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Abstract

Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-
weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining
protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always
applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With
increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven
approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small
molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural
environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight
and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to
those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with
shared substructures to generate predictions. Our results demonstrate FragFEATURE’s ability to rediscover fragments
corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies
high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as
inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for
experimental or computational screening.
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Introduction

In recent years, the productivity of pharmaceutical research and

development has declined [1,2]. Although the Human Genome

Project and associated disease studies have increased the number

of potential protein targets [3], development of effective new drugs

has been slow. The key steps in drug discovery involve hit

identification and subsequent optimization of these leads into drug

candidates. While the latter can be the more difficult task, hit

identification is far from solved. In hit identification, a fundamen-

tal challenge is the prohibitive number of compounds to assess for

bioactivity against a protein target; small molecule databases like

ZINC [4] and PubChem [5] have grown rapidly as new synthetic

capabilities emerge [6]. Moreover, databases with computationally

enumerated molecules like GDB-17 [7] contain billions of

compounds. Indeed, the universe of molecules up to 30 atoms in

size may exceed 1060 members, though not all are synthetically

feasible or drug-like [8]. Experimental high-throughput screening

and computational virtual screening are the main approaches for

identifying drug leads. However, experimental screening requires

significant investment in equipment and screens on the order of a

million compounds, just a sliver of ‘‘chemical space’’ [9].

Computational methods, of which docking algorithms are

dominant, have much higher throughput but limited predictive

accuracy [10].

Given the difficulty in thoroughly exploring the chemical space

of drug-like molecules, efforts to study fragments have emerged.

Fragments in this context refer to low-molecular-weight small

molecules usually 120–250 Daltons in weight [11,12] that combine

to form larger molecules. Fragments have higher hit rates

compared to large, complex drug-like molecules because they

are less likely to possess suboptimal interactions or physical clashes

with the protein [13]. A fragment library can provide a more

compact and tractable basis set for chemical space than standard

small molecule libraries [11]. Fragment-based drug discovery has

also had recent success [14,15], identifying favorable fragments

that are ‘‘grown’’ or ‘‘linked’’ to form larger drug-like compounds

that bind a protein target with high affinity. This process also

improves the specificity, as fragments alone are less specific than

larger molecules. Initial identification of fragments that bind to a

protein target, however, is non-trivial.

Fragments tend to bind in the millimolar to micromolar range

and require sensitive experimental screening techniques, including

protein crystallography [16,17], nuclear magnetic resonance

(NMR) spectroscopy [18,19], and surface plasmon resonance

[20]. Characteristics of the fragments and protein targets, such as

fragment solubility and protein stability, affect the applicability of

these techniques [12]. There are also experimental difficulties such

as assay sensitivity, experimental timescale, and equipment and

infrastructure cost. Computational approaches are free from many

of these concerns and can achieve much higher throughput but

have limited predictive capabilities. Fragment docking (like ligand

docking) is difficult. For uncertain reasons, the best-performing

algorithms vary with the protein target studied, making algorithm
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selection difficult [10]. Additionally, binding and non-binding

fragments may be indistinguishable by the scoring functions used,

because fragments bind with weak affinity and a small inaccuracy

in the predicted binding energy of 1.4 kcal/mol is a ten-fold

difference in affinity [10]. Scoring functions also struggle to

distinguish correct and incorrect fragment poses [21]. Other

physics-based methods like SILCS immerse the protein target in a

solution of fragments that compete for binding over the course of

molecular dynamics simulations [22]. There are assumptions and

approximations about molecular interactions built into these

methods, limiting their ability to recapitulate natural interactions.

For example, scoring functions may not include the energetic cost

of ligand desolvation and force fields may not model atomic

polarizability. These methods also require user input of a fragment

test set, potentially introducing testing bias. If inhibitor knowledge

for a protein target is available, user input of a fragment test set

derived from these compounds can be desirable. However, it is not

a systematic approach and risks limiting the scope of discovery by

focusing on particular types/classes of fragments.

However, the growing database of structural data for protein-

small molecule complexes provides an opportunity for empirical

data-driven approaches to fragment binding prediction [23].

Empirical methods need not make assumptions regarding the

forces governing molecular interactions and have the potential to

predict rather than evaluate fragments. Wang et. al. took a ligand

fragment-centric view and calculated the residue preferences of

different fragments [24]. Chan et. al. took a protein residue-

centric view and determined the fragment preferences of the side

chains of Asp, Glu, Arg, and His [25]. These studies have some

limitations. First, they captured protein information using

residues, ignoring any effects the biochemical and biophysical

environment around the residues might have had on fragment

binding. Additionally, both focused on frequencies of interac-

tions, marginalizing less common residue-fragment interactions

that are real but observed less frequently within the PDB [26].

Lastly, they showed strong residue-fragment interaction patterns

but did not extend this to automated fragment prediction given a

target protein structure.

Here, we describe FragFEATURE, a novel fragment binding

predictor that overcomes many of the limitations of existing in silico

fragment binding predictors/evaluators. Using information from

the Protein Data Bank, we created a knowledge base linking local

protein structural environments to the small molecule fragments

they bind. Given structural environments from a target protein,

FragFEATURE compares them to the knowledge base to find

similar structural environments and identify statistically preferred

fragments. For a variety of protein-ligand complexes, we

demonstrate the method’s ability to predict fragments that are

substructures of the bound ligands. We also present six case studies

(three in main text and three in supporting information) of

fragment predictions corresponding to known inhibitors. These

fragment predictions can help identify promising compounds from

compound libraries. Such compounds have potential to form

favorable interactions with the protein target due to the presence

of the fragment but require additional evaluation as other moieties

in the compounds may prevent binding. Predicted fragments are

also starting points for fragment-based drug design. Furthermore,

knowledge of fragments favored by a protein pocket could give

insight to lead optimization by suggesting favorable chemical

groups. FragFEATURE thus powerfully leverages empirical

knowledge of protein-fragment interactions to predict fragments

for a target protein structure.

