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Results and Discussion

MicroRNAs (miRNAs) are a class of small non-protein encod-
ing regulatory RNAs ranging from 20 to 24 nucleotides in size 
that recognize endogenous target mRNAs for degradation or 
translational repression.1-4 Many plant miRNAs are important 
for growth and development.5-10 Accumulating evidence showed 
that miRNAs play essential roles in plant responses to biotic and 
abiotic stresses.11

We showed that miR398 is heat-inducible and its target CSD2 
is downregulated under heat stress.12 We then generated trans-
genic Arabidopsis plants overexpressing the miR398-resistant 
form of CSD2 or normal coding sequence of CSD2 (Fig. 1A). 
Three-week-old soil-grown transgenic plants overexpressing the 
miR398-resistant form of CSD2 are more sensitive to heat stress 
at 37°C compared with wild-type or transgenic plants overex-
pressing normal coding sequence of CSD2 (Fig. 1B). Relative 
to wild-type or transgenic plants overexpressing normal cod-
ing sequence of CSD2, the transgenic plants overexpressing the 
miR398-resistant form of CSD2 displayed substantially stunted 
growth and development in shoot and significantly reduced accu-
mulation of chlorophyll pigments required for photosynthesis 
(Fig. 1C and D). Plants are especially sensitive to heat stress at 
reproductive developmental stage. Thus, we examined thermo-
tolerance of flowers of the CSD2 transgenic plants. Flowers of the 
transgenic plants overexpressing the miR398-resistant form of 
CSD2 are hypersensitive to heat stress compared with wild-type 
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sequence of CSD2. Expression of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is reduced in the 
heat-sensitive transgenic plants overexpressing miR398-resistant form of CSD2. our results suggest that downregulation 
of CSD2 by the heat-inducible miR398 is required for thermotolerance in Arabidopsis.
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or transgenic plants overexpressing normal coding sequence of 
CSD2 (Fig. 1E). These results suggest that heat tolerance requires 
the downregulation of CSD2.

We subsequently analyzed the expression of heat stress-
responsive genes in these transgenic plants by qRT-PCR analysis. 
Compared with their expression in wild-type or transgenic plants 
overexpressing normal coding sequence of CSD2, expression of 
HSFA2, HSFA3 and HSFA7b is reduced markedly in transgenic 
plants overexpressing the miR398-resistant form of CSD2 (Fig. 
2A–C). Expression levels of HSP17.6, HSP70B and HSP90.1 are 
dramatically decreased (relative to their expression in wild-type 
or transgenic plants overexpressing normal coding sequence of 
CSD2) in transgenic plants overexpressing the miR398-resistant 
form of CSD2 (Fig. 2D–F). Effects of CSD2 on expression of 
HSPs are much stronger in transgenic plants overexpressing the 
miR398-resistant form of CSD2 (Fig. 2D–F) than transgenic 
plants expressing the miR398-resistant form of CSD2 under the 
control of the CSD2 native promoter as described.12 These results 
indicate that reduced thermotolerance of transgenic plants over-
expressing the miR398-resistant form of CSD2 is associated with 
decreased expression levels of heat stress-responsive genes.

miR398 also targets CSD1 and CCS (encoding copper chap-
erone for CSD1 and CSD2) for degradation under heat stress.12 
Therefore, we attempted to generate transgenic plants overex-
pressing the miR398-resistant forms of CSD1 or CCS. However, 
these two transgenes (CSD1 and CCS) are silenced in the T
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manipulation of miR398 and/or its target genes might be viable 
strategies for improving the thermotolerance and yield stability 
of corn.
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subsequent generations because of potential unknown posttran-
scriptional regulation mechanisms.

In summary, our data presented here clearly demonstrate that 
downregulation of CSD2 by heat-inducible miR398 is required 
for heat stress-responsive gene expression and thermotolerance 
in Arabidopsis. Because miR398 family members and their target 
genes are highly conserved among many eukaryotic plant spe-
cies,2,12-14 downregulation of CSD2 by heat-inducible miR398 
might be a common mechanism by which plants cope with the 
detrimental effects of heat stress. As a matter of fact, we found 
that miR398 is induced by heat stress in corn plants.12 Therefore, 

Figure 1. thermotolerance of CSD2 transgenic plants. (A) CSD2 expression in transgenic plants expressing normal coding sequence of CSD2 or the 
miR398-resistant form of CSD2 (mCSD2) under the control of the 35S promoter (these transgenic plants are referred to as CSD2 transgenic plants 
hereafter). (B) thermotolerance of wild-type (Wt) and CSD2 transgenic plants. three-week-old soil-grown seedlings were subjected to 0 (control) or 
8 d (heat) at 37°C. (C) Shoot fresh weight of Wt and CSD2 transgenic plants shown in (B). (D) Chlorophyll content of Wt and CSD2 transgenic plants 
shown in (B). (E) Survival rates of flowers of separate batches of 1-mo-old of Wt and CSD2 transgenic plants under heat stress (37°C for 0, 6 or 8 d). Data 
presented in (B–E) are from one representative individual transgenic line of each transgene. Error bars represent the standard deviation [n = 4 in (A); n 
= 50–80 in (C–E)]. one-way AnoVA (tukey-Kramer test) was performed for data in (C–E) and statistically significant differences are indicated by differ-
ent lowercase letters (p < 0.008).
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Figure 2. Expression patterns of heat stress-responsive genes in wild-type (Wt) and CSD2 transgenic plants. (A–F) Expression of HSFs and HSPs in Wt 
and CSD2 transgenic plants subjected to 0 or 2 h at 37°C. Error bars represent the standard deviation (n = 4). Data in Figure 2 are from one representa-
tive individual transgenic line of each transgene. there are two independent transgenic lines per transgene (Fig. 1A).
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