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Abstract

One of the primary mechanisms through which a cell exerts control over its metabolic state is by modulating expression
levels of its enzyme-coding genes. However, the changes at the level of enzyme expression allow only indirect control over
metabolite levels, for two main reasons. First, at the level of individual reactions, metabolite levels are non-linearly
dependent on enzyme abundances as per the reaction kinetics mechanisms. Secondly, specific metabolite pools are tightly
interlinked with the rest of the metabolic network through their production and consumption reactions. While the role of
reaction kinetics in metabolite concentration control is well studied at the level of individual reactions, the contribution of
network connectivity has remained relatively unclear. Here we report a modeling framework that integrates both reaction
kinetics and network connectivity constraints for describing the interplay between metabolite concentrations and mRNA
levels. We used this framework to investigate correlations between the gene expression and the metabolite concentration
changes in Saccharomyces cerevisiae during its metabolic cycle, as well as in response to three fundamentally different
biological perturbations, namely gene knockout, nutrient shock and nutrient change. While the kinetic constraints applied
at the level of individual reactions were found to be poor descriptors of the mRNA-metabolite relationship, their use in the
context of the network enabled us to correlate changes in the expression of enzyme-coding genes to the alterations in
metabolite levels. Our results highlight the key contribution of metabolic network connectivity in mediating cellular control
over metabolite levels, and have implications towards bridging the gap between genotype and metabolic phenotype.

Citation: Zelezniak A, Sheridan S, Patil KR (2014) Contribution of Network Connectivity in Determining the Relationship between Gene Expression and Metabolite
Concentration Changes. PLoS Comput Biol 10(4): e1003572. doi:10.1371/journal.pcbi.1003572

Editor: Vassily Hatzimanikatis, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Received May 1, 2013; Accepted March 3, 2014; Published April 24, 2014

Copyright: � 2014 Zelezniak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was partially funded by Novozymes A/S (http://www.novozymes.com/) through PhD study grant to AZ. SS was funded by European
Molecular Biology Laboratory. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: patil@embl.de

Introduction

Cellular metabolic networks provide basic biochemical building

blocks and a thermodynamically favorable environment for

growth and maintenance. Due to this crucial role of metabolism,

cells have evolved various mechanisms to regulate metabolic

reactions in response to genetic and environmental changes.

Metabolic reactions can be regulated either by modulating the

availability of the corresponding enzymes, e.g. through altered

transcription and/or translation, or, by modulating the enzyme

activities through post-translational modifications or through

binding of small molecules. Our knowledge of the landscape of

transcriptional, translational and post-translational regulation of

metabolism is expanding with the increasing availability of datasets

that provide genome-wide views of the abundance and interac-

tions between mRNAs, proteins and metabolites [1–6]. Although

the relative contribution of each of these regulatory layers is still

unclear and is likely to be context dependent, it has long been clear

that the adjustments in the cellular metabolic phenotype (i.e., rates

of reactions, or fluxes, and metabolite levels) often involve changes

at the level of gene expression [7–9]. For example, previous studies

have shown that the gene expression changes in metabolic

networks are centered on metabolites that are crucial for adjusting

the network state in response to specific perturbations [10,11].

Despite successful outcomes of these and other studies suggesting a

strong link between transcriptional regulation and changes in

metabolite levels [7,10,12,13], the relationship between the two

has remained elusive.

The task of developing models for describing the relation-

ship between gene expression and metabolite concentrations is

challenging due to the multiple layers of regulation involved in

between (Figure 1A). Several of the regulatory mechanisms

involved, such as translational control or allosteric regulation,

are currently poorly understood at the scale of the whole

network. Measurement of protein abundances or enzyme

activities is also currently difficult to perform at the network

scale and in complex systems such as human tissues. Thus, in

the absence of data for intermediate molecular players, a

detailed investigation of the link between gene expression and

metabolite levels has both a fundamental and a practical

appeal. In particular, it is of interest to estimate the degree to

which the changes at the level of gene expression affect

changes in metabolite concentration and to uncover the

underlying mechanisms determining their relationship. In this

study, we explore the hitherto poorly understood role of

network connectivity constraints in controlling metabolite

PLOS Computational Biology | www.ploscompbiol.org 1 April 2014 | Volume 10 | Issue 4 | e1003572

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003572&domain=pdf


concentrations in a eukaryotic model organism, Saccharomyces

cerevisiae. We postulate that two primary mechanisms will

largely determine the association between the changes in

mRNA and metabolite levels: reaction kinetics (which are non-

linear by nature [14–16]) and the mass balance constraints

imposed by the network, i.e. the balance between production

and consumption of metabolites. Although we here focus on

mRNA levels due to genome-wide coverage of the available

transcriptomics datasets, the proposed model can also be

readily applied to enzyme abundance or activity data.

The role of reaction kinetics in controlling metabolite concen-

tration has been previously examined mostly from the perspective

of the isolated reaction-metabolite pairs. With such a reaction-

centric approach, a previous study on yeast metabolism was able

to partially explain changes in the intracellular metabolite levels

when using protein abundance as a measure of enzyme availability

[3]. However, no correlation was observed in the same study when

using gene expression data instead of protein abundances. One

possible reason for the lack of strong correlation between gene

expression and metabolite levels when looking at the isolated

enzyme-metabolite pairs is that the large connectivity inherent to

metabolic networks is not taken into account. A large fraction of

intra-cellular metabolites participate in multiple reactions. For

example, over 25% of the yeast metabolites participate in more

than three reactions [17]. Consequently, abundance of an enzyme

catalyzing a particular reaction cannot completely determine the

concentrations of the participating metabolites or the rate of the

reaction. Indeed, correlations between mRNA and fluxes, and

even between enzyme activities and fluxes, have been often found

to be poor [18–21]. Approaches accounting for the network

connectivity of metabolites have been successful in linking gene

expression to metabolites in an empirical or qualitative manner

[10,12,22–24], but have achieved only a limited success on the

quantitative front. Advantages of both reaction-centered kinetics

approaches and network topology-based approaches can be

combined in network kinetic models that include detailed kinetics

of all involved reactions [25–28]. However, application of kinetic

models to large metabolic networks is difficult due to their reliance

on a large number of parameters. Such parameters are either

currently unavailable, or their estimation requires comprehensive

measurements of intra-cellular states of interest (e.g. metabolite

concentrations, enzyme abundances, and fluxes) in the vicinity of

the perturbation to be modeled.

In this study, we propose a steady-state model of the

transcriptional control of metabolite concentrations. Our model

integrates reaction kinetics and metabolic network connectivity

constraints without requiring the knowledge of kinetic parameters.

In essence, the model uses mass balance constraints to bridge the

individual reaction kinetic constraints with those of the other

reactions in the network. The resulting equations provide a log-

linear relationship between the fold-change in the concentration of

a given metabolite to the fold-changes in the expression of its

neighboring genes, as well as topologically more distant genes.

