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Abstract

Pattern recognition has been employed in a myriad of industrial, commercial and academic applications. Many techniques
have been devised to tackle such a diversity of applications. Despite the long tradition of pattern recognition research, there
is no technique that yields the best classification in all scenarios. Therefore, as many techniques as possible should be
considered in high accuracy applications. Typical related works either focus on the performance of a given algorithm or
compare various classification methods. In many occasions, however, researchers who are not experts in the field of
machine learning have to deal with practical classification tasks without an in-depth knowledge about the underlying
parameters. Actually, the adequate choice of classifiers and parameters in such practical circumstances constitutes a long-
standing problem and is one of the subjects of the current paper. We carried out a performance study of nine well-known
classifiers implemented in the Weka framework and compared the influence of the parameter configurations on the
accuracy. The default configuration of parameters in Weka was found to provide near optimal performance for most cases,
not including methods such as the support vector machine (SVM). In addition, the k-nearest neighbor method frequently
allowed the best accuracy. In certain conditions, it was possible to improve the quality of SVM by more than 20% with
respect to their default parameter configuration.
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Introduction

In the last decades, we have witnessed a progressive increase of

data production and storage. Indeed, the informatization of most

aspects of human activities, ranging from simple tasks such as

phone calls to shopping habits, generates an ever increasing

collection of data that can be organized and used for modeling and

planning. At the same time, most scientific research projects – such

as in genetics, astronomy and neuroscience – generate large

amounts of data that needs to be analyzed and understood. This

trend has given rise to new terms such as big data [1,2]. Once such

data is organized in a dataset, it is necessary to find patterns

concealed in the vast mass of values, which is the objective of data

mining [3–10]. Because the identification of important patterns (e.g.

those that recur frequently or are rare) is impossible to be

performed manually, it is necessary to resort to automated pattern

recognition. Nevertheless, it is important to note that pattern

recognition remains also relevant for organizing and understand-

ing smaller sets of data, such as in medical diagnosis, industrial

quality control, and expensive data.

The problem of pattern recognition consists in assigning classes

or categories to observations or individuals [7,8,10]. This can be

done in two main ways: (i) with the help of examples or prototypes

(supervised classification); and (ii) taking into account only relation-

ships between the properties of the objects (unsupervised classification

or clustering). Though seemingly simple, pattern recognition often

turns out to be a challenging activity. This is mainly a consequence

of overlap between different groups in the data, i.e. objects in a class

have similar properties as those in other classes. However, several

other issues such as choice of features, noise, and sampling, also

impose further problems while classifying data [7,8,10]. Even

when the features are well-chosen and the data has good quality

(e.g. properly sampled and without noise), the results of the

classification will frequently vary with the choice of different

pattern recognition methods and respective parameters. This

situation is typically more critical for sparse data, presence of

noise, or non-discriminative features. In an attempt to circumvent

such problem and to obtain more robust and versatile classifiers, a

number of pattern recognition methods have been proposed in the

literature [11–13]. Yet, despite the long tradition of pattern

recognition research [10], there are no definite guidelines for

choosing classifiers. So, those faced with the need to apply pattern

recognition are left with the difficult task of choosing among

several alternative methods.

There are many works in the literature describing which

classifiers are more suitable for specific tasks (see e.g. [14–16]), but

only a few consider a more systematic quantitative analysis of their

performance. Typical datasets employed to compare the perfor-

mance of different methods include real world and/or artificial

data. Advantages of using real datasets include the presence of

non-trivial relationships between variables, which may strongly

influence the performance of a classifier, the fact that the obtained

results will usually be of high confidence when used for samples
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obtained in the same domain and using a similar criteria, and the

presence of noise or unavailable information about the samples

(hidden variables). But there is a main drawback associated with

using real-world data. Even if one manages to consistently

compare the results obtained with hundreds of real world datasets,

the results still remain specific to the datasets being used. Trying to

extend the information gained in such analyses to a different

dataset can be ineffective. Furthermore, obtaining more real data

to evaluate other classifier characteristics represents sometimes an

arduous task. This is the case of applications whose data

acquisition process is expensive. For these reasons, here we chose

synthetic datasets. Although such datasets are often not represen-

tative of specific real-world systems, they can still be used as

representations of large classes of data. For example, we can define

that all variables in the dataset will have a given Pearson

correlation, and study the behavior of the classifiers when setting

this as the main data constrain. In addition, artificial datasets allow

a systematic variation of respective parameters, and also provide

exact ground truths. A natural choice of distribution for the

variables in the dataset is the multivariate normal distribution.

This choice is related to the central limit theorem [17], which

states that, under certain conditions, the mean of a large number

of independent random variables will converge to a normal

distribution. All in all, we believe that the adoption of the

multivariate normal density is capable of modeling a representa-

tive number of real cases. Nevertheless, we observe that the

comparative performance of the methods present in this paper

may change for other databases or conditions.

Since one of our main concerns is conducting an accessible

practical study of the classifiers, we decided to consider the

classifiers implemented by the Weka software [18], which is

available at http://www.cs.waikato.ac.nz/ml/weka. In particular,

we decided to use Weka because of its popularity among

researchers. In addition, since the software is open-source, any

researcher can check the code of any specific classifier. Since Weka

includes many classifiers, we decided to select a subset of those

most commonly used [19].

