Downregulation of *CSD2* **by a heat-inducible** *miR398* **is required for thermotolerance in** *Arabidopsis*

Xiaoyan Lu,¹ Qingmei Guan² and Jianhua Zhu^{2,*}

¹Agricultural College; Shi He Zi University; Xinjiang, PR China; ²Department of Plant Science and Landscape Architecture; University of Maryland; College Park, MD USA

Keywords: CSD2, miR398, heat stress-responsive gene expression, thermotolerance, *Arabidopsis*

Abbreviations: CSD, copper/zinc superoxide dismutase; CCS, copper chaperone of CSD1 and CSD2; HSF, heat stress transcription factor; HSP, heat shock protein; qRT-PCR, real-time quantitative RT-PCR

MicroRNAs (miRNAs) play important roles in plant growth and development and abiotic stress responses. We report here that heat stress rapidly induces *miR398* and reduces transcript of its target gene *CSD2*. Transgenic plants overexpressing the *miR398*-resistant form of *CSD2* are more sensitive to heat stress than transgenic plants overexpressing normal coding sequence of *CSD2*. Expression of heat stress transcription factors (*HSFs*) and heat shock proteins (*HSPs*) is reduced in the heat-sensitive transgenic plants overexpressing *miR398*-resistant form of *CSD2*. Our results suggest that downregulation of *CSD2* by the heat-inducible *miR398* is required for thermotolerance in *Arabidopsis.*

Results and Discussion

MicroRNAs (miRNAs) are a class of small non-protein encoding regulatory RNAs ranging from 20 to 24 nucleotides in size that recognize endogenous target mRNAs for degradation or translational repression.1-4 Many plant miRNAs are important for growth and development.⁵⁻¹⁰ Accumulating evidence showed that miRNAs play essential roles in plant responses to biotic and abiotic stresses.¹¹

We showed that *miR398* is heat-inducible and its target *CSD2* is downregulated under heat stress.¹² We then generated transgenic *Arabidopsis* plants overexpressing the *miR398*-resistant form of *CSD2* or normal coding sequence of *CSD2* (**Fig. 1A**). Three-week-old soil-grown transgenic plants overexpressing the *miR398*-resistant form of *CSD2* are more sensitive to heat stress at 37°C compared with wild-type or transgenic plants overexpressing normal coding sequence of *CSD2* (**Fig. 1B**). Relative to wild-type or transgenic plants overexpressing normal coding sequence of *CSD2*, the transgenic plants overexpressing the *miR398*-resistant form of *CSD2* displayed substantially stunted growth and development in shoot and significantly reduced accumulation of chlorophyll pigments required for photosynthesis (**Fig. 1C and D**). Plants are especially sensitive to heat stress at reproductive developmental stage. Thus, we examined thermotolerance of flowers of the *CSD2* transgenic plants. Flowers of the transgenic plants overexpressing the *miR398*-resistant form of *CSD2* are hypersensitive to heat stress compared with wild-type

or transgenic plants overexpressing normal coding sequence of *CSD2* (**Fig. 1E**). These results suggest that heat tolerance requires the downregulation of *CSD2*.

We subsequently analyzed the expression of heat stressresponsive genes in these transgenic plants by qRT-PCR analysis. Compared with their expression in wild-type or transgenic plants overexpressing normal coding sequence of *CSD2*, expression of *HSFA2*, *HSFA3* and *HSFA7b* is reduced markedly in transgenic plants overexpressing the *miR398*-resistant form of *CSD2* (**Fig. 2A–C**). Expression levels of *HSP17.6*, *HSP70B* and *HSP90.1* are dramatically decreased (relative to their expression in wild-type or transgenic plants overexpressing normal coding sequence of *CSD2*) in transgenic plants overexpressing the *miR398*-resistant form of *CSD2* (**Fig. 2D–F**). Effects of *CSD2* on expression of *HSPs* are much stronger in transgenic plants overexpressing the *miR398*-resistant form of *CSD2* (**Fig. 2D–F**) than transgenic plants expressing the *miR398*-resistant form of *CSD2* under the control of the *CSD2* native promoter as described.¹² These results indicate that reduced thermotolerance of transgenic plants overexpressing the *miR398*-resistant form of *CSD2* is associated with decreased expression levels of heat stress-responsive genes.

miR398 also targets *CSD1* and *CCS* (encoding copper chaperone for CSD1 and CSD2) for degradation under heat stress.¹² Therefore, we attempted to generate transgenic plants overexpressing the *miR398*-resistant forms of *CSD1* or *CCS*. However, these two transgenes (*CSD1* and *CCS*) are silenced in the T_2 and