Results

By analogy to flux coupling analysis [29], which describes how

steady-state fluxes are linked with each other, we termed our

approach Concentration Change Coupling Analysis (CoCCoA).

Starting with a classical reaction kinetics model, which treats each

reaction as an isolated system consisting of a single enzyme and its

substrate, we developed a network kinetics approach by account-

ing for the interactions between different reactions through their

shared metabolites. As there is currently a lack of information on in

vivo enzyme kinetics mechanisms at the network-scale, we used the

single-substrate Michaelis-Menten (MM) kinetics for all reactions.

In essence, MM kinetics describes the flux or reaction rate V as a

function of three parameters: i) concentration of the substrate, S; ii)

maximum capacity of the enzyme pool, Vmax; and iii) a parameter

reflecting the enzyme’s kinetic properties, KM (Figure 1A). The

central idea of CoCCoA is to use mass balance constraints on the

flux term V to link single-reaction kinetics to the other reactions in

the network. We considered MM kinetics in the fold-change space,

which allowed us to eliminate the need to know the KM values. For

each metabolite, CoCCoA provides an overall transcriptional

change score (CoCCoA score) according to the CoCCoA

equations, which are developed in the subsequent sub-sections.

To assess the proportion of variance in metabolite changes that

can be attributed to transcriptional regulation, we compared the

calculated CoCCoA scores with the experimentally measured

metabolite concentration changes. The overall workflow used is

depicted in Figure 1B.

The first step in our analysis is to calculate a representative

transcriptional fold-change for each reaction. As the yeast

metabolic network consists of several reactions that are each

governed by multiple proteins, we classified all reactions into three

types: i) reactions catalyzed by a single enzyme, ii) reactions

catalyzed by two or more isoenzymes, and iii) reactions catalyzed

by enzyme complexes. We then applied the following rules to

calculate the representative fold-changes for all reactions: in the

case of isoenzymes, we averaged the fold changes of the related

transcripts, while in the case of complexes, we picked the transcript

with the lowest fold change (Figure 1C). We used only significantly

changed transcripts (P-value#0.05) in the presented analysis.

Relaxation of this filtering criterion did not change the overall

results (Figure S1).

Experimental datasets and the metabolic network
We used four published experimental datasets for evaluating the

proposed CoCCoA models. These case studies included three

pairwise comparisons – one genetic [3] and two environmental

perturbations [23,30] – and a time-course dataset obtained during

Author Summary

Regulation of metabolic activity in response to environ-
mental and genetic perturbations is fundamental to the
growth and maintenance of all cells. A primary regulatory
process used by cells to control the activity of their
metabolic network is the alteration in the expression of
enzyme-coding genes. How these alterations regulate
metabolite concentrations is an important question in
the quest towards unraveling the genotype-phenotype
relationship. The link between the expression levels of
enzymes and metabolite concentrations is governed by
the kinetics of individual reactions, which in turn are
interlinked with each other due to the complex connec-
tivity structure of metabolic networks. Although the
enzyme-metabolite relationship is relatively well studied
at the level of individual reactions, our understanding of
the regulation of metabolite levels in complex networks
has remained incomplete. In this study, we show that the
constraints imposed by the network connectivity are key
determinants of the relationship between gene expression
and metabolite concentration changes. Our results provide
mechanistic insight into the function of complex metabolic
networks and have implications for health and biotech-
nological applications.

From Gene Expression to Metabolite Levels
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the yeast metabolic cycle [9,31]. In all pair-wise comparison

studies, both gene expression and metabolite concentration data

were obtained from the same experiment. In the case of the

metabolic cycle data, although the sampling for transcriptome and

metabolome was performed in two separate experiments, the

experimental setups were identical and the sampling was

performed at comparable time-points spanning all phases of the

metabolic cycle. While the metabolic cycle is fundamentally a non-

steady-state phenomenon, the observed transcript oscillation

period of about 300 minute means that a reasonable degree of

pseudo-steady-state can be assumed for applying our model. In the

case of the three pairwise comparison studies, the correlations

between CoCCoA scores and metabolite concentrations provided

a perturbation-centered perspective wherein the responses of

different metabolites were analyzed jointly. The metabolic cycle

case study allowed us to additionally evaluate the gene expression-

metabolite relationship from a metabolite-centered perspective,

wherein the response of each metabolite was assessed individually

for its conformity to the proposed model.

A genome-scale metabolic reconstruction of S. cerevisiae [17]

was used to obtain the metabolite-reaction-gene connectivity

information and to estimate the reaction directionalities (Methods).

For each case study, we used the experimental measurements of

exchange fluxes (uptake and secretion rates of metabolites) to

constrain and simulate a flux balance model. Accordingly, we

removed all blocked reactions and reactions for which the flux

directions could not be unambiguously assigned. We also excluded

the reactions for which the predicted flux directions did not agree

between the two conditions being compared.

Depending on the extent to which the network connectivity

information is included in the calculations, we term the CoCCoA

models as 0th degree, 1st degree, 2nd degree, and so on (Figure 1D).

0th degree CoCCoA relies on the enzyme kinetics alone and thus

considers only the consumption reaction(s) of any given metabo-

lite. 1st degree CoCCoA additionally considers the production of

the metabolite by using mass balance constraints. 2nd degree

CoCCoA further expands the degree of network connectivity

accounted for in the model by including the producing reactions of

the precursors of the metabolite in question. Alternatively, the 2nd

and higher degree models can also be expanded on both the

consumption and production sides of the metabolite as described

in the following sub-sections (also see Text S1).

Figure 1. From gene expression to metabolite levels. A) Metabolite levels are only indirectly affected by changes in gene expression levels,
through changes in the corresponding enzyme abundances. Metabolites, in turn, can provide feedback to the regulatory network controlling enzyme
abundance/activity. B) Transcript-metabolite relationships are usually many-to-one. We discarded transcripts with insignificant changes (P#0.05)
(grey circles). For the remaining transcripts we combined the corresponding fold changes to derive gene-expression scores for reactions and thereby
for consumption or production of metabolites (see Main text). C) Schematic workflow used for the proposed concentration change coupling analysis
(CoCCoA). In the first step, physiological measurements from growth experiments are used to constrain the genome-scale metabolic model
(Methods). Subsequent flux simulations (Methods) help in identifying the directionality and range of fluxes under the conditions being compared.
Next, by using the comparative transcriptome data, fold changes at the individual gene-expression level are mapped on to the reactions in the
network (panel B). CoCCoA integrates the mapped gene-expression data with the network topology by using a model formulation derived from the
MM reaction kinetics mechanism and mass balance constraints (main text). The main output from the algorithm is a measure of transcriptional
control over metabolite levels, or the CoCCoA scores, which are tested for correlation with the experimentally measured metabolite concentration
changes. D) Schematic representation of three different CoCCoA models with varying degrees of network connectivity constraints.
doi:10.1371/journal.pcbi.1003572.g001

From Gene Expression to Metabolite Levels
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0th degree concentration change coupling analysis
We consider metabolite concentration changes relative to a

reference condition that can be arbitrarily chosen from the

conditions pertaining to the experiment under investigation.