One distinctive feature of the present work is the procedure we

use to compare classifiers. Many works in the literature try to find

the best accuracy that a classifier can give and then present this

value as the quality of the classifier. However, finding the highest

accuracy for a classifier is usually not straightforward. Addition-

ally, if this high accuracy can only be achieved for very specific

data and values of the classifier parameters, it is likely that for a

different dataset the result will be worse, since the parameters were

tuned for the specific data analyzed. Therefore, besides giving a

high accuracy, it is desirable that the classifier performs well

without being too sensitive to parameter changes. That is, a good

classifier should provide a robust classification for a reasonably

large range of values of its parameters.

This work is organized as follows. We start by describing the

generation of synthetic datasets and justifying its respective

parameters. Next, we introduce the measurements used to

quantify the classifiers performance. The comparative analysis

involves the following three approaches. First, we compare the

performance of the classifiers when using the default parameters

set by Weka. This is probably the most common way researchers

use the software. This happens because changing the classifier

parameters in order to find the best classification value is a

cumbersome task. Then, we address the variation of single

parameters of the classifiers, while maintaining other parameters

at their default values. That is, we study how the classification

results are affected when changing each parameter, given that

some parameters are more critical for the performance. Finally, in

order to estimate the optimum accuracy of the classifier, as well as

to verify its sensitivity to simultaneous changes of its parameters,

we randomly sample the sets of parameter values to be used in the

classifier.

Related works
Typical works in the literature dealing with comparison between

classifiers can be organized into two main groups: (a) comparing

among a relatively few methods for the purpose of validation and

justification of a new approach (e.g. [20–24]); and (b) systematic

qualitative and quantitative comparison between many represen-

tative classifiers. Examples of qualitative analysis in (b) can be for

example found in [19,25,26]. These studies perform a compre-

hensive analysis of several classifiers, describing the drawbacks and

advantages of each method. A quantitative analysis of classifiers

was performed in [27], where 491 papers comparing quantita-

tively at least two classification algorithms were analyzed.

Some studies in the literature are devoted to devising novel

methodologies to analyze statistically the results obtained from the

comparison of classifiers. The suitability of traditional measures

was investigated in [28], which concluded that the simplest

traditional accuracy indices should be preferred when the

comparison is not focused on specific classes. Some studies show

that many of the papers aiming at comparing the performance of

different classifiers are limited in the sense that they compare

several methods with respect to relatively few datasets [29,30].

Most importantly, the investigation carried out in [31] warns that

invalid conclusions can be drawn if specific statistical tests are not

applied.

Many comparative studies are specific to a given problem or

task. Perhaps this is a consequence of the ‘‘No Free Lunch

theorem’’, which states that, without any prior, no single method

can be preferred [32–34]. A comparison of three representative

learning methods (Naive Bayes, decision trees and SVM) was

conducted in [35], concluding that Naive Bayes is significantly

better than decision trees if the area under curve is employed as a

performance measurement. Other quantitative studies compare,

for example, artificial neural networks with other methods [36].

An extensive comparison of a large set of classifiers over many

different datasets performed in [37] showed that SVMs perform

well on classification tasks. Quantitative comparisons between

classifiers can be also found in specific domain problems, such as

in Bioinformatics [38], Computer Science [39–42], Medicine

[43,44], Civil Engineering [45] and Chemistry [46].

Some studies have investigated the influence of parameters on

the performance of classifiers. In [47] the authors studied the

sensitivity of parameters in accuracy-based learning systems,

concluding that particular thresholds should be taken into account

in order to prevent critical decreases in performance. A common

topic related to the study of classifiers sensitivity concerns the

optimization of parameters via heuristic methods. In [48] the

authors propose a method to optimize both the parameter values

and feature set for a SVM applied to the task of pedestrian

detection. A general framework for the parameter selection

problem employing Grid Search and Experiment Design is

detailed in [49]. Although Grid Search strategies tend to yield

better results, genetic methods can provide good results at a

smaller computational cost. For this reason, some papers deal with

the problem of optimizing the initial conditions of genetic

algorithms to improve their accuracy [50]. Finally, parameter

optimization has been studied in specific tasks, such as in biological

and textual applications [51,52].
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Materials and Methods

In this section we present a generic methodology to construct

artificial datasets modeling the different characteristics of real data.

In addition, we describe the measurements used to evaluate the

quality of the classifiers.

Artificial Data
Here we present an adapted method for generating random

datasets with a given ensemble of covariance matrices, which was

based on the study made by Hirschberger et al. [54]. We aim at

generating C classes of data with F features for each object, with

the additional constraint that the number of objects per class is

given by the vector ~NN~(n1,n2 . . . nC). This problem is mathe-

matically restated as finding C sets comprising F-dimensional

vectors, where each set has a number of elements specified by ~NN.

Furthermore, we aimed at generating data complying with the

three following constraints:

N Constraint 1: the variance of the i-th feature of each class is

drawn from a fixed distribution, fs.

N Constraint 2: the correlation between the i-th and j-th
dimension of each class are drawn from another fixed

distribution, fc.

N Constraint 3: we can freely tune the expected separation

between the classes, given by parameter a, which is explained

below.

