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Abstract

Image-based classification of tissue histology, in terms of different components (e.g., subtypes of

aberrant phenotypic signatures), provides a set of indices for tumor composition. Subsequently,

integration of these indices in whole slide images (WSI), from a large cohort, can provide

predictive models of the clinical outcome. However, the performance of the existing histology-

based classification techniques is hindered as a result of large technical and biological variations

that are always present in a large cohort. In this paper, we propose an algorithm for classification

of tissue histology based on predictive sparse decomposition (PSD) and spatial pyramid matching

(SPM), which utilize sparse tissue morphometric signatures at various locations and scales. The

method has been evaluated on two distinct datasets of different tumor types collected from The

Cancer Genome Atlas (TCGA). The novelties of our approach are: (i) extensibility to different

tumor types; (ii) robustness in the presence of wide technical and biological variations; and (iii)

scalability with varying training sample size.

1 Introduction

Tissue sections are often stained with hematoxylin and eosin (H&E), which label DNA (e.g.,

nuclei) and protein contents, respectively, in various shades of color. They can provide a

wealth of information about the tissue architecture. At macro level, tissue composition (e.g.,

stroma versus tumor) can be quantified. At micro level, cellular features such as cell types,

cell state, and cellular organization can be queried. Aberrations in the tissue architecture

often reflect disease progression. However, outcome-based analysis requires a large cohort,

and the performance of the existing techniques is hindered as a result of large technical and

biological variations that are always present in such a cohort.

In this paper, we propose a tissue classification method based on predictive sparse

decomposition (PSD) [1] and spatial pyramid matching (SPM) [2], which utilize sparse

tissue morphometric signatures at various locations and scales. Because of the robustness of

unsupervised feature learning and the effectiveness of the SPM framework, our method
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achieves excellent performance even with small number of training samples across

independent datasets of tumors. As a results, the composition of tissue histopathology in

WSI can be characterized. Equally important, mix grading can also be quantified in terms of

tumor composition. Computed compositional indices, from WSI, can then be utilized for

outcome based analysis, i.e., survival, response to therapy.

Organization of this paper is as follows: Section 2 reviews related works. Sections 3 and 4

describes the details of our proposed method and experimental validation. Lastly, section 5

concludes the paper.

2 Related Work

For the analysis of the H&E stained sections, several excellent reviews can be found in

[3,4]. Fundamentally, the trend has been based either on nuclear segmentation and

corresponding morphometric representation [5,6], or patch-based representation of the

histology sections [7,8]. The major challenge for tissue classification is the large amounts of

technical and biological variations in the data, which typically results in techniques that are

tumor type specific. To overcome this problem, recent studies have focused on either fine

tuning human engineered features [7], or applying automatic feature learning [9,8], for

robust representation.

In the context of image categorization research, the SPM kernel [2] has emerged as a major

component for the state-of-art systems [10] for its effectiveness in practice.

Pathologists often use “context” to assess the disease state. At the same time, SPM partially

captures context because of its hierarchical nature. Motivated by the works of [2,1], we

encode sparse tissue morphometric signatures, at different locations and scales, within the

SPM framework. The end results are highly robust and effective systems across multiple

tumor types with limited number of training samples.

3 Approach

Proposed approach (PSDSPM) is shown in Figure 1, where the traditional SIFT is replaced

with with sparse tissue morphometric feature, generated through unsupervised feature

learning, within the SPM framework. It consists of the following steps:

1. Construct sparse auto encoder (W) for the extraction of sparse tissue morphometric

feature by the following optimization:

(1)

where Y = [y1, …, yN] is a set of vectorized image patches; B is a set of basis

functions; X = [x1, …, xN] is a set of sparse tissue morphometric features; and W is

the auto encoder. The training process is as follows:

a. Randomly initialize B and W.
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b. Fix B and W and minimize Equation 1 with respect to X, where X for

each input vector is estimated via the gradient descent method.

c. Fix X and estimate B and W, where B and W are approximated through

stochastic gradient descent algorithm.

Examples of computed basis functions from the GBM and KIRC datasets are

shown in Figure 2. It can be seen that the dictionary captures color and texture

information in the data which are difficult to obtain using human engineered

features.

2. Construct dictionary (D), where D = [d1, …, dK]T are the K sparse tissue

morphometric types to be learned by the following optimization:

(2)

where X = [x1, …, xM]T is a set of sparse tissue morphometric features generated

through the auto-encoder (W); Z = [z1, …, zM]T indicates the assignment of the

sparse tissue morphometric type, card(zm) is a cardinality constraint enforcing only

one nonzero element of zm, zm ⪰ 0 is a non-negative constraint on the elements of

zm, and |zm| is the L1-norm of zm. During training, Equation 2 is optimized with

respect to both Z and D; In the coding phase, for a new set of X, the learned D is

applied, and Equation 2 is optimized with respect to Z only.