Results

Knowledge base of protein-fragment associations
The knowledge base is the underlying source of information for

fragment predictions. We mined 34,000 protein-ligand complexes

from the PDB (01/01/2013 snapshot) to create a knowledge base

of local protein structural environments (microenvironments)

annotated with the small molecule substructures (fragments) they

bind (Figure 1). In the knowledge base, there are 1.7 million

microenvironments and 225 thousand unique fragments with 250

million connections between microenvironments and individual

fragments.

To capture protein information, we used FEATURE [27] to

represent protein microenvironments–the physicochemical prop-

erties of a local region of protein structure computed and

represented as a vector of numbers (FEATURE is summarized

in Figure S1). FEATURE divides the local environment around a

point of interest into six concentric shells and evaluates 80

physicochemical properties within each, including atom type,

hydrophobicity, secondary structure, etc. This converts a local

structural environment (microenvironment) into a vector repre-

sentation of length (6680 = ) 480. There are 23 microenvironment

types in the knowledge base centered on residue side chains or the

protein backbone. The prevalence of each microenvironment type

within binding pockets varies significantly, indicating they are not

uniformly involved in ligand binding (Figure S2).

To capture fragment information, we divided 16,000 PDB

ligands into overlapping substructures ranging from three to

thirteen heavy atoms in size (Figure S3). These fragments

correspond to molecules from the PubChem Compound database

and have a PubChem identifier number for referencing.

Fragmentation of the PDB ligands produced 225,000 unique

fragments with fragments of different sizes having different

prevalence (Figure S4A). The number of microenvironments

linked to each fragment also varies greatly, indicating different

amounts of information regarding the microenvironments that

bind each fragment (Figure S4B). Some fragments are substruc-

tures of many and/or common ligands and thus associated with

many microenvironments. Others are substructures of few and/

Author Summary

In drug discovery, the goal is to identify new compounds
to alter the behavior of a protein implicated in disease.
With the very large number of small molecules to test,
researchers have increasingly studied fragments (com-
pounds with a small number of atoms) because there are
fewer possibilities to evaluate and they can be used to
identify larger compounds. Computational tools can
efficiently assess if a fragment will bind a protein target
of interest. Given the large number of structures available
for protein-small molecule complexes, we present in this
study a data-driven computational method for fragment
binding prediction called FragFEATURE. FragFEATURE
predicts fragments preferred by a protein structure using
a knowledge base of all previously observed protein-
fragment interactions. Comparison to previous observa-
tions enables it to determine if a query structure is likely to
bind particular fragments. For numerous protein structures
bound to small molecules, FragFEATURE predicted frag-
ments matching the bound entity. For multiple proteins, it
also predicted fragments matching drugs known to inhibit
the proteins. These fragments can therefore lead us to
promising drug-like compounds to study further using
computational tools or experimental resources.

Knowledge-based Fragment Binding Prediction
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or uncommon ligands and thus associated with few

microenvironments.

FragFEATURE robustly predicts fragments of validation
ligands

FragFEATURE predicts fragments preferred by the microen-

vironments of a protein pocket (Figure 2). It uses the assumption

that a microenvironment will bind the same fragments as its

‘‘nearest neighbor’’ (most similar) microenvironments (Text S1)

(Figure S5). It returns fragment predictions for sets of locally

proximal microenvironments that represent sub-regions of a

protein pocket (Figure S6). Each fragment prediction only uses

information from non-homologous proteins to prevent trivial

predictions. As the knowledge base contains all available protein-

ligand interactions, FragFEATURE dynamically filters for homol-

ogy. It selects nearest neighbor microenvironments/proteins such

that they share less than 50% sequence identity to the query

protein and to each other. The effective size of the knowledge base

thus changes with the structure under evaluation.

We validated FragFEATURE on four nucleotide and four non-

nucleotide ligands and found strong ability to predict fragments

matching the ligand bound. The nucleotides included adenine

(ADE), adenosine-59-diphosphate (ADP), flavin-adenine dinucleo-

tide (FAD), and nicotinamide-adenine dinucleotide (NAD). The

non-nucleotides included thiamin (VIB), thiamine diphosphate

(TPP), pyridoxal-59-phosphate (PLP), and triclosan (TCL). These

compounds tested FragFEATURE on ligands of different

frequency (Table S1), flexible ligands, and various chemical

moieties in different chemical contexts. We treat each ligand as a

set of chemical moieties (Figure S7) to identify those parts of a

ligand that the predicted fragments recapture.

FragFEATURE predicted fragments for 9,392 ligand-binding

pockets (Table S2) and we assessed performance using recall and

precision. Recall measures the fraction of bound ligand moieties

recaptured by the predicted fragments. Precision measures the

fraction of fragment predictions that are correct. Predictions are

labeled (1) correct, (2) incorrect, or (3) no information (i.e. no

ligand information is available to assess a fragment’s validity)

(Figure S8). For the validation ligand-binding pockets, FragFEA-

TURE achieves an average recall of 82% and precision of 74%

(Figure 3). For each test structure, the most significant correct

fragment prediction uses information from nearest neighbor

proteins sharing low sequence identity with the test structure

(,30%) (Figure S9). In many cases, nearest neighbor proteins fail

to align to the test structure.

For the previous analysis, we used observed ligand-binding

pockets. In other applications of FragFEATURE, the location and

extent of the ligand-binding pockets may be unknown. In those

cases, both pocket definition and conformation may alter the

microenvironments used by FragFEATURE to make predictions.

To determine the sensitivity to non-ideal microenvironments, we

tested computationally predicted pockets (fPocket [28]) from both

ligand-bound and ligand-free structures (Figure S10). We analyzed

the largest pocket of each protein chain as most small molecules

bind proteins in their largest pocket [29] or largest predicted

pocket [30]. For ligand-bound structures, we observe a slight

increase in recall (+3%) and decrease in precision (28%) across

9,121 predicted pockets (Table S2) (Text S2) (Figure S11). For

ligand-free structures, we observe a stronger decrease in both

recall (218%) and precision (212%) across 5,155 predicted

pockets (Table S2) (Text S3) (Figure S11).