Traditionally, constraints 1 and 2 are not fully satisfied to

generate the data. Many studies impose that all the classes display

approximately the same variances and correlations, by defining an

ensemble of covariance matrices with a fixed spectrum constraint

[55,56]. Unfortunately, this approach is somewhat artificial to

generate realistic data, since the assumption that all data classes

share similar relationships between their features is quite unlikely.

Our approach is more general because, given the shape of the

correlation distribution (e.g. U-shaped), the classes can exhibit all

kinds of correlations.

In order to generate the data with the parameters C, F and ~NN
complying with constraints 1, 2 and 3, we need C covariance

matrices (one for each class), where each diagonal and off-diagonal

element is drawn, respectively, from fs and fc. The most common

approach is to randomly draw the mentioned matrix elements

from probability density distributions given by fs and fc in order to

construct the desired matrices. Unfortunately, this process does not

guarantee a valid covariance matrix because every covariance

matrix must be positive and semi-definite [57]. To overcome this

problem we use a well-known property stating that for every

matrix G[Rn|m, the n|n matrix GGT is positive and semi-

definite [57]. This property allows us to create a random matrix G
that will generate a valid covariance matrix. The matrix G is

known as root matrix. Next, it is necessary to define a convenient

root matrix so that follows constraints 1, 2 and 3.

Hirschberger et al. [54] came up with an elegant demonstration

on how to create a covariance matrix following constraints 1 and

2. Using their algorithm, modified in order to specify the

separation between the classes (parameter a), it is possible to

create datasets having the following parameters:

N Number of objects per class ~NN: The number of instances

in each class can be drawn according to a given distribution.

The most common distributions to use are the normal, power-

law and exponential distributions. Nevertheless, in order to

simplify our analysis, here we use classes having an equal

number of instances, Ne, which varies from Ne~5 to Ne~100
elements.

N Number of classes C: This parameter is varied from C~2
to C~50.

N Number of features F: The case F~2 represents the

simplest case, since it permits the easy visualization of the data.

In order to improve the discriminability of the data, real world

datasets oftentimes are described by a larger number of

features. Here we vary F in the range [2,50]. Hereafter, we

refer to the dataset described by F features as DBFF.

N Standard deviation of the features: For each class, the

standard deviation of each feature is drawn according to a

given distribution fs. The process is repeated for each class,

using the same distribution fs.

N Correlation between features: For each class, the

correlations between the features are drawn according to a

given distribution fc. The process is repeated for each class

using the same distribution. This means that each class of our

dataset will show different values of correlation. For example,

instances from one class may be described by redundant

features, while the same features may be much more efficient

in describing samples from other classes. The most common

choices for fc are: (a) uniform, to represent heterogeneous data;

(b) zero mean normal, for mostly uncorrelated data; and (c) U-

shaped, for data with strong correlations. Here we chose a

uniform distribution for the correlations.

N Separation between the data (a): It is a parameter to be

varied throughout the experiments, quantifying how well-

separated are the classes, compared to their standard

deviation. This parameter is simply a scaling of the standard

deviation of the features for each class, i.e., the values drawn

from the distribution fs are divided by a. Since we randomly

draw the mean, mf , for each class in the range {1ƒmf ƒ1,

fs=a can be used to define an expected separation between the

classes. If a is large, the classes are well-localized and will

present little overlap. Otherwise, if a is small, the opposite will

happen. Clearly, the separation given by a depends on the

dimension of the space. Nevertheless, there is no need to define

a normalization for a, because we are just comparing classifiers

and not different configurations of the data.

In Figure 1 we show some examples of the data that can be

generated by varying a in a two-dimensional dataset.

Evaluating the performance of the classifiers
A fundamental aspect that should be considered when

comparing the performance of classifiers is the proper definition

of what quality means. It is impossible to define a single metric that

will provide a fair comparison in all possible situations. This means

that quality is usually specific to the application and, consequently,

many measurements have been proposed [53]. Nevertheless, there

are some measurements that have widespread use in the literature,

the most popular being the accuracy rate, f-measure (sometimes

together with precision and recall), Kappa statistic, ROC area

under curve and the time spent for classification (see [53] for a

comprehensive explanation of such measurements). Because we

are mostly interested in a more practical analysis of the classifiers,

we use only the accuracy rate, which is defined as the number of

true positives plus the number of true negatives, divided by the

total number of instances.

To measure the performance of the classifiers, we generate

artificial datasets using the method presented in the previous

section and calculate some statistics. The principal quantity
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extracted from each dataset is the average accuracy rate. In

addition, we also compute the variation of accuracy across

datasets, as this quantity is useful to quantify the confidence of the

classifier when the dataset is changed. The standard deviation of

accuracy rate computed over instantiations of the classifier with

distinct parameters is useful to quantify the sensitivity with respect

to a given parameter.

Results and Discussion

The performance of the classifiers was evaluated according to

three methodologies. The default values provided by Weka were

used first. We then examined the influence of each classifier

parameter on the discriminability of the data. Finally, we study the

performance when all classifier parameters are varied jointly. The

classifiers considered in the analysis are presented in Table 1.

Figure 1. Example of artificial dataset for 10 classes and 2 features (DB2F). It is possible to note that different classes have different
correlations between the features. The separation between the classes are (a) a~1, (b) a~5 and (c) a~7.
doi:10.1371/journal.pone.0094137.g001

Table 1. List of classifiers employed in the analysis.