3. Construct spatial histogram for SPM [2]. This is done by repeatedly subdividing an

image and computing the histograms of different sparse tissue morphometric types

over the resulting subregions. As a result, the spatial histogram, H, is formed by

concatenating the appropriately weighted histograms of all sparse tissue

morphometric types at all resolutions,

(3)

where (·) is the vector concatenation operator, l ∈ {0, …, L} is the resolution of the

image pyramid, Hl is the concatenation of histograms for all image grids at certain

resolution, l.

4. Transfer a χ2 support vector machine (SVM) into a linear SVM based on a

homogeneous kernel map [11]. In practice, the intersection kernel and χ2 kernel

have been found to be the most suitable for histogram representations [12]. In this

step, a homogenous kernel map is applied to approximate the χ2 kernel, which

enables the efficiency by adopting learning methods for linear kernels, i.e., linear

SVM.

5. Construct multi-class linear SVM for classification. In our implementation, the

classifier is trained using the LIBLINEAR [13] package.
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4 Experiments and Discussion

We have evaluated four classification methods on two distinct datasets, curated from (i)

Glioblastoma Multiforme (GBM) and (ii) Kidney Renal Clear Cell Carcinoma (KIRC) from

TCGA, which are publicly available from the NIH (National Institute of Health) repository.

The four methods are:

1. PSDSPM: the nonlinear kernel SPM that uses spatial-pyramid histograms of sparse

tissue morphometric types;

2. PSD [1]: the sparse tissue morphometric features with max-pooling strategy, and

RBF kernels;

3. ScSPM [12]: the linear SPM that uses linear kernel on spatial-pyramid pooling of

SIFT sparse codes;

4. KSPM [2]: the nonlinear kernel SPM that uses spatial-pyramid histograms of SIFT

features and χ2 kernels;

In the implementation of ScSPM and KSPM, the dense SIFT features were extracted on 16

× 16 patches sampled from each image on a grid with step-size 8 pixels.

For both PSDSPM and PSD, we fixed the sparse constraint parameter λ to be 0.3, image

patch size to be 20 × 20, and the number of basis functions to be 1024, empirically, to

achieve the best performance. For ScSPM, we fixed the sparse constraint parameter λ to be

0.15, empirically, to achieve the best performance. For both PSDSPM and KSPM, we used

standard K-means clustering for the construction of dictionary, where the elements was

randomly initialized and iteratively refined in the Euclidean space. Additionally, for

PSDSPM, ScSPM and KSPM, we fixed the level of pyramid to be 3, and used linear SVM

for classification; while, for PSD, we used nonlinear SVM with RBF kernel for

classification. All experimental processes were repeated 10 times with randomly selected

training and testing images. The final results were reported as the mean and standard

deviation of the classification rates, which was defined as the average classification accuracy

among different classes.

4.1 GBM Dataset

The GBM dataset contains 3 classes: Tumor, Necrosis, and Transition to Necrosis, which

were curated from WSI scanned with a 20× objective. Examples can be found in Figure 3.

The number of images per category are 628, 428 and 324, respectively. Most images are

1000 × 1000 pixels. In this experiment, we trained on 40, 80 and 160 images per category

and tested on the rest, with three different dictionary sizes: 256, 512 and 1024. Detailed

comparisons are shown in Table 1.

4.2 KIRC Dataset

The KIRC dataset contains 3 classes: Tumor, Normal, and Stromal, which were curated

from WSI scanned with a 40× objective. Examples can be found in Figure 4. The number of

images per category are 568, 796 and 784, respectively. Most images are 1000 × 1000

pixels. In this experiment, we trained on 70, 140 and 280 images per category and tested on
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the rest, with three different dictionary sizes: 256, 512 and 1024. Detailed comparisons are

shown in Table 2.

The experiments, conducted on two distinct datasets of vastly different tumor types, indicate

that,

1. SPM improves the performance for tissue classification. As shown in Tables 1 and

2, PSDSPM consistently outperforms PSD, which demonstrates the effectiveness of

SPM for tissue classification. We suggest that the improvement of performance is

due to the local histogramming involved in SPM, which provides some sort of

tissue morphometric context at various locations and scales. In practice, the context

information is widely adopted by well trained pathologists for diagnosis.