Assuming that the enzyme properties (represented by KM) remain

unchanged in the experiment, by using MM kinetics one obtains

(Text S1):

S

S�
~

V

V�

� �
V�max{V�

Vmax{V

� �
ð1Þ

Where * denotes the reference condition. The relative nature of

this formulation allows circumventing the problem of the lack of

availability of in vivo KM values. Furthermore, by assuming that

VvvVmax&V�vvV�max, and that the ratio V�max=Vmax can be

approximated by the gene expression ratio, equation (1) simplifies

to a log-linear relationship (equation (2), Text S1). Both of these

assumptions are critically examined in the next sub-section. The

model represented by equation (2) is hereby termed 0th degree

coupling, meaning that the metabolite S is not considered to be

directly coupled to any other metabolite and is connected only to

the enzyme that uses it as a substrate (Figure 1D).

ln
S

S�
~ln

V

V�
{ln

T

T�
ð2Þ

Evaluation of non-saturation and mRNA-protein
correlation assumptions

The first assumption used in deriving equation (2) implies that

the enzyme is not saturated. The opposite situation, i.e. an enzyme

approaching saturation, is not amenable for establishing the

metabolite-gene expression relationship (or metabolite-enzyme

abundance relationship in general), as the reaction velocity will

then be only a weak function of the substrate concentration.

Recent studies have shown that in vivo concentrations for several

metabolites, especially from central carbon metabolism, are close

to the corresponding KM values [32]. At these concentrations,

reaction rates V are close to half of the Vmax. Although the

assumption of V%Vmax is not strictly applicable in this flux regime,

numerical simulations showed modest errors (around 20%) due to

this approximation (Figure S2). Moreover, if the saturation level

does not change drastically between the two conditions being

compared, the error remains close to zero (Figure S2). Given the

advantage that this approximation brings, namely elimination of

the need for knowing the in vivo kinetic parameters, the cost of the

approximation error appears to be acceptable.

The second major assumption is that the fold-change in mRNA

level can be used as a proxy for the fold-change in enzyme

abundance and ultimately for the fold-change in Vmax. Critical

examination of this assumption is of particular importance as the

role of translational efficiency and post-translational modifications

in regulating metabolic enzymes is becoming increasingly evident

[18,33–36]. We examined our assumption by analyzing published

experimental data for S. cerevisiae where genome-wide mRNA and

protein fold changes were simultaneously measured. In support of

the assumption, the correlations between the mRNA and the

protein fold changes corresponding to the metabolic genes were

found to be both significant and strong (Dataset 1–3 [37,38],

R2 = 0.77, P = 0.04; R2 = 0.66, P = 0.0365, R2 = 0.76, P = 0.0036;

dataset 4 [39], R2 = 0.4, P = 0.296; dataset 5 [40], R2 = 0.57,

P = 0.0681; dataset 6 [41], R2 = 0.43, P = 0.0001) (Figure 2A). We

note that these correlations involving only metabolic genes are

stronger than the correlations calculated by including the non-

metabolic genes (Figure 2A, Figure S3). As mRNA and protein

levels have recently been demonstrated to be in good agreement in

mammalian systems as well [42], we expect that the assumption of

proportionality between gene expression and protein abundance

fold changes will be valid in a broad range of organisms.

Evaluation of 0th degree concentration change coupling
analysis

Under the condition of flux homeostasis, i.e. no flux change

between the two conditions being compared, the metabolite

concentration ratio in equation (2) becomes dependent only on the

transcript change. The resulting 0th degree CoCCoA model is

equivalent to the analysis of the transcript/protein-metabolite

relationship reported by Sauer and co-workers [3]. According to

Figure 2. Changes in mRNA and protein abundances are strongly correlated for metabolic genes. A) Shown are the coefficients of
determination for mRNA fold-change – protein fold-change correlations; black: with all proteins measured in each of the datasets, gray: only with
metabolic proteins. P-values denoting the significance of the improved correlations for metabolic genes were estimated based on random sampling
from the set of measurements including all proteins. B) Distributions of P-values obtained for 1st degree CoCCoA analysis while accounting for the
variability in the correlations between the mRNA and protein fold-changes.
doi:10.1371/journal.pcbi.1003572.g002

From Gene Expression to Metabolite Levels
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this model, we observed a significant correlation between

transcriptional and metabolite changes in the glucose pulse case

study (r = 0.81, P = 0.048). In the other two pairwise comparison

case studies, the 0th degree model failed to correlate with the

experimentally observed metabolite changes (Figure 3B). In case of

the metabolic cycle dataset, around 31% of the measured

metabolites showed significant correlations (FDR 10%)

(Figure 3C, Figure S1). In all four case studies investigated here,

flux homeostasis cannot be assumed as the growth rate as well as

the substrate uptake and product secretion rates were affected by

the corresponding perturbations. Our attempts to obtain reliable

flux estimates by using flux balance analysis were not fruitful since

only a limited number of physiological measurements were

available to constrain the model, resulting in a high degree of

uncertainty in the flux estimates. Thus, in the absence of reliable

intra-cellular flux estimates, the 0th degree model was found to be

insufficient for relating gene expression changes to metabolite

levels.

1st degree concentration change coupling analysis
At steady state, the sum of fluxes producing a particular

metabolite must be equal to the sum of fluxes through the

reactions that use it as a substrate. For a metabolite with a single

production reaction and a single consumption reaction, the steady

state assumption combined with equation (2) leads to equation (3)

(Supplementary Text S1).

ln
S

S�
~ln

Tprod

Tprod�{ln
Tcons

Tcons�zln
R

R�
ð3Þ

Tprod and Tcons denote expression levels of the genes correspond-

ing to the enzymes producing and consuming S, respectively. R

refers to the concentration of the metabolite that is the precursor

of S. The relation described by equation (3) implies a coupling

between the concentration changes in R and S, and is here defined

as 1st degree coupling. In comparison to the 0th degree coupling,

the flux term ln(V/V*) is eliminated in the 1st degree coupling

equation and is replaced by two new terms, ln(Tprod/Tprod*) and

ln(R/R*). Equation (3) brings a new network perspective to enzyme

kinetics, whereby gene expression and metabolite concentration

changes in the adjacent reactions are linked through the mass

balance constraint. Each metabolite pool is thus linked to the

reactions consuming it as well as on the reactions producing it

(Figure 3A). When multiple reactions are consuming (or produc-

ing) the same metabolite S, the consumption (or production) term

can be approximated by the geometric mean of the transcript

ratios of all the consumption (or production) reactions (Supple-

mentary Text S1).

