitors of metalloproteinases helps build up and break down ECM as needed.
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Perhaps the most important contribution of AAMacs in wound healing is the expression of

growth factors, including IGF-1, vascular endothelial growth factor (VEGF) and TGF-β.

These factors promote angiogenesis and activate fibroblasts. Although AAMacs and Th2

cytokines mediate wound healing, this host immune response can cause detrimental fibrosis

if dysregulated. Fibrosis, a condition characterized by formation of scar tissue, causes an

estimated 45% of deaths throughout the world [1]. Dependent on the tissue, fibrosis causes

cirrhosis, idiopathic pulmonary fibrosis, and other serious health problems in the event

where the hardened scars impair normal tissue function.

AAMac function in metabolism

Obesity, a growing epidemic, affects over 1.5 billion people worldwide, with 100 million in

the United States alone [1]. Among several debilitating diseases associated with obesity, the

presence of excessive fat tissue promotes insulin resistance, a key contributor to type 2

diabetes. Obesity has been linked to a low level, chronic state of inflammation, of which the

outcome depends on the macrophage activation status [97]. CAMacs in adipose tissue are

detrimental and produce inflammatory cytokines such as TNFα that contribute to insulin

resistance. In fact, inflammatory cytokines and saturated fatty acids impair insulin sensitivity

by inhibiting insulin receptor signaling pathways such as PI3K, while further inducing

inflammatory gene expression in a positive feedback loop. These effects are mediated in part

through JNK1 and IKKβ signaling [98, 99]. In contrast, increased AAMac frequency in the

fat is linked to reduced inflammation and better prognosis for insulin resistance [100].

With both obesity and helminth infections linked to AAMacs, it is natural to question how

helminths might affect obesity. To determine the helminth’s role in obesity, glucose

tolerance, and insulin sensitivity, mice fed a high fat diet were later infected with N.

brasiliensis [10]. N. brasiliensis infection resulted in sustained insulin sensitivity and

glucose tolerance for up to 35 days post infection. This beneficial effect was dependent on

IL-4/IL-13-induced AAMacs. The ability to increase insulin sensitivity may be regulated by

AAMac expression of IL-10 to modulate inflammatory macrophage populations and

inflammatory cytokines such as TNFα and IFNγ [100]. Additionally, AAMacs mediate the

more efficient fatty acid oxidation and oxidative metabolic pathway, while CAMacs

undergo glycolysis for energy production [101]. Not only do CAMacs fail to breakdown

fatty acid as a source of energy, they also generate acetyl-coA, an important intermediate in

the synthesis of fatty acids. Thus, CAMacs add to the total fat by increasing fatty acid

production while decreasing fatty acid catabolism.

The polarization of AAMac in adipose tissue is partially dependent on Trib1, a scaffolding

protein involved in protein degradation. Trib1−/− mice have altered macrophage

differentiation because of an abnormal C/EBPα expression [102]. In addition, PPARδ and

PPARγ, are activated through adipocyte-derived IL-4/13 and are necessary to control

inflammation caused by metabolic dysfunction [103]. When using adoptive transfer of

PPARδ−/− bone marrow into wild-type mice, AAMac responses and insulin sensitivity were

impaired, and there was a higher incidence of hepatic inflammation and necrosis [104],

suggesting that Kupffer cells (liver-specific macrophages) are safeguards against type 2

diabetes. In macrophage-specific PPARγ−/− mice, impaired AAMac responses led to diet-
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induced obesity and insulin resistance [23]. In addition, genes encoding fatty acid oxidation

and oxidative metabolism were significantly reduced. Mechanistically, PPARs control many

aspects of obesity and metabolism in various tissues and cells through mediating the

metabolism of fatty acids. For instance, PPARδ increases oxidative lipid catabolism in

tissues such as skeletal tissue, adipose tissue, and the liver, improves insulin sensitivity and

as a result, controls weight gain [105]. PPARγ, on the other hand, regulates long-term

storage of fatty acids and has been used for many years for as a therapeutic to promote

insulin sensitivity. As the incidence of obesity increases, AAMac-derived therapeutics to

suppress inflammation and CAMacs may provide new avenues to treat obesity-associated

diseases.