2. Features from unsupervised feature learning are more tolerant to batch effect than

human engineered features for tissue classification. As shown in Tables 1 and 2,

PSDSPM consistently outperforms KSPM. Since the only difference between these

two approaches is that PSDSPM utilize features from unsupervised feature

learning, while KSPM is based on human engineered features (SIFT), we suggest

that, given the large amounts of technical and biological variations in the TCGA

datasets, features from unsupervised feature learning are more tolerant to batch

effect than human engineered features for tissue classification.

As a result, the combination of unsupervised feature learning and SPM leads to an approach

with following merits,

1. Extensibility to different tumor types. Tables 1 and 2 indicate that, our method

consistently outperforms [12,2,1]. However, due to the poor generalization ability

of human engineered feature (SIFT), KSPM and ScSPM appear to be tumor-type

dependent. Since GBM and KIRC are two vastly different tumor types with

significantly different signatures, we suggest that the consistency in performance

assures extensibility to different tumor types.

2. Robustness in the presence of large amounts of technical and biological variations.

For the GBM dataset, shown in Table 1, the performance of PSDSPM, with 80

training samples per category, is better than the performance of [12,2,1] with 160

training samples per category. For the KIRC dataset, shown in Table 2, the

performance of PSDSPM, with 140 training samples per category, is either better

than or comparable to the performance of [2,1,12] with 280 training samples per

category. These results clearly indicate the robustness of our approach, which

improves the scalability with varying training sample size, and the reliability of

further analysis on large cohort of WSI.

In our approach, the choice of PSD for unsupervised feature learning, over others (e.g.,

Reconstruction Independent Subspace Analysis (RISA) [9]), is due to its effectiveness and

efficiency in a feed-forward fashion, which is demonstrated by an experimental comparison

with RISA, based on the dataset and protocols in [9], as shown in Table 3.
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5 Conclusion and Future Work

In this paper, we proposed a SPM approach based on sparse tissue morphometric features

from unsupervised feature learning, for tissue image classification. Due to the robustness of

unsupervised feature learning and the effectiveness of the SPM framework, our method

outperforms traditional ones which were typically based on human engineered features. The

most encouraging results of this paper are that, our methods are highly i) extensible to

different tumor types; ii) robust in the presence of large amounts of technical and biological

variations; and iii) scalable with varying training sample sizes. Future work will be focused

on utilizing supervised dictionary learning [14] for possible improvement, and further

validating our methods on other tissue types.

6 Disclaimer

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain correct information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any warranty, express or implied, or assumes

any legal responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or

service by its trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof, or the Regents of the University of California. The

views and opinions of authors expressed herein do not necessarily state or reflect those of

the United States Government or any agency thereof or the Regents of the University of

California.
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Fig. 1.
Computational steps of the proposed our approach (PSDSPM)
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Fig. 2.
Representative set of basis functions, B, for a) the KIRC dataset, and b) the GBM dataset
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Fig. 3.
GBM Examples. First column: Tumor; Second column: Transition to necrosis; Third column: Necrosis.
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Fig. 4.
KIRC Examples. First column: Tumor; Second column: Normal; Third column: Stromal.
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Table 1

Performance of different methods on the GBM dataset

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

160 training PSDSPM 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29

PSD [1] 86.07 ± 1.42 86.32 ± 1.14 86.15 ± 1.33

ScSPM [12] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10

KSPM [2] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

80 training PSDSPM 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08

PSD [1] 81.73 ± 0.98 82.08 ± 1.23 81.55 ± 1.17

ScSPM [12] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98

KSPM [2] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

40 training PSDSPM 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14

PSD [1] 78.28 ± 1.74 78.15 ± 1.43 77.97 ± 1.65

ScSPM [12] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05

KSPM [2] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56
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Table 2

Performance of different methods on the KIRC dataset

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024

280 training PSDSPM 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45

PSD [1] 90.72 ± 1.32 90.18 ± 0.88 90.43 ± 0.80

ScSPM [12] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50

KSPM [2] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

140 training PSDSPM 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84

PSD [1] 88.75 ± 0.37 88.93 ± 0.45 87.98 ± 0.86

ScSPM [12] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63

KSPM [2] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

70 training PSDSPM 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40

PSD [1] 87.56 ± 0.78 87.93 ± 0.67 87.13 ± 0.97

ScSPM [12] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86

KSPM [2] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97
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Table 3

Comparison of performance among PSDSPM, PSD and RISA

PSDSPM PSD RISA

96.50 95.05 91.10
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