Type Classifier name Name in Weka

Bayesian Naive Bayes bayes.NaiveBayes

Bayesian Network (Bayes Net) bayes.net

Tree C4.5 trees.J48

Random Forest trees.RandomForest

Simple Classification and Regression Tree (CART) trees.SimpleCart

Lazy k-Nearest Neighbors (kNN) lazy.IBk

Function Logistic functions.Logistic

Multilayer Perceptron functions.MultilayerPerceptron

Support Vector Machine (SVM) functions.SMO

List of classifiers evaluated in our study. The abbreviated names used for some classifiers are indicated after the respective name.
doi:10.1371/journal.pone.0094137.t001
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Comparison of classifiers using their default parameters
The default values of the classifiers are often adopted by non-

expert users, and provide a logical starting point for expert

researchers. In order to provide a comprehensive comparison

between classifiers, we employed the following parameters on the

aforementioned algorithm to create the artificial datasets. The

number of classes take the values C~f2,10,50g, the number of

features are F~f2,10,50g and the number of elements for each

class is Ne~f5,50,100g. One possible drawback of studying such

distinct scenarios is that depending on the value of the separation,

a, between the classes the accuracy of the classifiers might

‘‘saturate’’. For example, when increasing the number of features,

if the values of a remains fixed, we expect all classifiers to provide

accuracies close to 100%. Therefore, for each combination of the

Figure 2. Behavior of the accuracy rate as the number of features increases. As more attributes are taken into account, the kNN becomes
significantly better than the other pattern recognition techniques.
doi:10.1371/journal.pone.0094137.g002

Figure 3. One dimensional analysis performed with the parameter K of the kNN classifier. Panel (a) illustrates the default value of the
parameter (K~1) with a red vertical dashed line. The accuracy rate associated with default values of parameters is denoted by Cdef and the best
accuracy rate observed in the neighborhood of the default value of k is represented as Cmax. The difference between these two quantities is
represented by S(K)~Cmax{Cdef . Panel (b) shows how the accuracy rates vary with the variation of K in DB2F (each line represent the behavior of a
particular dataset in DB2F). Finally, panel (c) displays the distribution of S(K)~Cmax{Cdef in DB2F.
doi:10.1371/journal.pone.0094137.g003
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parameters C, F and Ne we performed a grid search to find the

value a70 of a such that the accuracy rate of the Naive Bayes

classifier is as close as possible to 70%. The idea behind this

procedure is that fixing the accuracy rate of one classifier will likely

avoid other classifiers from reaching too extreme values. The

Naive Bayes classifier has been chosen because, during the

Table 4. One-dimensional analysis of parameters performed in DB2F.

Classifier Parameter SST (%) DS (%) max S (%)

Bayes Net -D 0.00 0.00 0.00

kNN -K 6.62 2.45 12.75

kNN -I 0.00 0.00 0.00

kNN -F 0.00 0.00 0.00

kNN -X 0.00 0.00 0.00

C4.5 -U 20.18 0.72 1.25

C4.5 -S 0.04 0.26 1.00

C4.5 -A 0.00 0.00 0.00

C4.5 -C 0.69 0.54 2.00

C4.5 -M 0.86 0.76 2.75

C4.5 -N 0.23 1.36 2.75

Logistic -R 0.63 0.60 2.25

Logistic -M 0.84 0.61 2.75

Nave Bayes -K 20.74 1.15 1.75

Nave Bayes -D 25.79 3.64 1.25

Perceptron -D 251.25 7.17 237.75

Perceptron -C 0.00 0.00 0.00

Perceptron -H 1.74 1.61 6.25

Perceptron -L 1.30 0.88 3.75

Perceptron -M 1.17 0.83 3.75

Perceptron -N 1.00 0.66 3.00

Perceptron -V 0.74 0.75 2.50

Perceptron -E 0.00 0.00 0.00

Random Forest -I 0.02 0.14 1.00

Random Forest -K 20.09 0.64 24.50

Random Forest -depth 0.03 0.18 1.25

Random Forest -S 0.04 0.28 2.00

Simple CART -S 0.06 0.39 2.75

Simple CART -C 0.00 0.00 0.00

Simple CART -M 0.04 0.25 1.75

Simple CART -N 0.02 0.11 0.75

Simple CART -A 0.01 0.07 0.50

Simple CART -H 0.00 0.00 0.00

Simple CART -U 20.01 0.07 20.5

SVM -C 0.05 0.32 2.25

SVM -L 0.01 0.07 0.50

SVM -P 0.03 0.21 1.50

SVM -V 0.00 0.00 0.00

SVM -N 0.03 0.21 1.50

SVM (poly kernel) -E 1.38 1.29 4.50

SVM (NP kernel) -E 220.87 5.28 28.00

SVM (RBF kernel) -G 2.55 2.55 12.75

SVM (Puk kernel) -S 5.88 2.46 11.75

Comparison between the accuracy achieved with the default and the best parameter. The difference between the former and the latter in DB2F was summarized with
the average, the standard deviation and the maximum difference. Note that for most of the parameters the average SS(p)T is not significantly greater than zero,
suggesting that default parameters provide a good discriminability of the data.
doi:10.1371/journal.pone.0094137.t004
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experiments, it provided an accuracy close to the mean accuracy

of all classifiers. In order to explore the behavior of the classifiers

for accuracies close to 70%, but also to study what happens for

larger or smaller class separations, we generated datasets taking

the following values of class separability: a~f0:5a70,a70,1:5a70g.
Considering all four parameter combinations, we have a total of

Table 5. One-dimensional analysis of parameters performed in DB10F.