FragFEATURE predicts fragments of inhibitors
We investigated the potential utility of FragFEATURE frag-

ment predictions for drug discovery. In the following case studies,

FragFEATURE rediscovered fragments of inhibitors for the

analyzed protein targets. These ‘‘drug-relevant fragments’’ can

inform different research approaches including virtual screening,

high-throughput experimental screening, or fragment-based drug

design.

Exotoxin A
Pseudomonas aeruginosa is an opportunistic bacterium that infects

immunocompromised patients [31]. Key to its potency is exotoxin

A, an ADP-ribosyltransferase that triggers cell death through

inactivation of eukaryotic ribosomal elongation factor 2. We

studied the catalytic domain of exotoxin A bound to its

endogenous NAD ligand (PDB ID: 3B78 [32]). FragFEATURE

predicts fragment 2331 (benzamide) with a p-value of 5.1610229

for the microenvironments proximal to the nicotinamide moiety of

NAD (Figure 4A). Ten microenvironments centered on the side

chain and/or backbone of residues Tyr439, His440, Gly441,

Tyr470, Ile471, Ala472, and Ala478 contribute to the prediction.

Their nearest neighbors bind seventeen rare, benzamide-contain-

ing PDB ligands including 09L, 0RU, 0RY, 18N, 3AB, 4AN, 78P,

BZC, DHQ, FRM, FRQ, G9D, G9G, G9H, G9L, KU8, and P34

(Table S3) (Figure 4C). Interestingly, one benzamide-containing

ligand, P34, is an exotoxin A inhibitor (Ki: 140 nM) and is

available in the PDB bound to exotoxin A (PDB ID: 1XK9 [33]).

This structure shows the benzamide-preferring microenviron-

ments to be in contact with the benzamide substructure of P34

(Figure 4B), validating it as a relevant drug fragment. The nearest

neighbor microenvironments show high local structural similarity

to the query and to each other (Figure 4C). They are

predominantly from the poly [ADP-ribose] polymerase (PARP)

superfamily (Tables S4 and S5), whose catalytic activity of ADP-

ribosylation uses NAD as the substrate [34]. As the fragment

prediction is in the active site of exotoxin A, FragFEATURE

unsurprisingly retrieves fragment information from proteins with a

similar catalytic activity. However, pairwise sequence identity

between the proteins is low, averaging 15% using the PDB’s

jFATCAT-flexible server [35,36] or 21% using the DaliLite server

[37] (Table S6). FragFEATURE thus identifies locally conserved

fragment binding motifs in proteins that have globally diverged.

This example highlights FragFEATURE’s ability to aggregate

information across diverse protein structures and ligands to detect

fragment enrichment. We observe similar capabilities in our

predictions for the related cholix toxin from Vibrio cholera (Text S4)

(Table S3).

Death-associated protein kinase 1 (DAPK1)
DAPK1 is a serine/threonine kinase involved in regulating cell

survival, apoptosis, and autophagy [38]. We analyzed the kinase

domain in complex with ADP (PDB ID: 2W4J [39]) and found

four microenvironments binding the adenine moiety of ADP to

prefer fragment 13509097 with a p-value of 1.161029 (Figure 5A).

Figure 1. Knowledge base of protein microenvironments linked to ligand fragments. For each protein-ligand complex from the PDB, we
identify residue atoms interacting with the ligand and note the ligand atoms proximal to them (semi-transparent shaded regions) (top). Next, the
FEATURE microenvironments of the residue atoms are calculated (semi-transparent circles) (center). We then map ligand atoms to their pre-
computed fragment lists and link them to their proximal microenvironments to form the knowledge base (bottom).
doi:10.1371/journal.pcbi.1003589.g001
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These microenvironments from residues Val27, Ala40, Leu93,

and Glu94 when combined with a fifth from Val96 prefer

fragment 2331 (benzamide) with a p-value of 1.061028

(Figure 5B). The protein structures that FragFEATURE uses

fragment information from consists of serine/threonine kinases,

tyrosine kinases, or dual specificity kinases from Homo sapiens

(Table S7). Their average sequence identity to DAPK1 is 24%

(jFATCAT) or 27% (DaliLite) (Table S8). While FragFEATURE

also predicts benzamide for exotoxin A, the benzamide here

originates from different PDB ligands, primarily STU (stauros-

porine) but also 0CE, 609, KSA, and SKE (Table S9).

Importantly, FragFEATURE provides the information supporting

a fragment prediction, elucidating differences between seemingly

identical fragment predictions. Staurosporine, the main ligand

contributing to both predictions, is an inhibitor of DAPK1 (KD:

1.4 nM). A crystal structure of staurosporine-bound DAPK1

(PDBID: 1WVY [40]) reveals the predicted fragments to be

overlapping and in close proximity to the microenvironments

preferring them (Figure 5C). These inhibitor fragments demon-

strate non-independent predictions, where the fragments are co-

occurring and overlapping substructures of a bioactive compound.

This suggests the larger molecule formed by the aggregation of

these fragments may be important for bioactivity. We also observe

similar non-independent predictions with Abl tyrosine kinase (Text

S5) (Figure S12).

Atypical protein kinase C (aPKC)
The various isoforms of atypical protein kinase C are involved

in cancer development and progression [41,42]. While elevated

aPKC levels correlate with chemotherapy resistance [43], depleted

or inactivated aPKC can improve chemotherapy response [44],

making aPKC an attractive drug target. When applied to the

kinase domain of aPKC bound to adenine (PDB ID: 4DC2 [45]),

FragFEATURE predicted multiple fragments that deviated from

the protein’s natural ligand, ATP. Most significantly, five

microenvironments proximal to the adenine moiety predicted

fragment 1049 with a p-value of 9.9610215 (Figure 6A). The

contributing microenvironments originated from residues Ala271,

Tyr324, and Val325. We identified an alternate structure of aPKC

bound to PDB ligand C58 (PDB ID: 3ZH8 [46]), a novel small

molecule inhibitor of aPKC (IC50: 86 nM). Fragment 1049 is a

substructure of C58 and is in close proximity to the corresponding

microenvironments from 3ZH8 (Figure 6B).