To evaluate the 1st degree model, we compared the experi-

mentally measured metabolite concentration ratios with the 1st

degree CoCCoA scores based on the transcript fold changes – the

first two terms on the right-hand side of equation (3). We note that,

although the strict application of our model requires the use of the

ln(R/R*) term, these measurements are often not available.

Moreover, a model that is completely independent of the

metabolite concentration data will likely be of more practical

value. Omitting the ln(R/R*) term equates to assuming that the

preceding metabolite’s concentration does not change between the

two conditions; an alternative to omitting this term is explored

below, in the 2nd degree CoCCoA model, in which the ln(R/R*)

term is estimated by use of the 1st degree CoCCoA model. The

effect of omitting the ln(R/R*) term on CoCCoA scores is further

discussed in the later sub-section ‘‘Post-transcriptional regulation’’.

Comparisons of the 1st degree CoCCoA scores to metabolite

concentrations yielded significant correlations in the two environ-

mental perturbation case studies (r = 0.88, P = 0.0099 and

r = 20.96, P = 0.038), and a reasonably good correlation

(r = 20.61, P = 0.06) for the genetic perturbation case study

(Figure 3B, Figure S1). For the metabolic cycle case study, around

25% of the measured metabolites showed significant correlations

(FDR 10%) (Figure 3C, Figure S1). Although our model suggests

positive correlation between CoCCoA scores and metabolite

changes, we observed negative correlations in the cases of two of

the pairwise comparisons and for some of the metabolites in the

metabolic cycle case study. The possible reasons underlying this

discrepancy are discussed in the subsequent sub-section ‘‘Negative

correlations in CoCCoA’’. We maintain that the negative slopes do not

invalidate the significance of the observed correlations, but rather

hint at the existence of unaccounted parameters/mechanisms

leading to the reversal of slope in some cases.

The number of transcripts that can be used for the calculation of

the CoCCoA scores typically increases as more distant reaction

nodes in the network are included with the increasing CoCCoA

degree. Consequently, the number of metabolites that could be

assigned CoCCoA scores varied between the coupling degrees. For

example, in the C-source change study [30] (Figure 3B), only 4

metabolites have significant transcript changes corresponding to

their consuming reactions and hence only these could be

compared against the experimental data for the 0th degree

analysis. In contrast, 2nd degree CoCCoA scores could be

calculated for 7 metabolites.

Network propagation of concentration control
In a similar manner as going from the 0th to the 1st degree

coupling, the CoCCoA equations can be further extended to

include more distant nodes in the metabolic network. By replacing

the concentration ratio in the right-hand side of Equation 3 (i.e. R/

R*) with the 1st degree CoCCoA relationship for the correspond-

ing precursor metabolite (in this case, R), we obtained the 2nd

degree coupling relationship. This 2nd degree model accounts for

the gene expression changes corresponding to the precursor’s

production reactions (Figure 3A) (Text S1). In all case studies, the

2nd degree correlations remained as strong as for the 1st degree.

This result is notable since the 2nd degree coupling score includes

expression data from the genes that are further away from the

metabolites in question. With further extension of the CoCCoA

model in a similar manner, we observed significant correlations up

to the 6th degree coupling (P#0.05, Fendt et al. case study, Figure

S4).

To gain further insight into the metabolite concentration

control at different network distances, we examined this problem

from a metabolite-centric perspective by taking advantage of the

broad metabolite coverage of the metabolic cycle case study. First,

we extended the higher degree CoCCoA formulation so as to

include information from all intermediate reaction steps up to the

desired degree (Text S1). For example, the calculation of the 3rd

degree CoCCoA score includes fold changes from the genes

associated with the reactions involving all metabolites that are

three steps upstream or downstream from the metabolite in

question. The inclusion of genes within a desired network distance

can either be restricted to the consumption or the production side

of the metabolite, or both included simultaneously. This formu-

lation also allowed us to include, if available, measured concen-

trations of the neighboring metabolites within the desired distance

of a given metabolite, and thereby to assess the effect of changes in

neighboring metabolites over its concentration. The algorithm

used for calculating CoCCoA scores using this formulation is

From Gene Expression to Metabolite Levels
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Figure 3. Metabolite concentration changes are correlated with CoCCoA scores. A) Equations illustrating the calculations of CoCCoA scores
of different degrees (Main text, Figure S5). B) Correlations between experimentally measured metabolite concentration changes and CoCCoA scores
for the three pairwise comparison datasets [3,23,30]. Note that the number of data points that can be tested varies for each coupling degree as the
number of genes included in the analysis changes with the degree of the CoCCoA equation (see main text). Metabolites marked in gray could not be
included in the analysis as the directions of the fluxes linked to them were altered between the growths on two different carbon sources [30]. C)
Pearson correlation coefficients comparing experimentally measured metabolite concentration changes and CoCCoA scores for the metabolic cycle
study [9]. D) Overlap between the significantly expressed genes in the three pairwise comparison case studies. Only genes that were used for the
calculation of CoCCoA scores are included. E) Number of genes used in the CoCCoA score calculations increase with the increasing model degree.
3PG = 3-Phospho-D-glycerate; G6P = Glucose 6-phosphate; F26P = Fructose 2,6-bisphosphate; F16P = Fructose 1,6-bisphosphate; FUM = Fumarate;

From Gene Expression to Metabolite Levels
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described in Text S1. In brief, this algorithm first enumerates all

paths starting from the metabolite of interest to identify genes that

are within a given network distance. Next, it uses graph topology-

based heuristics to weight and incorporate the expression fold-

changes corresponding to these genes into the CoCCoA equations

by using mass balance considerations. Following this, we evaluated

the ability of these CoCCoA scores to explain the concentration

changes observed during the metabolic cycle. Overall, positive

correlations are apparent for most of the metabolites (,66%,

Figure 4A,C). For the long distance scores, a slightly lower number

of metabolites showed positive correlations. The contrast between

the close and distant neighbors, however, should be interpreted in

light of the highly connected nature of the metabolic network. The

numbers of genes that are included in the calculation of CoCCoA

scores already reach a plateau at the 4th degree (Figure 4B), and

thus, even relatively modest distances can mean inclusion of a very

large fraction of the network. Consequently, the CoCCoA scores

for a given metabolite will become ‘diluted’ due to the noise

stemming from the inclusion of gene expression changes pertain-

ing to the reactions that are only indirectly affecting the metabolite

of interest. These results from the metabolic cycle case study,

together with the results from the pairwise comparison studies,

suggest that the close neighbors in the metabolic network exert the

majority of the control over metabolite concentrations.

The correlations between the CoCCoA scores and the

metabolite concentration changes were further strengthened when

the experimentally determined fold-changes in the concentration

of the upstream and/or downstream metabolites were also used in

the calculation (Figure 4C). This improvement further supports the

CoCCoA theory, as the inclusion of concentration changes for the

upstream/downstream metabolites stems from the joint mass

balance and kinetic considerations, e.g. as illustrated in equation

(3).