Classifier Parameter SST (%) DS (%) max S (%)

Bayes Net -D 0.00 0.00 0.00

kNN -K 0.01 0.04 0.25

kNN -I 0.00 0.00 0.00

kNN -F 0.00 0.00 0.00

kNN -X 0.00 0.00 0.00

C4.5 -U 20.05 0.29 0.75

C4.5 -S 20.01 0.13 0.25

C4.5 -A 0.00 0.00 0.00

C4.5 -C 0.27 0.30 1.25

C4.5 -M 1.32 0.96 3.50

C4.5 -N 27.44 1.75 22.75

Logistic -R 0.58 0.71 4.25

Logistic -M 0.81 0.73 4.25

Naive Bayes -K 22.91 1.64 1.25

Naive Bayes -D 219.20 3.10 211.75

Perceptron -D 256.10 5.33 246.50

Perceptron -C 0.00 0.00 0.00

Perceptron -H 7.06 2.53 13.25

Perceptron -L 2.27 1.11 5.50

Perceptron -M 2.33 1.00 4.25

Perceptron -N 1.01 0.77 4.00

Perceptron -V 0.45 0.76 2.75

Perceptron -E 0.00 0.00 0.00

Random Forest -I 5.67 1.73 10.50

Random Forest -K 0.54 0.98 3.75

Random Forest -depth 1.11 1.03 3.75

Random Forest -S 3.04 1.86 8.75

Simple CART -S 1.09 0.81 2.75

Simple CART -C 0.00 0.00 0.00

Simple CART -M 1.41 1.16 4.25

Simple CART -N 1.31 0.92 3.25

Simple CART -A 3.89 1.70 9.00

Simple CART -H 0.00 0.00 0.00

Simple CART -U 21.21 1.18 24.00

SVM -C 22.15 4.10 36.50

SVM -W 0.38 0.33 1.50

SVM -P 0.52 0.67 3.25

SVM -V 0.00 0.00 0.00

SVM -N 23.54 4.60 39.30

SVM (poly kernel) -E 23.57 4.40 37.75

SVM (NP kernel) -E 19.08 4.84 31.00

SVM (RBF kernel) -G 21.55 3.91 34.75

SVM (Puk kernel) -S 19.90 3.59 32.50

Comparison between the accuracy achieved with the default and the best parameter. The difference between the former and the latter in DB10F was summarized with
the average, the standard deviation and the maximum difference. The appropriate tuning of C, N, E, G and S can improve significantly the performance of the default
SVM.
doi:10.1371/journal.pone.0094137.t005
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34~81 different parameter configurations. For each configura-

tion, we take the mean value of 10 generated datasets.

The performance of each classifier over the 810 datasets,

considering Weka’s default parameters, is summarized in Tables 2

and 3. In Table 2, we show the percentage of parameter

configurations where the classifier in row i outperformed the

classifier in column j. The last column shows the percentage of

configurations where the classifier reached the best rank. It is clear

that the Multilayer Perceptron classifier outperformed the

Bayesian Network, C4.5, Simple CART and SVM when

considering the default parameters. Surprisingly, the Multilayer

Perceptron was only outperformed by the kNN, which is a much

simpler and faster classifier. Actually, on average the kNN

outperformed all classifiers, even cutting-edge classifiers like

SVM and C4.5. Another classifier known for its simplicity, the

Naive Bayes, also provided interesting results, showing an almost

equal or better ranking than all other classifiers besides the

Multilayer Perceptron. Since it is widely known that the Multilayer

Perceptron usually requires a longer execution time, these results

indicate that if the researcher has no a priori knowledge of the

classifier parameters, the Naive Bayes and kNN classifiers could

represent a good all-around option for using on his data.

Nevertheless, it is also important to note that one reason that

cutting-edge classifiers might not provide good results for the

default parameters is that they are conceived to be versatile

enough to be able to adapt to specific properties of the dataset.

Therefore, their parameters can be optimized to the task at hand

by using methods like grid search or simulated annealing. The

drawback is that such optimization is not always straightforward,

and needs an adequate training dataset.

The relative rankings of the classifiers provide concise informa-

tion about the fraction of times a classifier can be considered better

than the others. Nevertheless, an additional information needed to

provide a fairer comparison of classifiers is the difference of their

mean accuracies. This is necessary because the relative ranking

indicates whether the accuracy of a classifier is higher than the

other, but not how large the difference in accuracy is. In Table 3 we

show the mean difference in accuracy between the classifiers for

the 81 parameter configurations. Also shown on the last column is

the mean accuracy of each classifier over all configurations. By

comparing Tables 2 and 3 it is clear that although the Multilayer

Perceptron usually outperforms other classifiers, it is not always by

a large margin. For example, although the Multilayer Perceptron

is 72% of the time better ranked than the Random Forest, on

average the improvement is only 2.4%. Another interesting result

is that the kNN provided the highest mean accuracy. Comparing

the kNN with the Multilayer Perceptron the situation is as follows.

