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Palmitoylation is the post-transla-
tional addition of lipids to pro-

teins though thioester bonds and acts 
to promote association with mem-
branes. Palmitoylation also acts to 
target proteins to specific membrane 
compartments, control residence in and 
movement between membrane microdo-
mains and regulate protein conformation 
and activity. Palmitoylation is unique 
among lipid modifications of proteins 
as it is reversible, allowing for dynamic 
control over all palmitoylation depen-
dent processes. Palmitoylation cannot be 
predicted from protein sequence and as 
a result is understudied when compared 
with other post-translational modifica-
tions. We recently published a proteomic 
analysis of palmitoylation in plants and 
increased the number of proposed palmi-
toylated proteins in plants from ~30 to 
over 500. The wide range of identified 
proteins indicates that palmitoylation is 
likely important for a variety of different 
functions in plants. Many supposedly 
well characterized proteins were identi-
fied as palmitoylated and our new data 
provides novel insight into regulatory 
mechanisms and potential explanations 
for observed phenomena. These data rep-
resent a new resource for plant biologist 
and will allow the study of palmitoylated 
proteins in plants to expand and move 
forward.

Palmitoylation, more correctly known 
as S-acylation, is a reversible post-
translational modification of proteins 
involving the addition of fatty acids to 
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cysteine residues through thioester bonds. 
S-acylation promotes strong association 
of proteins with membranes but can also 
promote or suppress association of pro-
teins with specific membrane lipids. There 
is increasing evidence that membranes are 
not homogeneous structures, instead spe-
cific proteins and lipids form distinct and 
sometimes transient proteolipid complexes 
that have been termed microdomains (ref. 
1). Given its reversible nature and abil-
ity to alter affinity for different lipids 
S-acylation is considered to be one of the 
main mechanisms providing dynamic 
control over proteins entering or being 
excluded from specific microdomains and 
regulating protein complex formation in 
response to stimuli.

In recent years S-acylation in plants has 
begun to come of age with the enzymes 
responsible for S-acylation being identi-
fied and characterized,2-4 in-depth analysis 
of the role of S-acylation in the function of 
ROP GTPases,5-8 many other S-acylated 
proteins recently being described9-12 and 
tools to analyze S-acylation being devel-
oped.7,13 Despite the important proper-
ties of S-acylation and increased interest 
in its function, it is still very difficult to 
predict whether a protein is S-acylated. 
Each study published to date has there-
fore had to rely on empirical determina-
tion for each suspected S-acylated protein. 
Recently however, advances in proteomics 
methods have allowed the S-acyl pro-
teome of plants to begin to be elucidated 
and the number of proposed S-acylated 
proteins in plants has increased from ~30 
to over 500.14 Through this proteomics 
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all of the RLK family members in our 
data set. We subsequently demonstrated 
that the leucine-rich repeat RLK bacte-
rial flagellin receptor FLS2 is S-acylated 
and confirmed that the cysteine residues 
identified through multiple alignments 
are the sites of S-acylation.14 These data 
on FLS2 provide a possible mechanism 
for the observed change in FLS2 parti-
tioning between detergent soluble and 
detergent insoluble membrane fractions 
upon perception of flagellin.16 Many other 
RLK family members also contain these 
conserved cysteine residues, suggesting 
that S-acylation of this family of proteins 
may be a common occurrence. These data 
illustrate the utility of this large new data 
set for identifying potential S-acylation 
sites in other proteins.

We also demonstrated that the NDR1/
HIN1-like NHL family of proteins is 
S-acylated. NHL-family proteins are 
induced in response to a variety of biotic 
and abiotic stresses but no molecular 
function has yet been ascribed to them. 
NHL proteins appear to be glycosyl-
ated17 and we demonstrated that the 
glycosylated form of NHL3 is also the 
predominant S-acylated form. Although 
the order of glycosylation and S-acylation 
in NHL3 processing has yet to be deter-
mined, S-acylation may well act as an 
export or plasma membrane targeting 
signal for mature glycosylated NHL3. 
Using multiple alignments of the 6 NHL 
proteins that were identified through our 
proteomics approach we have identified 
a common cysteine rich region (Fig. 1) 
N-terminal to the most highly supported 
predicted transmembrane domain.17 
All other cysteine residues conserved 
between the NHL-family members were 
in the predicted glycosylated extracellular 
domain and therefore unlikely to be sites 
of S-acylation.

With these novel proteomic data14 
providing a sound starting point and the 
tools required to address S-acylation in 
plants now being available7,13 our under-
standing of the function of S-acylation in 
plants is likely to rapidly increase.
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using TMHMM15 to identify likely trans-
membrane regions, the majority of the 
proteins identified as S-acylated (59%) 
are predicted to have no transmembrane 
helices and would likely be annotated as 
soluble based on their sequence. 20% are 
predicted to have a single transmembrane 
helix while the remaining 21% have two 
or more predicted transmembrane heli-
ces. These data indicate that S-acylation 
is likely to be very important for recruit-
ing many otherwise soluble proteins to 
membranes.

One of the largest families of proteins 
we identified as being S-acylated was the 
receptor-like kinase (RLKs) superfamily. 
RLKs represent one of the largest gene 
families in plants and their S-acylation 
had hitherto not been suspected. We 
defined potential S-acylated residues 
using a multiple alignment strategy and 
identified conserved cysteine residues in 

study we identified known S-acylated 
proteins such as the heterotrimeric 
G-protein α-subunit GPA1, the RPM1 
interacting protein RIN4 and many cal-
cium dependant protein kinases (CPKs) 
and calcineurin-B like proteins (CBLs), 
thereby validating our approach. Novel 
proteins identified included receptor-like 
kinases, cell wall synthesis proteins, vari-
ous classes of membrane transporter, vari-
ous types of ATPase, SNAREs, putative 
membrane microdomain organizing and 
stabilizing proteins (Band7, Remorin, 
Tetraspanin and NHL proteins) and 
Raf-like MAP kinases. These novel data, 
derived solely from root callus culture, 
highlight the fact that S-acylation affects 
many more proteins in plants than previ-
ously thought. Given the limited nature 
of the source material it is also likely that 
S-acylation affects many more proteins 
than just those reported. Interestingly, 

Figure 1. multiple alignment of nhL stress-induced proteins from Arabidopsis. nhL proteins 
identified as being S-acylated through proteomics work are indicated in bold. these data identify 
a conserved region of cysteine residues (indicated in red) adjacent to the transmembrane domain 
(shaded in gray) as the likely site for S-acylation.
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