Limitations of CoCCoA formulation
CoCCoA is not applicable in the case of perturbations that are

likely to drastically affect the kinetic properties (KM values) of

several enzymes in the network, or if the metabolite concentrations

are considerably above the corresponding KM values (saturated

enzymes). Furthermore, the CoCCoA model needs to exclude

reactions for which the flux directionality is ambiguous, and it

assumes that the flux directions do not change for the rest of the

reactions. Post-translational regulatory mechanisms, which can

affect the kinetic parameters, are also not included in the current

CoCCoA formulation, as sufficient data are not available to enable

their modeling. The latter is perhaps the most restrictive limitation

of our model. Post-translational regulation is known to play a

crucial role in the yeast central metabolism, wherein several

enzymes are controlled by allosteric binding of small molecules

[35,43,44] and/or through post-translational modifications such as

phosphorylation [33]. Together, these various assumptions and

limitations can lead to poor or no correlations. In the case of the

pairwise comparisons, poor correlations can also result from the

pooling of metabolites with positive and negative correlation with

CoCCoA scores into a single plot.

According to the CoCCoA model, all examined correlations

would be expected to be positive. Among the pairwise comparison

case studies, positive correlations were observed only for the

glucose pulse study (Figure 3B). In the case of the metabolic cycle

study, a significant majority of the metabolites (,66%,

P = 2.961028, exact binomial test) showed positive correlations

(Figure 4A,C). Flux regulation due to allosteric binding by small

molecules and post-translational modifications are likely to be the

major factors underlying this discrepancy between the expected

positive slopes and the observed negative slopes for the remaining

34% metabolites. The possible causes and implications of negative

correlation are discussed in the subsequent sub-section ‘‘Negative

correlations in CoCCoA’’.

Robustness of CoCCoA towards differences in gene
expression and protein abundance fold changes

We found that the enzyme-coding genes in yeast exhibit

significantly stronger correlations between mRNA and protein

fold-changes than do the non-metabolic genes (Figure 2A, Figure

S3). The slopes of these correlations were, however, different

across different datasets examined. To evaluate the robustness of

CoCCoA towards this variation, we re-performed 1st degree

CoCCoA analysis multiple times (1000 simulations), adjusting the

transcript ratios in each simulation by a randomly sampled

correction factor to account for the expected difference between

the mRNA and protein fold changes. The sampling space for the

correction factors was estimated based on the variance in the

slopes of linear regression lines between mRNA and protein

abundance fold changes across different datasets (Figure S3, Text

S1). We then examined the number of simulations in which the

correlation between the 1st degree CoCCoA scores and the

metabolite fold changes remained significant. For all three

pairwise comparison case studies, the correlations remained

significant (P#0.05) in a large fraction of these simulations

(99%, 86% and 91%) (Figure 2B).

Discussion

Network constraints over metabolite concentration
changes

The correlation between metabolites concentrations and

transcript fold changes becomes evident only when including

network connectivity constraints (1st and higher degree CoCCoA).

Thus, inclusion of gene expression changes associated with the

both upstream and downstream reactions was critical for

explaining metabolite concentration changes. For all three

pairwise comparison case studies, CoCCoA models explained

more than 60% of the variation in metabolite changes based on

gene expression. For the metabolic cycle case study, CoCCoA

could explain variation in about 33% of the measured metabolites,

with correlation coefficients as strong as 0.90.

The use of a genome-scale metabolic model was crucial in

CoCCoA analysis in order to capture the large connectivity

inherent to metabolic networks. Even for a sparsely connected

metabolite such as D-Ribose 5-phosphate, for which the 0th degree

score accounted for only 4 transcripts, the 2nd degree CoCCoA

score accounted for transcriptional information from 47 genes in

the Fendt et al. study [3] (Figure 3B). With the increasing degree of

CoCCoA equations, larger numbers of genes become part of the

CoCCoA score (Figure 3E, Figure 4B). We also observed that, in

general, the inclusion of new genes when moving from the 1st to

the 2nd degree CoCCoA maintains the significance of the

correlation (Figure 3B, Figure 3C). This observation implies

strong co-regulation of genes that are linked through common

substrates/products. Indeed, co-expression of metabolic genes at

CIT = Citrate; MAL = Malate; AKG = alpha-Ketoglutarate; T6P = Trehalose 6-phosphate; PEP = Phosphoenolpyruvate; S7P = Sedoheptulose 7-phosphate;
RBU5P = Ribulose 5-phosphate; R5P = Ribose 5-phosphate; DHAP = dihydroxyacetone phosphate; M6P = Mannose 6-phosphate.
doi:10.1371/journal.pcbi.1003572.g003
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Figure 4. CoCCoA models link the changes in gene expression and metabolite concentrations during yeast metabolic cycle. A)
Pearson correlation coefficients comparing the experimentally observed metabolite concentration changes and CoCCoA model scores. For a given
metabolite, 16 different CoCCoA scores were computed, accounting for a network distance of up to 4, both upstream and downstream of the
metabolite in question. Scores were divided into two sets: close (distance #2) and distant (distance .2). Shown values are the median correlation
coefficients in each set. B) CoCCoA models account for a large fraction of genes in the metabolic network at relatively short distances. C) Correlations
between the experimentally observed metabolite concentration changes and CoCCoA model scores improve with the inclusion of the concentrations
of the precursors and/or products of the metabolite in question. D) Example correlations between the CoCCoA model scores and the metabolite
concentration changes. Different shapes of data points mark different stages of the yeast metabolic cycle. { - Metabolites with previous evidence for
post-translational regulation of at least one of their neighboring enzymes [34].
doi:10.1371/journal.pcbi.1003572.g004
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short network distances has been observed in earlier studies [45].

The CoCCoA theory suggests that homeostasis of metabolite

concentrations is one of the objectives of such topology-oriented

co-regulation in metabolic networks.

Post-transcriptional regulation
There are several layers of regulation that the CoCCoA model

does not take into account: translational and post-translational

regulation, and the kinetic effects of neighboring metabolites’

concentrations. With regard to translational regulation, we

observed strong correlations between transcript and protein fold

changes (Figure 2A, Figure S3), and the CoCCoA results were

found to be relatively robust in light of the known variability

(Figure 2B). However, it remains to be seen whether these

correlations extend through post-translational regulation to

enzyme activity. Increasing availability of the genome-wide

protein phosphorylation/acetylation data may aid in addressing

this question. The CoCCoA framework can be used with enzyme

abundance or enzyme activity fold changes in place of transcript

fold changes. Using this information could lead to more accuracy

in CoCCoA scores, and could furthermore aid in identifying the

relative contribution of the different regulatory layers in control-

ling metabolite concentrations.