Conclusion

Macrophage activation is a fundamental component of the immune response to parasitic

infection. While classically activated macrophages control small intracellular pathogens,

immunity to large extracellular parasites such as helminths that cannot be phagocytosed, is a

challenge. AAMacs contribute to host protective immunity to these prevalent infections via

several mechanisms (Fig. 2). These include promoting protective Th2 immune responses

and producing factors that mediate worm expulsion. In addition to anti-helminth properties,

AAMacs are critical effectors in dampening inflammation, mediating wound healing, and

even regulating metabolic diseases. AAMacs express a number of genes to contain the pro-

inflammatory effects of CAMacs and inflammatory T cells, thereby limiting inflammation.

AAMacs also mediate phagocytosis and clearance of cellular debris while producing factors

to promote wound healing following tissue injury. Finally, AAMac frequency is positively

correlated with improved outcomes in several metabolic disorders. With the ability of

AAMacs to participate in many aspects of immunity and homeostasis, understanding

AAMac function in parasitic infections may have significant implications in the medical

field.
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Abbreviations

AAMac Alternatively Activated Macrophage

CAMac Classically Activated Macrophage

C/EBP CCAAT-enhancer-binding protein

CSF Colony Stimulating Factor

HDAC Histone Deacetylase

IFN Interferon

IL Interleukin
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Irf Interferon Regulatory Factor

KLF Krüppel-like Factor

MMR Macrophage Mannose Receptor

PAMP Pathogen Associated Molecular Pattern

PPAR Peroxisome Proliferator-Activated Receptor

PD-L Programmed Death Ligand

RELM Resistin-like Molecule

RXR Retinoid X Receptor

STAT Signal Transducer and Activator of Transcription

TGF Transforming Growth Factor

TNF Tumor Necrosis Factor

VEGF Vascular Endothelial Growth Factor
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Figure 1. Polarization of alternatively activated macrophages
1. IL-4 and IL-13, upon binding to their common receptor IL-4Rα phosphorylate STAT6 to begin the induction of AAMac

polarization. 2. IL-21 and IL-33 promote this signaling pathway. 3. STAT6 mediates expression of AAMac signature genes and

activates other transcription factors such as PPARγ. 4. Helminths and chitin promote alternative activation via Jmjd3-mediated

histone modification and expression of the transcription factor Irf4. 5. Adenosine promotes macrophage alternative activation

through a C/EBPβ-dependent mechanism.
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Figure 2. Functional diversity of alternatively activated macrophages
AAMacs have multifunctional capabilities in host response to parasite infection that include helminth killing, susceptibility to

intracellular parasites, dampening inflammation, regulating metabolism and wound healing.
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Table 1

Mouse models to Investigate AAMacs

Strategy Target Description

Reporters LysM-GFP or YFP Lysozyme promoter found on monocytes/macrophages and neutrophils drive reporter
expression [106].

YARG (Arginase-YFP) Arginase1 promoter drives YFP expression allowing visualization of AAMacs [57].

CCR2-RFP/GFP CCR2 is the receptor for monocyte chemotactic protein-1 (MCP-1) on migrating monocytes
[107].

CX3CR1-GFP This fractalkine receptor is present on monocytes/macrophages, but can also be found on
natural killer cells and dendritic cells [108].

Knockouts LysMCre; Tie2Cre; CD11bCre Macrophage-specific promoters to drive Cre recombinase expression. These can be used in
combination with floxed genes for cell-specific deletion. Caveats include promoters that are
active in neutrophils (LysM), endothelial cells (Tie2), or granulocytes (CD11b) [77, 109,
110].

IL-4Rα−/−, STAT6−/− Cells are unable to respond to the Th2 cytokines IL-4/IL-13 and their downstream signaling
[16, 77].

CD11b-DTR Inducible depletion of macrophages (and granulocytes) following diphtheria toxin treatment
[78].

Inhibitors Clodronate liposomes Phagocytosis of liposomes by macrophages induces apoptosis [40].

nor-NOHA Chemical inhibitor of arginase activity [111].
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