Figure 2. FragFEATURE predicts fragments for a protein pocket of interest. Given a pocket of interest as a series of microenvironments
(semi-transparent circles), we compare each microenvironment to knowledge base microenvironments of the same type to retrieve the five most
similar non-homologous neighbors. Each neighbor has a list of bound fragments for which a hypergeometric p-value is determined. For spatially
proximal microenvironments (orange, blue, and magenta circles), we combine fragment hypergeometric p-values for shared fragments to generate
Fisher’s p-values. Denoted with an asterisk are statistically significant fragments with p-value(**),p-value(*).
doi:10.1371/journal.pcbi.1003589.g002

Figure 3. FragFEATURE performance on the validation ligands. A) Chemical structure (heavy atoms) of each validation ligand. B)
FragFEATURE recall and precision on each validation ligand.
doi:10.1371/journal.pcbi.1003589.g003
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In a spatially distinct part of the pocket, a set of microenviron-

ments arising from residues Arg273, Thr385, and Asp386

predicted fragment 241 with a p-value of 9.161024 (Figure 6D).

We structurally validated this fragment using a crystal structure of

aPKC bound to BI1 (PDB ID: 1ZRZ [47]). BI1 is a weak aPKC

inhibitor (IC50: 3.5 mM) that contains fragment 241 as a

substructure. In the crystal structure of aPKC bound to BI1,

fragment 241 is in proximity to the microenvironments predicted

to bind it (Figure 6E). The two fragment predictions for aPKC

thus correspond to two unique inhibitor compounds. These

fragments demonstrate the ability of FragFEATURE to make

multiple independent fragment predictions that can serve as

starting points in drug discovery for a protein target. We observe

similar independent fragment predictions for protein kinase A

(Text S6) (Figure S13 and S14).

To generate these fragment predictions, FragFEATURE

primarily uses knowledge base information from other serine/

threonine kinases as well as tyrosine kinases (Table S10). On

average, aPKC shares 22% (jFATCAT) or 29% (DaliLite)

sequence identity with these structures (Table S11). Unsurprising-

ly, multiple nearest neighbor microenvironments arise from

cAMP-dependent protein kinase (PKA). PKA and aPKC are both

members of the AGC Ser/Thr protein kinase family. Surprisingly,

multiple nearest neighbor microenvironments also arise from

glycogen synthase kinase 3 beta isoform (GSK3b) from the

CMGC Ser/Thr protein kinase family. Microenvironments from

Val325 and Asp386 of aPKC when compared to knowledge

base members of the same microenvironment type (,60,000)

retrieve microenvironments from GSK3b as one of the five

nearest non-homologous neighbors (Figure 6C and 6F). These

Figure 4. Fragment prediction and validation for exotoxin A. A) Fragment 2331 (benzamide) and the microenvironments from the query
exotoxin A structure associated with the fragment prediction. B) PDB ligand P34 and an alternate structure of exotoxin A bound to P34. The
benzamide substructure of P34 is in pink. C) Example nearest neighbor microenvironments. The benzamide substructure of the bound ligands is in
pink. The percent sequence identity between each knowledge base structure and exotoxin A is in parentheses. 1UK0, 3C49, 3KCZ, 3GEY, and 3HKV
are members of the poly [ADP-ribose] polymerase superfamily while 3KI0 is cholix toxin. Proteins are shown in cartoon representation with
microenvironments as semi-transparent spheres. Microenvironment color scheme is arbitrary but consistent between panels. Side chains
corresponding to microenvironments are shown in stick representation. Ligands are also drawn in stick representation.
doi:10.1371/journal.pcbi.1003589.g004
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microenvironments are located at opposite ends of the protein

pocket, suggesting extended pocket similarity between aPKC and

GSK3b. Interestingly, protein kinase C inhibitors bisindolylma-

leimide I (BI1) and the structurally related bisindolylmaleimide IX

(Ro 318220) have a side effect of stimulating glycogen synthesis

[48]. After significant research, inhibition of GSK3b was identified

as the mechanism of action [49,50]. FragFEATURE’s unexpected

double retrieval of GSK3b as a nearest neighbor correlates well

with experimental findings. This example demonstrates the

identity of nearest neighbor proteins found by FragFEATURE

can have interesting implications for the specificity of fragments/

drugs for a pocket.

Discussion

In this study, we demonstrate a novel approach for in silico

fragment prediction given a protein structure of interest.

FragFEATURE uses a knowledge base of local structural

environments linked to ligand fragments. There are two classes

of ligand fragments: ‘‘full substructure set’’ contains all possible

substructures, ‘‘molecule parts set’’ contains non-overlapping

substructures. Existing data-driven fragment binding predictors

use the latter because it generates a tractable number of

chemically intuitive parts that are assumed to be the chemically

important fragments. Intuitive parts could result from dividing a

molecule into ring systems, substituents, and linkers [24].

However, doing so on compounds such as those used in the

exotoxin A example to predict benzamide would not yield the

benzamide fragment in all cases, obscuring the underlying

protein-benzamide interaction pattern. We circumvent this

issue by using ligand fragments resembling a ‘‘full substructure

set.’’ Similar to Lipinski’s ‘‘rule of five’’ [51] that describes small

molecule properties correlated with oral bioavailability, there is

a ‘‘rule of three’’ for fragments [52]; fragment hits identified

through fragment screening tend to satisfy molecular weight

,300 Daltons, the number of hydrogen bond donors is #3, the

number of hydrogen bond acceptors is #3, and ClogP is #3.

However, many successful fragments violate the ‘‘rule of three’’

[53]. Additionally, fragments in the ‘‘rule of three’’ refer to

compounds at least 120 Daltons in molecule weight, which is

larger than the fragments in FragFEATURE’s knowledge base.

Thus, we do not employ any filters and include in the

knowledge base all fragments that are a substructure of a

PDB ligand.