The kNN usually provides a larger accuracy than the Multilayer

Perceptron, but in cases where the Multilayer Perceptron is better

than the kNN, it becomes the best classifier. This means that in the

scenario where the default parameters are to be used, when the

accuracy given by the kNN is not satisfactory, it may be worth

using the Multilayer Perceptron instead.

Another interesting issue to be investigated concerns the

assessment of the discriminability of the classifiers as the number

of features increases continually from two to ten features. To

perform this analysis, we assessed the accuracy of the classifiers in

datasets having C~10, Ne~40 and F~f2 . . . 10g. The increase

in the number of features tends to result in higher accuracies.

Therefore, in order to avoid a trivial result of all classifiers

providing better results when including more features, for each

dataset we set a~10=F. In Figure 2 we show the variation of the

average accuracy as the number of features describing the dataset

is incremented. Three distinct behaviors can be clearly observed:

(i) the accuracy increases; (ii) the accuracy is nearly constant; and

(iii) the accuracy decreases. The only classifier in which the pattern

(i) was observed was the kNN classifier. The behavior (ii) is the

most common trend. Finally, the third effect is more prominent in

the case of the C4.5, Simple CART and Bayesian Network. All in

Figure 4. Example of the random parameters analysis. We use one of the artificial datasets and the kNN classifier. (a) By randomly drawing
1,000 different parameter combinations of kNN we construct a histogram of accuracy rates. The red dashed line indicates the performance achieved
with default parameters. (b) The accuracy rate for the default parameters are subtracted from the values obtained for the random drawing. The
normalized area of the histogram for values that are above zero indicates how easy is to improve the performance with a random tuning of
parameters.
doi:10.1371/journal.pone.0094137.g004
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all, these results suggest that the kNN performs significantly better

than others classifiers in higher (^10) dimensions.

Varying parameters: One-dimensional analysis
An alternative scenario in typical classification tasks arises when

the researcher or practitioner wants to improve the performance

of the classification by changing the values of the parameters. In

this case, we turn to the concept of sensitivity of the classification

with regard to the parameters. In other words, if a good

classification is achieved only for a very small range in the

parameter space, then for many applications it will be very difficult

to achieve the best accuracy rate provided by the classifier.

Conversely, if the classifier provides high accuracy rates for many

different configuration of parameters, then one expects that it will

consistently yield high-quality classifications irrespectively to the

chosen parameters.

To probe the sensitivity of the classifiers with regard to distinct

values or parameters, we analyzed the behavior of the accuracy

Figure 5. Distribution of the difference of accuracy rates observed between the random and default configuration of parameters.
(a) kNN; (b) C4.5; (c) Multilayer Perceptron; (d) Logistic; (e) Random Forest; (f) Simple CART; (g) SVM. Note that, in the case of kNN and SVM classifiers,
most of the random configurations yield better results than the default case.
doi:10.1371/journal.pone.0094137.g005
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rate curves when each parameter is varied separately while

keeping the remaining parameters set at their default values. This

one-dimensional analysis is illustrated in Figure 3. Since the

analysis of varying the classifiers parameters for all 81:10~810
generated datasets would be impossible, here we use only two

datasets. Both datasets have C~10 and Ne~40, the dataset we

call DB2F has F~2 and a~5, and the dataset called DB10F has

F~10 and a~1. The behavior of the accuracy with the adoption

of values different from the default for some parameters is shown

in Figures S1 and S2 in File S1. For the sake of completeness,

tables S1–S3 in File S1 show the accuracy rates obtained for the

case where default parameters were employed in the same

database.

An extensive analysis comparing the quality achieved with the

parameters set with default and non-default values is provided in

Table 3 for classifications obtained in DB2F. For each parameter,

we provide the average SST, the standard deviation DS and the

maximum value of S(p)~Cmax{Cdef , where Cmax and Cdef are

respectively the maximum accuracy observed when the parameter

p varies and the accuracy rate obtained with all the parameters set

at their default values. Therefore, the statistic computed over S(p)
quantifies how much the accuracy of the classification is influenced

when each parameter is set to a value different from the default.

Table 3 shows that SSTƒ0 for almost all parameters, with the

only exceptions being the number of seeds (K ) of the kNN and the

type (S) of SVM used. This result suggests that the default

parameters usually provide a classification performance that is

close to the optimum. Interestingly, even the maximum gain in

accuracy is usually small, as they do not exceed 6.25% in any

particular dataset (aside from the kNN and SVM classifiers).

Similarly to Table 4, Table 5 shows the results for single

parameter variation for classifications performed in DB10. We

note that a proper analysis of this table must consider the accuracy

rate obtained with default parameters (see Table S2 in File S1),

because the latter has a large variation across classifiers. Therefore,

if a classifier performs very well with parameters set with their

default values, one expects that a significant improvement through

one-dimensional variation of parameters will be less probable.