The effects of neighboring metabolites’ concentrations could be

examined thanks to the large coverage of metabolite measure-

ments in the metabolic cycle dataset. The power of CoCCoA in

explaining variance in metabolite concentration changes was

substantially improved following the inclusion of data for the

neighboring metabolites, representing ln(R/R*) terms in the

CoCCoA equations (2.54 fold increase in the median correlation

coefficient; P = 6.661028, Wilcox test; Figure 4C). In accordance

with the CoCCoA theory, this improvement indicates that a

metabolite’s neighbors in the metabolic network play an important

role in determining its level.

CoCCoA is applicable to perturbations of different nature
Formulation of CoCCoA in a relative manner, i.e. in the fold-

change space, allowed us to circumvent the problem of the

unavailability of in vivo kinetic parameters. A major advantage

following this relative formulation is that the CoCCoA models do

not need any parameter fitting. Indeed, the applicability of

CoCCoA was found to be quite broad in terms of the perturbation

or experimental design underlying the data. The four datasets

considered in this study represent three different biological

perturbations, namely gene knockout [3], nutrient pulse [23],

change in carbon source [30], as well as a fundamental rhythmic

phenomenon associated with the cell cycle [9,31]. These case

studies also span two distinct cultivation types, batch [3] and

chemostat [9,23,30,31]. We also verified the differences in the

nature of these perturbations at the level of gene expression

changes: the three pairwise comparison studies were found to have

only a small overlap in terms of the significantly responding genes

(Figure 3D). Additionally, the CoCCoA model was found to be

applicable over a broad range of concentration changes displayed

by different metabolites during the yeast metabolic cycle

(Figure 4D).

Negative correlations in CoCCoA
Intriguingly, several of the observed negative correlations were

found to be not only significant but also quite strong, with R2

values as high as 0.86 (Figure 4). These negative correlations are

indicative of the mechanisms that are unaccounted for in the

CoCCoA model and/or highlight cases in which the assumptions

of the model do not apply. We observed that the number of

positive correlations in the metabolic cycle case study increased

considerably when using the concentration change data from the

neighboring metabolites (the ln(R/R*) term in the right-hand side

of the 1st degree CoCCoA equation) (Figure 4C). This observation

suggests that the kinetic effect due to changes in the neighboring

metabolites is an important factor contributing to negative

correlations. The results from the analysis of the metabolic cycle

data also hint that the negative slopes might be characteristic to

certain metabolites, for example, those for which the producing/

consuming enzymes are regulated predominantly and/or preva-

lently at the post-translational level. Indeed, we found that the

metabolites with poor or negative correlations in the metabolic

cycle case study are enriched in the metabolites with previous

evidence for post-translational regulation of at least one of their

neighboring enzymes (metabolites marked with { in Figure 4A,

data for post-translationally regulated enzymes from [34],

P = 0.0006). In these cases, the post-translational regulation may

be counteracting the transcriptional change. Post-translational

regulation of an enzyme can change its KM value and can thereby

directly affect CoCCoA scores. Consider, for example, 1st degree

CoCCoA score. When changes in KM values are included in the 1st

degree CoCCoA formula, the score becomes:

ln
Tprod

Tprod�{ln
K

prod
M

K
prod�
M

{ln
Tcons

Tcons�zln
Kcons

M

Kcons�
M

. If the post-transla-

tional modifications counteract the transcriptional changes, the

KM ratios in this new score will partially cancel out or even

override the transcript ratios. When assuming constant KM values,

the discrepancy between the transcript and KM ratios in some cases

might be sufficiently large to result in CoCCoA scores with

opposite sign. On the other hand, the inconsistency between the

directions of transcriptional and post-translational regulation (or

post-transcriptional regulation in general) implies non-optimal

regulation and is unlikely to be a general mechanism used by the

cell. However, non-optimal regulation is a possibility for certain

enzymes, with two plausible biological explanations: i) the highly

non-linear scenario of regulation (resulting from the concerted

action of reaction kinetics, incl. allosteric regulation, and mass

balance and thermodynamic constraints) can mean that the cell

needs to make some locally non-optimal choices in order to

achieve a global optimality in regulating the overall metabolism

(for example, to take advantage of the distinct time-scales at which

post-translational and transcriptional regulations act); ii) the

observed behavior is both locally and globally non-optimal in

case of certain perturbations. The second scenario would imply

that the perturbations in question are unknown or new to the cells

in the evolutionary sense.

In addition to the unaccounted post-transcriptional regulation,

the simplifying assumptions of constant flux directions and flux

split ratios may also be contributing to the observed negative

correlations. A wrongly considered flux direction for a reaction

would mean that the corresponding fold change in the expression

level would be treated in the opposite direction. Similarly,

moderate changes in the flux split ratio can also cause a sign

reversal in the CoCCoA score if one of the fluxes is significantly

lower than the other(s). The interaction between the various

missing/simplifying factors in our model can further amplify the

difference between the CoCCoA scores and actual concentration

changes. How these interactions lead to the reversal of correlation

while retaining statistical significance is yet unclear. Further

investigation into the mechanisms underlying these intriguing

negative correlations would require network-wide in vivo measure-

ments of fluxes, metabolite concentrations, protein abundances

and functional post-translational modifications. Nevertheless, we
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note that our model revealed significant correlations in several

cases, including perturbations of very different nature. We also

note that, in the case of metabolic cycle dataset, significantly more

positive correlations were observed than negative (P = 2.9e-08,

exact binomial test). Together, the statistical and mechanistic

considerations suggest that the CoCCoA model captures consid-

erable mechanistic essence of the complex processes governing

metabolite levels.

Overall, our model-guided analysis highlighted the role of

metabolic network connectivity in modulating metabolite concen-

tration changes and revealed much stronger correlations between

gene expression and metabolite levels than previously appreciated.

The proposed model can be extended to include translational and

post-translational regulation as the data becomes available. From

this perspective, we see CoCCoA as a framework with a strong

mechanistic yet parameter-free basis, rather than a general

relationship. We anticipate that, due to its parameter-free nature,

the CoCCoA framework will be widely applicable for modeling

metabolite level changes in large metabolic networks.

Methods

Experimental datasets
Four different experimental studies reporting gene expression

and metabolite concentration measurements for the yeast S.

cerevisiae were used. The first study, Fendt et al. [3], includes a

comparison between wild type yeast and a mutant strain lacking

GCR2, a transcription factor responsible for activation of glycolytic

genes [46]. In the second study, Kresnowati et al. [23], yeast

cultures were grown in carbon-limited chemostat cultures and

subjected to a step change in glucose concentration. In the third

study, Wisselink et al. [30], an evolutionarily engineered strain was

grown on either glucose or arabinose as the sole carbon source. In

the fourth study, oscillating chemostat cultures were sampled

covering different phases of the metabolic cycle [9]. A summary of

the growth conditions and descriptions of datasets from all case

studies is provided in Table S1. Metabolite data was used as

available in the original studies; a significance cut-off a= 10% was

chosen to control for the type 1 error. For the metabolic cycle

data, we considered metabolites with the periodicity P-value#0.05

as reported in the original study [31]. As the datasets used did not

distinguish between the cytosolic and mitochondrial concentration

of metabolites, we regarded all metabolite concentrations as

cytosolic. Since 2-phosphoglycerate and 3-phosphoglycerate are

usually indistinguishable in the MS measurements, we considered

only 3-phosphoglycerate gene neighbors and excluded 2-phospo-

glycerate.