Figure 5. Fragment prediction and validation for DAPK1. A) Fragment 13509097 and the microenvironments from the query DAPK1 structure
associated with the fragment prediction. B) Fragment 2331 (benzamide) and the microenvironments from the query DAPK1 structure associated with
the fragment prediction. C) PDB ligand STU and an alternate structure of DAPK1 bound to STU. Fragment 13509097 and 2331 substructures of STU
are in pink. Proteins are shown in cartoon representation with microenvironments as semi-transparent spheres. Microenvironment color scheme is
arbitrary but consistent between panels. Side chains corresponding to microenvironments are shown in stick representation. Ligands are also drawn
in stick representation.
doi:10.1371/journal.pcbi.1003589.g005

Knowledge-based Fragment Binding Prediction

PLOS Computational Biology | www.ploscompbiol.org 8 April 2014 | Volume 10 | Issue 4 | e1003589



However, the relative frequency of these fragments varies

significantly in the knowledge base. Rare fragments do not pose a

problem to FragFEATURE because it uses structural similarity to

make predictions. This enables prediction of rare fragments if the

query microenvironments are similar to knowledge base microen-

vironments binding the rare fragments. Indeed, the predicted

inhibitor fragments in the presented case studies are all relatively

rare. FragFEATURE filters out extremely rare fragments, such as

fragments occurring a single time in the knowledge base. We

observed inclusion of such data-poor fragments increased the

number of incorrect predictions (Text S1) (Figure S5A). Frag-

FEATURE therefore excludes extremely rare fragments, even

Figure 6. Fragment prediction and validation for aPKC. A) Fragment 1049 and the microenvironments from the query aPKC structure
associated with the fragment prediction. B) PDB ligand C58 and an alternate structure of aPKC bound to C58. Fragment 1049 substructure of C58 is in
pink. C) Example nearest neighbor microenvironment from GSK3b. Fragment 1049 of the bound PDB ligand 0KD is in pink. The percent sequence
identity between GSK3b and aPKC is in parentheses. D) Fragment 241 and the microenvironments from the query aPKC structure associated with the
fragment prediction. E) PDB ligand BI1 and an alternate structure of aPKC bound to BI1. Fragment 241 substructure of BI1 is in purple. F) Example
nearest neighbor microenvironment from GSK3b. Fragment 241 of the bound PDB ligand 679 is in purple. The percent sequence identity between
GSK3b and aPKC is in parentheses. Proteins are shown in cartoon representation with microenvironments as semi-transparent spheres.
Microenvironment color scheme is arbitrary but consistent between panels. Side chains corresponding to microenvironments are shown in stick
representation. Ligands are also drawn in stick representation.
doi:10.1371/journal.pcbi.1003589.g006
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though their inclusion can increase the number and diversity of

fragment hypotheses.

FragFEATURE’s strength lies in predicting protein-fragment

associations previously observed in the PDB, though there are

multiple ways to derive new associations (Text S7). Rare

microenvironments are those infrequently observed in ligand-

binding pockets. They pose a problem because they are likely to be

dissimilar to most knowledge base microenvironments. Lack of

similarity between query and knowledge base microenvironments

is more likely to produce incorrect predictions. We observed low

precision with the thiamin-binding proteins because the nearest

neighbors of the thiamin-binding microenvironments are not very

similar, compared to the nearest neighbors of the microenviron-

ments binding the other validation ligands (Figure S15). Of course,

fragment information from more dissimilar neighbors is less

reliable. In this data poor scenario, using fragment information

from fewer neighbors might mitigate the impact of distant

‘‘contaminating’’ microenvironments. We have found that the

microenvironment similarity score generally enriches for good

neighbors rather than achieving perfect order (Text S1) (Figure

S5A). Rare microenvironments are thus a weakness of FragFEA-

TURE; with time and more protein-ligand complexes, the

performance will improve. Moreover, FragFEATURE only

predicts fragments bound by the nearest neighbors. Thus, if all

nearest neighbors bind natural ligands, FragFEATURE (as

currently configured) will not predict a drug-related fragment

even if drugs are known to bind at that protein site. Future work

may focus on enriching FragFEATURE predictions for drug-like

fragments.

Using the PDB-derived microenvironment-fragment associa-

tions, FragFEATURE showed strong ability to predict fragments

corresponding to known ligands of a structure. These statistically

significant fragment predictions imply repeated observation of

microenvironment-fragment interaction patterns but do not imply

high affinity binding. This is a limitation stemming from how

FragFEATURE extracts fragment information from PDB ligands

(Text S8). Nevertheless, FragFEATURE achieved very high recall

for nucleotide and non-nucleotide ligands as a general, non-ligand-

specific method. Notably, it uses fragment information from

nearest neighbor proteins with low sequence identity to the test

structure. In rare cases, high sequence identity is observed (Figure

S9) due to FragFEATURE’s usage of the PDB’s pre-computed

50% sequence identity clusters. The PDB’s sequence identity

clusters do not group proteins with significantly different lengths.

On occasion, such proteins can possess high sequence identity over

the length of the shorter protein or over a local region (i.e. shared

domain), leading to the observation of high sequence identity

between a test structure and nearest neighbor protein. FragFEA-

TURE also predicted fragments for ligands bound by the structure

(holo predictions) and ligands/inhibitors known to bind the

structure (apo predictions). Apo fragment predictions are espe-

cially important as they reflect the most likely use case. As

performance decreased more for the ligand-free structures than

ligand-bound structures, pocket conformation is a key consider-

ation. In other work, we have demonstrated improvement in

protein functional site recognition using protein structure ensem-

bles from molecular dynamics [54,55]. Likewise, fragment

prediction on conformational ensembles should further improve

FragFEATURE’s predictive capabilities.