This effect becomes evident when one analyzes, for example, the

kNN. The default configuration of parameters yields high

accuracy rates (Cdef ^94%), while the average improvement

through one-dimensional analysis is only DS(K)~0:01%. A

significant improvement in the discriminability was observed for

the Multilayer Perceptron through the variation of the size of the

hidden layers (H). In a similar manner, a significant increase of

accuracy was observed when we varied the number of trees (I) of

the Random Forest. As for the SVM classifier, six of its parameters

allowed an increase of about 20%, which led to accuracy rates

higher than 94% in many cases. This result suggests that

appropriate parameter tuning in SVM might improve significantly

its discriminability.

Varying parameters: Multidimensional analysis
Although the one-dimensional analysis is useful to provide

relevant information regarding the variability of accuracy with

regard to a given parameter, this type of analysis deliberately

Table 6. Multidimensional analysis of parameters performed in DB2F.

# Classifier p-value Mean (%) Deviation (%) Maximum (%)

1 SVM 96.89 5.07 2.87 16.00

2 kNN 76.15 4.90 2.54 13.00

3 Random Forest 51.93 1.82 1.34 10.25

4 Simple CART 7.68 0.91 0.57 3.75

5 Multilayer Perceptron 4.87 1.28 1.00 6.75

6 C4.5 2.56 0.93 0.69 3.50

7 Logistic 0.88 0.77 0.48 2.75

Comparison of classifiers using a multidimensional analysis of classifiers evaluated in DB2F. p-value represents the percentage of cases where the random configuration
of parameters yields a classifiers that outperforms the classifier obtained with default parameters. Mean, deviation and maximum refer to the increase in accuracy
provided by the random configuration, when it outperforms the default configuration. In the case of the SVM, the random choice of parameters yields a classification
more accurate than the default classification in about 97% of the cases. In this case, the average and maximum improvement of quality are 5% and 16%, respectively.
doi:10.1371/journal.pone.0094137.t006

Table 7. Ranking of classifiers in DB2F.

# Classifier Average (%) Deviation (%)

1 SVM 78.1 5.0

2 kNN 75.9 6.2

3 Multilayer Perceptron 75.4 6.2

4 Random Forest 77.3 5.1

5 Logistic 73.5 6.0

6 Simple CART 72.8 6.3

7 C4.5 71.5 6.5

Ranking of classifiers in DB2F considering the best configuration of parameters among the 1,000 random configurations.
doi:10.1371/journal.pone.0094137.t007
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disregards the influence of possible mutual interdependencies

among parameters on the performance of the classifiers. In order

to consider this interdependence, we randomly sample the values

of parameters in a bounded range. More specifically, 1,000
random configurations of parameters for each classifier were

generated and each classifier was applied to discriminate the

classes in DB2F and DB10F. Note that the Naive Bayes and

Bayesian Net classifiers were not included in the multidimensional

analysis, since they only have binary parameters. In the next step,

we compared the performance of the best random configuration

with the performance achieved with the default parameters. An

example of the procedures adopted in the multidimensional

analysis is provided in Figure 4. A more ‘efficient’ possibility could

be based on the search of the best accuracy rates (considering all

configuration of parameters) through an optimization heuristic.

Nevertheless, we decided to avoid optimization heuristics because

this would imply many problems caused by the different kinds of

parameters used in distinct classifiers (e.g., nominal, binary,

integer, etc). Moreover, it would be difficult to avoid local

extremes which are typical of such approaches.

In Figure 5, we show the histograms of the accuracy rates

obtained with the random choice of parameters of the classifiers,

which were evaluated in DB2F. In order to summarize the main

characteristics observed in these histograms, in Table 6 we show

some statistics taken over the histograms. The p-value quantifies

the percentage of realizations in which a random configuration of

parameters improved the performance obtained with the default

configuration. Considering the cases where an improvement was

observed, we can summarize the values of accuracy in terms of

their average, standard deviation and maximum value. It is

noteworthy that the random choice of parameters usually reduces

the accuracy (i.e. p-valuev50:0%) for Simple CART, Multilayer

Perceptron, C4.5 and Logistic. This means that one should be

aware when choosing parameters other than the default config-

uration, since most of the random configurations impact the

performance negatively. Surprisingly, in almost every random

choice of parameters (96.89% of the cases) the accuracy of the

SVM increases. In the case of the kNN, the improvement is less

likely (p-value = 76.15%). The Random Forest shows a typical

small improvement in 52% of the realizations, in comparison with

SVM and kNN. Whenever the computing time for each dataset is

not very high, it is possible to generate many random configura-

tions and select that providing the highest accuracy. In this case,

the most important parameter extracted from Table 6 becomes

the maximum accuracy. This scenario is particularly useful for

SVM, kNN and Random Forest, since the performance can be

improved in 16%, 13% and 10%, respectively. Actually, SVM and

kNN emerge as the best classifiers when we consider only the best

realization among the 1,000 random configurations for each

dataset (see Table 7).

Repeating the above analysis for the classifications performed in

DB10F, one observes some differences in the results, which are

shown in Table 8. From the analysis of the means (third column),

it is clear that, apart from SVM, a significant improvement in

accuracy is much less likely. These results reinforce the premise

that default parameters generally provide an accuracy that is near

Table 8. Multidimensional analysis of parameters performed in DB10F.