Metabolic network and flux variability analysis
A genome-scale reconstruction of Saccharomyces cerevisiae meta-

bolic network by Forster et al. [17] was used to map metabolite-

reaction-gene connectivity. For each of the case studies, the

functional reaction directions of reversible reactions were estimat-

ed by using flux variability analysis [47]. For this purpose, the

model was constrained with the physiological data obtained from

the publications reporting the used datasets (Table S2, Table S3,

Table S4, and Table S5) [3]. Linear programming problems were

solved using the glpk solver (http://www.gnu.org/software/glpk/)

accessed through a C library.

Transcription data analysis
Preprocessing of the Affymetrix CEL files was carried out with

the statistical software environment R/Bioconductor (www.

bioconductor.org). Probe intensities were corrected for back-

ground by using robust multi-array average method (RMA) [48]

using only perfect-match probes, and normalization was per-

formed using the quantiles algorithm. Gene expression intensity

values were calculated from the perfect-match probes with median

polish summarization method [49]. Significance of the differential

expression was calculated by using the empirical Bayes test as

implemented in the limma package [50].

Statistical analysis
Pearson correlation coefficients between log2 metabolite fold

changes and CoCCoA scores were calculated with the statistical

software R (www.r-project.org) using the function cor.test().

Metabolite changes were used as dependent variables and

CoCCoA scores as independent. P-values for the null hypothesis

of no correlation (regression slope = 0) were estimated by using the

same function. In addition, we performed a permutation test by

shuffling gene labels before calculating CoCCoA scores. The

originally paired data was randomly permuted without replace-

ment 1000 times. For each permutation, a correlation coefficient

was calculated and the P-value was estimated as a fraction of

squared correlation coefficients that were larger than in the case of

the original paired data. The results were similar to those

estimated with the cor.test() function.

Code used for CoCCoA score calculations
http://www.patil.embl.de/supplementary

Supporting Information

Figure S1 Correlations between experimentally measured

metabolite concentration changes and CoCCoA scores based on

gene expression fold changes. A) Facet columns correspond to

three different pairwise comparison datasets used in our work;

rows represent different CoCCoA models. B) Heatmap of Pearson

correlation coefficients assessing the applicability of CoCCoA

models to the metabolic cycle study. In the present figure, the

significance thresholds for the transcript and metabolite fold

changes are relaxed in comparison to the data shown in

Figure 3B,C in the main text.

(PNG)

Figure S2 Estimates of error in predicting metabolite concen-

tration changes with MM kinetics when assuming V%Vmax (see

main text for the motivation behind the use of this assumption). A.

Error (Z-axis) as a function of V/Vmax and V*/Vmax
*. The error

function is shown in supplementary Text S1 (equation 11). B.

Error estimates around the points where V/Vmax = V*/Vmax
*,

representing a situation in which the enzyme saturation levels

remain unchanged in the perturbed condition. C. 2-D projection

of the plot in A, where the errors are represented with different

colors.

(PNG)

Figure S3 Correlation between protein abundance changes and

the corresponding mRNA abundance changes is stronger for

metabolic proteins. A, D, G, J, M, P) Correlation including all

proteins measured in different datasets. B, E, H, K, N, Q)

Correlations including only metabolic proteins (as per genome-

scale metabolic model by [17]). C, F, I, L, O, R) Histogram of

10,000 different correlation coefficients obtained for randomly

chosen protein-transcript pairs (number of chosen pairs for each

correlation being equal to the number of metabolic proteins

measured in the corresponding dataset). Blue area denotes the

number of random correlations that were higher than those

obtained for the correlation based on the actual data. Each row of
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plots represents a different dataset (from top to bottom), 1, 2, 3 –

[38,51]; 4 –[41]; 5 –[40]; 6 –[41].

(PNG)

Figure S4 Coefficients of determination for the correlations

between experimentally measured metabolite concentration

changes and CoCCoA scores corresponding to different degrees.

The significance of correlations was assessed against correlations

obtained with random permutations of gene labels.

(PNG)

Figure S5 Example CoCCoA score calculations. Shown is the

case of fumarate in the Fendt et al. case study.

(PNG)

Table S1 Summary of the growth conditions from the three

pairwise comparison case studies used in our analysis.

(DOCX)

Table S2 Physiological data from the pairwise comparison case

study 1.

(DOCX)

Table S3 Physiological data from the pairwise comparison case

study 2.

(DOCX)

Table S4 Physiological data from the pairwise comparison case

study 3.

(DOCX)

Table S5 Reaction directions used for the case studies 1 and 2.

(DOCX)

Text S1 Supporting text.

(DOCX)
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We are grateful to T. Çakir and A. R. Brochado for feedback on the

manuscript. We thank B. Klaus for discussion on the statistical tests.

Author Contributions

Conceived and designed the experiments: KRP AZ. Performed the

experiments: AZ SS. Analyzed the data: AZ SS. Contributed reagents/

materials/analysis tools: AZ. Wrote the paper: KRP AZ SS.

References

1. Gallego O, Betts MJ, Gvozdenovic-Jeremic J, Maeda K, Matetzki C, et al.

(2010) A systematic screen for protein-lipid interactions in Saccharomyces

cerevisiae. Mol Syst Biol 6: 430.

2. Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, et al. (2011)

Comprehensive quantitative analysis of central carbon and amino-acid

metabolism in Saccharomyces cerevisiae under multiple conditions by targeted

proteomics. Mol Syst Biol 7: 464.

3. Fendt SM, Buescher JM, Rudroff F, Picotti P, Zamboni N, et al. (2010) Tradeoff

between enzyme and metabolite efficiency maintains metabolic homeostasis

upon perturbations in enzyme capacity. Mol Syst Biol 6: 356.

4. Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M (2010) Extensive in vivo

metabolite-protein interactions revealed by large-scale systematic analyses. Cell

143: 639–650.

5. Oliveira AP, Patil KR, Nielsen J (2008) Architecture of transcriptional regulatory

circuits is knitted over the topology of bio-molecular interaction networks. BMC

Syst Biol 2: 17.

6. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, et al. (2010) Acetylation of

metabolic enzymes coordinates carbon source utilization and metabolic flux.

Science 327: 1004–1007.

7. Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory

dynamics. Proc Natl Acad Sci U S A 104: 2241–2246.

8. Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, et al. (2005)

Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial

effects of oxygen availability and macronutrient limitation in Saccharomyces

cerevisiae. J Biol Chem 280: 437–447.

9. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast

metabolic cycle: temporal compartmentalization of cellular processes. Science

310: 1152–1158.

10. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism

by using metabolic network topology. Proc Natl Acad Sci U S A 102: 2685–

2689.

11. Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR (2010) Metabolic network

topology reveals transcriptional regulatory signatures of type 2 diabetes. PLoS

Comput Biol 6: e1000729.

12. Bradley PH, Brauer MJ, Rabinowitz JD, Troyanskaya OG (2009) Coordinated

concentration changes of transcripts and metabolites in Saccharomyces

cerevisiae. PLoS Comput Biol 5: e1000270.

13. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U,

et al. (2003) Parallel analysis of transcript and metabolic profiles: a new approach

in systems biology. EMBO Rep 4: 989–993.

14. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49.

15. Briggs GE, Haldane JB (1925) A Note on the Kinetics of Enzyme Action.

Biochem J 19: 338–339.

16. Van Slyke DD, Cullen GE (1914) THE MODE OF ACTION OF UREASE

AND OF ENZYMES IN GENERAL. J Biol Chem 19: 141–180.

17. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale

reconstruction of the Saccharomyces cerevisiae metabolic network. Genome

Res 13: 244–253.

18. Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de Groot MJ, et al.

(2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are

predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A

104: 15753–15758.

19. Yang C, Hua Q, Shimizu K (2002) Integration of the information from gene
expression and metabolic fluxes for the analysis of the regulatory mechanisms in

Synechocystis. Appl Microbiol Biotechnol 58: 813–822.

20. Rossell S, van der Weijden CC, Kruckeberg AL, Bakker BM, Westerhoff HV

(2005) Hierarchical and metabolic regulation of glucose influx in starved

Saccharomyces cerevisiae. FEMS Yeast Res 5: 611–619.

21. Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, et al.

(2006) Unraveling the complexity of flux regulation: a new method
demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc Natl

Acad Sci U S A 103: 2166–2171.

22. Cakir T, Patil KR, Onsan Z, Ulgen KO, Kirdar B, et al. (2006) Integration of
metabolome data with metabolic networks reveals reporter reactions. Mol Syst

Biol 2: 50.

23. Kresnowati MT, van Winden WA, Almering MJ, ten Pierick A, Ras C, et al.

(2006) When transcriptome meets metabolome: fast cellular responses of yeast to
sudden relief of glucose limitation. Mol Syst Biol 2: 49.

24. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, et al. (2009)

Linking high-resolution metabolic flux phenotypes and transcriptional regulation
in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci U S A

106: 6477–6482.

25. Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005)

Integrative model of the response of yeast to osmotic shock. Nat Biotechnol
23: 975–982.

26. Westerhoff HV, Chen YD (1984) How do enzyme activities control metabolite

concentrations? An additional theorem in the theory of metabolic control.
Eur J Biochem 142: 425–430.

27. Westerhoff HV, Groen AK, Wanders RJ (1984) Modern theories of metabolic
control and their applications (review). Biosci Rep 4: 1–22.

28. Cleland WW (1989) The kinetics of enzyme-catalyzed reactions with two or
more substrates or products. I. Nomenclature and rate equations. 1963. Biochim

Biophys Acta 1000: 213–220.

29. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling
analysis of genome-scale metabolic network reconstructions. Genome Res 14:

301–312.

30. Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, et al. (2010)

Metabolome, transcriptome and metabolic flux analysis of arabinose fermen-
tation by engineered Saccharomyces cerevisiae. Metab Eng 12: 537–551.

31. Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, et al. (2007) Cyclic

changes in metabolic state during the life of a yeast cell. Proc Natl Acad Sci U S A
104: 16886–16891.

32. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, et al. (2009)
Absolute metabolite concentrations and implied enzyme active site occupancy in

Escherichia coli. Nat Chem Biol 5: 593–599.

33. Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, et al. (2012)

Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst

Biol 8: 623.

34. Oliveira AP, Sauer U (2012) The importance of post-translational modifications

in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 12: 104–
117.

35. Metallo CM, Vander Heiden MG (2010) Metabolism strikes back: metabolic
flux regulates cell signaling. Genes Dev 24: 2717–2722.

36. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, et al. (2005) Global analysis of

protein phosphorylation in yeast. Nature 438: 679–684.

From Gene Expression to Metabolite Levels

PLOS Computational Biology | www.ploscompbiol.org 11 April 2014 | Volume 10 | Issue 4 | e1003572



37. Usaite R, Jewett MC, Oliveira AP, Yates JR, 3rd, Olsson L, et al. (2009)

Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a
global energy regulator. Mol Syst Biol 5: 319.

38. Usaite R, Wohlschlegel J, Venable JD, Park SK, Nielsen J, et al. (2008)

Characterization of global yeast quantitative proteome data generated from the
wild-type and glucose repression saccharomyces cerevisiae strains: the

comparison of two quantitative methods. J Proteome Res 7: 266–275.
39. Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, et al. (2003) Protein

pathway and complex clustering of correlated mRNA and protein expression

analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100: 3107–
3112.

40. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. (2001) Integrated
genomic and proteomic analyses of a systematically perturbed metabolic

network. Science 292: 929–934.
41. Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, et al. (2002) Complementary

profiling of gene expression at the transcriptome and proteome levels in

Saccharomyces cerevisiae. Mol Cell Proteomics 1: 323–333.
42. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global

quantification of mammalian gene expression control. Nature 473: 337–342.
43. Braus GH (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces

cerevisiae: a model system for the regulation of a eukaryotic biosynthetic

pathway. Microbiol Rev 55: 349–370.

44. Luttik MA, Vuralhan Z, Suir E, Braus GH, Pronk JT, et al. (2008) Alleviation of

feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosyn-

thesis: quantification of metabolic impact. Metab Eng 10: 141–153.

45. Kharchenko P, Church GM, Vitkup D (2005) Expression dynamics of a cellular

metabolic network. Mol Syst Biol 1: 2005 0016.

46. Uemura H, Jigami Y (1992) Role of GCR2 in transcriptional activation of yeast

glycolytic genes. Mol Cell Biol 12: 3834–3842.

47. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metab Eng 5: 264–276.

48. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)

Exploration, normalization, and summaries of high density oligonucleotide array

probe level data. Biostatistics 4: 249–264.

49. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries

of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

50. Smyth GK (2004) Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:

Article3.

51. Usaite R, Nielsen J, Olsson L (2008) Physiological characterization of glucose

repression in the strains with SNF1 and SNF4 genes deleted. J Biotechnol 133:

73–81.

From Gene Expression to Metabolite Levels

PLOS Computational Biology | www.ploscompbiol.org 12 April 2014 | Volume 10 | Issue 4 | e1003572