FragFEATURE performance also depends on the definition of

the ligand-binding pocket. As we use pocket microenvironments to

search the knowledge base for preferred fragments, both missing

and extraneous microenvironments can lead to false negative and

false positive predictions. We used fPocket, a good algorithm for

large-scale pocket prediction, but it struggled to identify the ligand-

binding site in ligand-free structures. Ligand-free protein confor-

mations make pocket detection difficult and incorporating

structural ensembles from molecular dynamics may improve

pocket detection. fPocket defines relatively large pockets, produc-

ing fragment predictions in protein regions with no bound ligand

in the analyzed structure or homolog structures. These predictions

are very hard to evaluate because we lack evidence of binding to

these extended regions. Use of pocket refinement algorithms like

SURFNET-ConSurf [56] could improve pocket definition and

thereby focus and improve fragment binding prediction. It uses

evolutionary conservation information from the ConSurf-DB [57]

to trim predicted pockets to regions proximal to conserved

residues. Given that pockets with conserved residues likely have

conserved structure, such pockets might be easier tests cases for

FragFEATURE. Hence, to avoid biasing performance, we did not

perform pocket trimming.

Two additional considerations for FragFEATURE performance

are microenvironment independence and multiple hypothesis

testing. FragFEATURE assumes microenvironment independence

when calculating Fisher’s p-values for fragments of a microenvi-

ronment set. We determined this to be reasonable even for

spatially proximal microenvironments (Text S9). Additionally,

there is testing of multiple fragments and microenvironment sets

for statistically significant fragments. Such multiple hypothesis

testing normally requires p-value correction, but we argue it to be

largely unsuitable and unnecessary in the context of this work

(Text S10).

In summary, we present a novel approach to fragment binding

prediction that differs from existing predictors in multiple respects.

FragFEATURE uses a knowledge base of all available microen-

vironment-fragment interactions, retaining information contained

in common and rare interactions. By using machine learning to

compare a query protein pocket to the knowledge base to identify

statistically preferred fragments, FragFEATURE performs pattern

recognition on the fly. However, unlike many machine learning

approaches, the method is transparent: predictions can be traced

back to individual microenvironment-fragment associations.

FragFEATURE is also hypothesis-free, requiring no initial input

of fragments to test. It provides the fragments similar protein

pockets bind, rather than estimates of fragment complementarity.

We show FragFEATURE predicts fragments corresponding to

bound ligands or ligands known to bind, where the ligands include

endogenous compounds with some drug-like compounds. It is

important to note that many drugs such as ATP mimetic kinase

inhibitors [58] possess parts of the native ligand and thus accurate

prediction of such fragments is important.

Importantly, FragFEATURE requires no prior knowledge of

ligands (endogenous or synthetic) that interact with the protein

target. It relies solely on the target’s 3D structure and can be

applied to any protein with a solved structure or high quality

homology model. Additionally, the structural space of protein

pockets is small, with the PDB showing good coverage of pocket

space [59]. DrugFEATURE, a related method that quantifies a

protein pocket’s druggability, has also shown druggable pockets to

be composed of microenvironments from known drug-binding

sites in the PDB [60]. Collectively, FragFEATURE’s reliance on

structural information, good coverage of pocket space by the PDB,

and shared microenvironments between druggable sites and

known druggable sites position FragFEATURE to possess an

advantage in studying less characterized proteins.

Other methods for identifying compounds for a protein target

include using information from (1) known bioactive compounds for

the target, (2) compounds that bind to homologs of the target, and
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(3) compounds that bind to proteins non-homologous to the target

but share binding specificity (i.e. bind similar endogenous ligands

as the target). Such compounds can serve as valuable starting

points in drug discovery [61], but there is also a weakness

associated with each approach. First, a protein target’s binding site

can be promiscuous and have the ability to bind dissimilar ligands

[62]. Focusing on fragments from known bioactive compounds

may limit the scope of discovery. Second, numerous proteins show

global structural similarity but dissimilar ligand-binding pockets

[59]. Proteins homologous to a target may therefore have different

pockets and thereby bind different ligands, a behavior already

observed with protein kinases and their inhibitors [50]. Lastly, a

single ligand can be associated with multiple types of binding

environments (binding modes) [63]. Bioactive compounds taken

from proteins binding the same endogenous ligand may therefore

have limited relevancy. As a knowledge-based method, FragFEA-

TURE inherently captures these complex relationships between

proteins and ligands to the extent that they are represented in the

PDB. It identifies the relevant protein-ligand relationships on a

structure-by-structure basis. It can thus be a complementary tool

in understanding the relevancy of ligand fragments taken from

prior knowledge. Fragments found by both FragFEATURE and

existing strategies may deserve higher priority. As FragFEATURE

returns fragment predictions with probability estimates, it is also

possible to incorporate user-defined prior probabilities for the

fragments to be used in calculating refined posterior estimates.

Fragments predicted by FragFEATURE may overlap with

available binding information for the target or be intuitive to a

researcher with expertise in structure-based or fragment-based

drug design. However, FragFEATURE provides a systematic

statistical framework within which to interpret a fragment

prediction along with the structural evidence for the prediction.

FragFEATURE uses fragment information from proteins with low

sequence identity to the target protein. The retrieved nearest

neighbor protein structures may highlight unexpected local

structural similarity. Shared fragment preferences between pro-

teins can provide an opportunity for polypharmacology [64] or

highlight potential off-target complications [65]. The fragments

bound by these nearest neighbors may also suggest variations of a

fragment that could alter potency or specificity. FragFEATURE as

a knowledge-based method provides a means to understand the

binding mode of a fragment across unique proteins. As a

systematic and quantitative approach, it complements and

supplements existing approaches and human intuition in the drug

discovery pipeline.

Methods

Feature microenvironments
The FEATURE software [27] captures the physicochemical

information around a point of interest by segmenting the local

environment into six concentric shells, each of 1.25 Å in thickness

(Figure S1A). Within each shell, FEATURE evaluates 80

physicochemical properties including atom type, residue class,

hydrophobicity, and secondary structure. It ignores all heteroatom

information. This enables conversion of a local structural

environment into a numeric vector of length 480 (6 shells680

properties) (Figure S1B). These local structural environments are

termed microenvironments.