# Classifier p-value Mean (%) Deviation (%) Maximum (%)

1 SVM 99.43 20.35 5.67 39.00

3 Random Forest 48.74 3.91 2.25 14.5

2 kNN 21.84 0.29 0.10 0.75

4 Simple CART 4.95 1.89 1.28 7.25

5 Multilayer Perceptron 4.11 3.25 2.46 12.00

7 Logistic 1.27 0.76 0.48 3.75

6 C4.5 0.47 1.23 0.90 3.50

Comparison of classifiers using a multidimensional analysis of classifiers evaluated in DB10F. p-value represents the percentage of cases where the random
configuration of parameters yields a classification that outperforms the classification obtained with default parameters. Mean, deviation and maximum refer to the
increase in accuracy provided by the random configuration, when it outperforms the default configuration. In the case of the SVM, the random choice of parameters
yields a classification more accurate than the default classification in about 99% of the cases. When this scenario occurs, the average and maximum improvement of
quality are 20% and 39%, respectively.
doi:10.1371/journal.pone.0094137.t008

Table 9. Ranking of classifiers in DB10F.

# Classifier Average (%) Deviation (%)

1 SVM 98.8 0.7

2 kNN 94.3 1.8

3 Random Forest 88.7 1.9

4 Logistic 72.4 4.7

5 C4.5 67.1 2.8

6 Simple CART 66.3 3.5

7 Multilayer Perceptron 50.9 2.3

Ranking of classifiers in DB10F considering the best configuration of parameters among the 1,000 random configurations.
doi:10.1371/journal.pone.0094137.t009
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to the optimum. However, as we found for DB2F, the

performance of SVM can be significantly improved by the

suitable configuration of parameters. Note that the average

improvement of 20.35% is equivalent to that found with a one-

dimensional variation in the complexity parameter (see parameter

C in Table 5). Therefore, the best configuration of the SVM can

be achieved by varying only one parameter. Again, if we consider

only the best configuration among the 1,000 random configura-

tions for each dataset, the SVM and kNN performs better than the

other methods (see Table 9).

Conclusions

Machine learning methods have been applied to recognize

patterns and classify instances in a wide variety of applications.

Currently, several researchers/practitioners with varying degrees

of expertise have employed computational tools such as Weka to

study particular problems. Since the appropriate choice of

parameters requires certain knowledge of the underlying mecha-

nisms behind the algorithms, oftentimes these methods are applied

with their default configuration of parameters. Using the Weka

software, we evaluated the performance of classifiers using distinct

configurations of parameters in order to verify whether it is feasible

to improve their performance. We should highlight here that

results obtained from the comparison of different classification

methods on the artificial dataset are not universal. This means

that, in particular cases, the rank of classifiers may assume

different configurations for distinct datasets, as it is widely known

that machine learning methods are case-based learning. Never-

theless, we believe that our multivariate normal dataset encom-

passes a wide variety of real problems.

The analysis of performance with default parameters in the

artificial dataset revealed that the kNN usually outperforms the

other methods. The Multilayer Perceptron performed better than

Bayesian Network, C4.5, SVM and Simple CART in most

datasets. Unfortunately, this average gain is not significative and

could not be justifiable in practical applications as the computa-

tional cost of the Multilayer Perceptron is higher than the cost of

the other methods. The Naive Bayes also outperformed the

Bayesian Network, C4.5, SVM and Simple CART. Surprisingly,

the SVM implemented by Weka displayed an overall performance

lower than the other methods when default parameters were

employed in the analysis. When just one parameter was allowed to

vary, there was not a large variation in the accuracy compared

with the classification achieved with default parameters. The only

exceptions were the parameter K of the kNN and parameter S of

SVM (with Puk kernel). In these cases, the appropriate choice of

the parameters enabled an average increase of 6% in accuracy.

Surprisingly, we found that when the same analysis is performed

with a ten-dimensional dataset, the improvement in performance

surpasses 20% for the SVM. Finally, we developed a strategy in

which all the configuration of parameters are chosen at random.

Despite its outward simplicity, this strategy is useful to optimize

SVM performance especially in higher dimensions (^10), since

the average increase provided by this strategy is higher than 20%.

Another important result arising from the experiments is the

strong influence of the number of features on the performance of

the classifiers. While small differences across distinct classifiers

were found in 2–3 dimensions, we observed significant differences

in performance when increasing the number of features. When

assessing the performance of the classifiers in higher dimensions,

kNN and SVM turned out to be the most accurate techniques

when default and alternative parameters were considered,

respectively. In addition, we found that the behavior of the

performance with the number of features follows three distinct

patterns (for the considered interval): (i) almost constant (Multi-

layer Perceptron); (ii) monotonic increase (kNN), and (iii)

monotonic decrease (Bayesian Network). These results suggest

that the number of features of the problem plays a key role on the

choice of algorithms and, therefore, it should be considered in

practical applications. In addition, for low dimension classification

tasks, Weka’s default parameters provided accuracy rates close to

the optimal value, with a few exceptions. The highest discrepan-

cies occurred when the performance of the SVM was assessed in

higher dimensions, suggesting additional care while choosing the

parameters in these conditions.

It is possible to perform further research to probe the properties

of classifiers with regard to other factors such as number of classes,

number of instances per class and overlap between classes. It is

also important to probe the performance of supervised classifiers in

problems where the number of training instances is limited

because of their cost.
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