Microenvironment centers correspond to residue side chains or

backbone atoms. For the side chain centers, we use those defined

by PocketFEATURE [66], a FEATURE-based pocket similarity

algorithm. A center is either a physical atom location (e.g. alanine

beta carbon, ALA.CB) or the midpoint of multiple physical atom

locations (e.g. center of phenylalanine benzene ring, PHE.PSEU).

We use PSEU to indicate a pseudo atom location. There are

twenty-one microenvironments originating from amino acid side

chains (from PocketFEATURE), twenty microenvironments orig-

inating from the backbone oxygen, and nineteen microenviron-

ments originating from the backbone nitrogen (Figure S1C). We

group microenvironments from the backbone into a general

oxygen type (RES.O) and nitrogen type (RES.N). There are thus

23 microenvironment types.

Microenvironment similarity
To determine microenvironment similarity, we adopted the

approach used by PocketFEATURE [66]. PocketFEATURE first

derives the background variation of microenvironment properties

and uses this to calculate a Tanimoto similarity coefficient between

a pair of FEATURE vectors. Similar to the protocol used in

PocketFEATURE, we define background variation as the

observed variation in microenvironment properties across non-

redundant proteins. We measure it by calculating the standard

deviation of each property in a microenvironment type’s non-

redundant set. The non-redundant set of a microenvironment type

contains microenvironments selected from proteins with less than

95% sequence identity. In making the non-redundant set for the

backbone oxygen type (or nitrogen type), we include 500 non-

redundant microenvironments from each of the 20 (or 19)

contributing residues.

We use PocketFEATURE’s Tanimoto coefficient to perform

similarity comparisons between microenvironments of the same

type (e.g. backbone oxygen to backbone oxygen). This Tanimoto

coefficient measures the similarity between a pair of microenvi-

ronment vectors (x and y) as the ratio of shared properties to non-

zero properties. Like PocketFEATURE, we define shared

properties as those whose difference is less than the standard

deviation of the property. If c is the number of shared properties

and a and b the number of non-zero properties in vector x and y
respectively, the Tanimoto coefficient (Tc) is as follows:

Tc~
c

azb{c

Ligand fragmentation
Each PDB ligand is fragmented into overlapping substructures

ranging from three to thirteen heavy atoms in size, which we

regard as fragments of the ligand (Figure S3). We first retrieve the

ligand substructures using the PubChem superstructure search

function in PUG SOAP, a web services access layer to PubChem

functionality. Default parameters are used in addition to hydrogen

stripping of the ligand and prohibiting single and double bonds to

match aromatics. We filter the retrieved substructures (fragments)

for size (three to thirteen heavy atoms) and compute the atom-to-

atom mapping between the fragments and the ligand using SMSD

[67]. This enables the creation of a fragment list for each ligand

heavy atom.

Knowledge base construction
From the PDB (01/01/2013 snapshot), we retrieve all protein

X-ray crystallography structures with resolution less than 3 Å. We

then select the structures bound to small molecules, ignoring small

molecules less than three heavy atoms, greater than 100 heavy

atoms, or corresponding to commonly used buffers and crystal-

lization agents. PDB ligands with over 100 heavy atoms tended to

produce errors with either PUG SOAP or SMSD. For the

resulting protein-ligand complexes, we calculate the location of all

pseudo atoms (see Feature Microenvironments). We then use a

distance cutoff to identify protein atoms/pseudo atoms
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‘‘interacting’’ with the ligands, keeping side chain atoms/pseudo

atoms within 5 Å and backbone atoms within 4 Å of a ligand

heavy atom. The shorter distance cutoff for the backbone atoms

helps exclude atoms participating in intra-protein hydrogen

bonding and thus not involved in ligand binding. We converted

the collected protein atoms/pseudo atoms into microenvironments

using FEATURE and divided them into 23 types (see Feature

Microenvironments). By definition, each microenvironment is

‘‘interacting’’ with one or more ligand heavy atoms. For each

ligand heavy atom interacting with a microenvironment, we

retrieve its associated fragment list and take the union of these lists

as the microenvironment’s associated fragments (Figure S3). This

produces the link between microenvironments and fragments

(Figure 1).

Fragment prediction for single microenvironments
Given a query microenvironment, we compare it to knowledge

base microenvironments of the same type. This allows us to sort

the knowledge base by similarity to the query using the Tanimoto

coefficients. We then filter the knowledge base for homology by

first removing microenvironments from proteins homologous to

the query. Of the remaining microenvironments, we keep only the

most similar microenvironment for microenvironments from

homologous proteins. This ensures the final knowledge base

microenvironments are non-homologous to the query and to each

other. We define homology as $50% sequence identity as pre-

computed by the PDB. This produces a query-specific non-

homologous knowledge base ordered by microenvironment

similarity to the query.

To determine the fragment binding preferences of the query

microenvironment, we take the k most similar non-homologous

microenvironments (k nearest neighbors) and their corresponding

fragment list. For each fragment in these lists, we calculate a

hypergeometric p-value. This requires the number of neighbors

selected (k), the number of neighbors binding the fragment (m), the

number of microenvironments in the non-homologous knowledge

base binding the fragment (M), and the number of microenviron-

ments in the non-homologous knowledge base (N). The hypergeo-

metric p-value (phg) for a fragment is as follows:

phg~
Pk
m

M

m

� �
N{M

k{m

� �

N

k

� �

This p-value varies with different values of k and different

fragment inclusion thresholds for M. We tested a grid of values

where k~ 1,5,10,15,20½ � and M§ 1,5,10,15,20,25,50,100½ � and

set k~5 and M§5 (Text S1).

Performance of fragment prediction for single
microenvironments

For each of the 23 microenvironment types in the knowledge

base, we perform fragment prediction on the microenvironments

of the non-redundant set (see Microenvironment Similarity). We

take the most significant fragment predicted for a microenviron-

ment and compare it to the microenvironment’s fragment list to

determine its validity (correct/incorrect). We then use the

predicted fragments’ p-values and validity labels to compute a

precision recall curve for each microenvironment type. The area

under the precision recall curve (AUPR) serves as a measure of

overall performance. An AUPR approaching 1.0 indicates similar

microenvironments bind similar fragments.

Validation data set
We selected eight ligands to validate FragFEATURE’s perfor-

mance: adenine (ADE), adenosine-59-diphosphate (ADP), flavin-

adenine dinucleotide (FAD), nicotinamide-adenine dinucleotide

(NAD), pyridoxal-59-phosphate (PLP), triclosan (TCL), thiamine

diphosphate (TPP), and thiamin (VIB). For the ligand-bound

structures, we retrieved all structures from the PDB in complex

with the validation ligands. For the ligand-free structures, we

retrieved all protein-only structures from the PDB homologous

(95% sequence identity) to the ligand-bound structures.

Pocket detection
Three types of pockets are of interest: observed ligand-binding

pockets, predicted pockets from ligand-bound structures, and

predicted pockets from ligand-free structures. An observed ligand-

binding pocket contains the side-chain atoms within 5 Å and

backbone atoms within 4 Å of any validation ligand heavy atom. A

predicted pocket for a ligand-bound or ligand-free structure is the

atoms forming the largest pocket predicted by fPocket. fPocket

performs pocket detection for each protein chain individually with

the ligand information removed. Protein atoms comprising the

different pockets are then passed to FEATURE to calculate their

microenvironments. Microenvironments centered on a pseudo

atom are calculated if any of the atoms contributing to the pseudo

atom location are part of the pocket (see FEATURE Microenvi-

ronments).

Microenvironment sets within a protein pocket
Spatially proximal microenvironments may have similar frag-

ment preferences due to their proximity. Thus, for a microenvi-

ronment in a pocket, we retrieve all microenvironments within

5.5 Å to create a set of N spatially proximal microenvironments.

However, given that some microenvironments in the set may not

be informative for fragment prediction, we also create all subsets of

size N–1 to 2 microenvironments (Figure S6). Repeating this

procedure for each microenvironment in the pocket produces all

combinations of spatially proximal microenvironments. We use

these combinations to search for enriched fragment preferences

across the included microenvironments.

Fragment prediction for microenvironment sets
Each microenvironment of a microenvironment set has

fragment preferences represented as a list of fragment hypergeo-

metric p-values (see Fragment Prediction for Single Microenvi-

ronments). Fragments with a hypergeometric p-value for all

microenvironments within a set are consensus fragments regardless

of the hypergeometric p-value. We keep only consensus fragments

to ensure agreement and coherence among the microenviron-

ments of a set. For each consensus fragment, we use Fisher’s

method to combine the hypergeometric p-values (phg) from n

microenvironments, calculating the following test statistic that

follows the chi-squared distribution with 2n degrees of freedom:

X2~{2
Pn
i~1

ln phg,i

� �
This aggregates a fragment’s hypergeometric p-values into a

single Fisher’s p-value, resulting in a Fisher’s p-value ranked list of

fragments for each microenvironment set (Figure 2). We remove

non-significant fragments using an acceptance threshold of 1022.

We also remove microenvironment sets contained within a larger

set that has a better p-value because they do not contain new

information.
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FragFEATURE recall and precision
Recall measures the fraction of the bound ligands predicted by

the fragments. We treat each validation ligand as a set of chemical

moieties (Figure S7). Bound moieties are those with at least three

pocket microenvironments in proximity (within 5 Å of side chain

microenvironments or within 4 Å of backbone microenviron-

ments). For the ligand-free structures, we infer bound moieties

using a homologous (95% identical) ligand-bound structure. A

moiety is predicted if a predicted fragment contains more than

50% of the moiety’s atoms. Recall is thus the fraction of bound

moieties recaptured by the predicted fragments: Recall = #
predicted moieties/# bound moieties

Precision is the ratio of correct fragment predictions to total

fragment predictions. We identify correct fragments using ligand

information from both the structure analyzed (query) and the

structures homologous to the query. This helps take into account

that proteins may bind multiple ligands at a given site. We retrieve

PDB structures sharing at least 95% sequence identity to the query

and use BLAST+ [68] to align their protein sequences to the

query. This provides a residue-to-residue mapping between the

query and each homolog such that the query microenvironments

can be mapped to corresponding atom or pseudo atom locations

in the homolog structures.

Fragment predictions arise from microenvironment sets and are

correct, incorrect or no information (Figure S8). Correct fragments

are in proximity to one or more of the microenvironments in the

microenvironment set, in either the query structure or a homolog

structure. Proximity refers to a maximal distance of 5 Å to a side

chain microenvironment or 4 Å to a backbone microenvironment.

Incorrect fragment predictions conflict with the fragments in

proximity to the microenvironments of the set. ‘‘No information’’

fragment predictions are those in regions of a protein where no

structure has ligand-binding information. The validity of these

predictions is unclear and thus we exclude them. Precision is thus:

Precision = # correct fragment predictions/# fragment predic-

tions

Sequence identity of nearest neighbors
Each fragment prediction is made by a set of microenviron-

ments with each microenvironment using fragment information

from the five nearest non-homologous neighbors. A subset of these

nearest neighbors contributes to the fragment prediction (e.g. bind

the predicted fragment). We calculate the percent sequence

identity between the query structure and this subset of nearest

neighbor protein structures. We analyze the most significant

correct fragment prediction for each test structure, so test proteins

without a correct fragment prediction are excluded from analysis.

To determine the percent sequence identity between a pair of

proteins, we use BLAST+ to align their amino acid sequences. We

consider alignments that fail to cover at least 20% of the smaller

protein or that possess an alignment E-value $10 (default) as failed

alignments.

FragFEATURE computation time
Computation time varies with the size of the pocket of interest as

measured by the number of microenvironments comprising the

pocket. The process begins with an input list of atoms defining the

pocket and ends with an output file of fragment predictions. The

ligand-binding pockets generally possess five to fifty-five microen-

vironments. We select eleven pocket sizes to cover this range evenly

and time five pockets for each pocket size to obtain computation

time as a function of pocket size (Figure S16). Computations are

performed on an Intel Xeon 2.6 GHz based system.
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