^{*}Correspondence to: Jianhua Zhu; Email: jhzhu@umd.edu

Submitted: 04/03/13; Revised: 05/04/13; Accepted: 05/06/13

Citation: Lu X, Guan Q, Zhu J. Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in *Arabidopsis*. Plant Signal Behav 2013; 8: e24952; http://dx.doi.org/10.4161/psb.24952

Figure 1. Thermotolerance of *CSD2* transgenic plants. (**A**) *CSD2* expression in transgenic plants expressing normal coding sequence of *CSD2* or the *miR398-*resistant form of *CSD2* (*mCSD2*) under the control of the 35S promoter (these transgenic plants are referred to as *CSD2* transgenic plants hereafter). (**B**) Thermotolerance of wild-type (WT) and *CSD2* transgenic plants. Three-week-old soil-grown seedlings were subjected to 0 (control) or 8 d (heat) at 37°C. (**C**) Shoot fresh weight of WT and *CSD2* transgenic plants shown in (**B**). (**D**) Chlorophyll content of WT and *CSD2* transgenic plants shown in (**B**). (**E**) Survival rates of flowers of separate batches of 1-mo-old of WT and *CSD2* transgenic plants under heat stress (37°C for 0, 6 or 8 d). Data presented in (**B–E**) are from one representative individual transgenic line of each transgene. Error bars represent the standard deviation [n = 4 in (**A**); n = 50–80 in (**C–E**)]. One-way ANOVA (Tukey-Kramer test) was performed for data in (**C–E**) and statistically significant differences are indicated by different lowercase letters (p < 0.008).

subsequent generations because of potential unknown posttranscriptional regulation mechanisms.

In summary, our data presented here clearly demonstrate that downregulation of *CSD2* by heat-inducible *miR398* is required for heat stress-responsive gene expression and thermotolerance in *Arabidopsis*. Because *miR398* family members and their target genes are highly conserved among many eukaryotic plant species,2,12-14 downregulation of *CSD2* by heat-inducible *miR398* might be a common mechanism by which plants cope with the detrimental effects of heat stress. As a matter of fact, we found that $miR398$ is induced by heat stress in corn plants.¹² Therefore, manipulation of *miR398* and/or its target genes might be viable strategies for improving the thermotolerance and yield stability of corn.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant 31060037) to XL and by National Science Foundation (NSF) grant MCB0950242 to JZ.

Figure 2. Expression patterns of heat stress-responsive genes in wild-type (WT) and *CSD2* transgenic plants. (**A–F**) Expression of *HSFs* and *HSPs* in WT and CSD2 transgenic plants subjected to 0 or 2 h at 37°C. Error bars represent the standard deviation (n = 4). Data in Figure 2 are from one representative individual transgenic line of each transgene. There are two independent transgenic lines per transgene (**Fig. 1A**).

References

- 1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-97; PMID:14744438; http://dx.doi.org/10.1016/S0092- 8674(04)00045-5
- 2. Beauclair L, Yu A, Bouché N. microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 2010; 62:454-62; PMID:20128885; http:// dx.doi.org/10.1111/j.1365-313X.2010.04162.x
- 3. Yu B, Wang H. Translational inhibition by microRNAs in plants. Prog Mol Subcell Biol 2010; 50:41-57; PMID:19841880; http://dx.doi.org/10.1007/978-3- 642-03103-8_3
- 4. Yang L, Wu G, Poethig RS. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci USA 2012; 109:315- 20; PMID:22184231; http://dx.doi.org/10.1073/ pnas.1114673109
- 5. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 2004; 14:787- 99; PMID:15200956; http://dx.doi.org/10.1016/j. molcel.2004.05.027
- 6. Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 2005; 15:303-15; PMID:15723790; http:// dx.doi.org/10.1016/j.cub.2005.02.017
- 7. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 2005; 102:9412-7; PMID:15958531; http:// dx.doi.org/10.1073/pnas.0503927102
- 8. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 2006; 57:19-53; PMID:16669754; http://dx.doi. org/10.1146/annurev.arplant.57.032905.105218
- 9. Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 2007; 49:592- 606; PMID:17217461; http://dx.doi.org/10.1111/ j.1365-313X.2006.02980.x
- 10. Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH. Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 2007; 48:391-404; PMID:17237362; http://dx.doi. org/10.1093/pcp/pcm008
- 11. Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 2012; 1819:137- 48; PMID:21605713; http://dx.doi.org/10.1016/j. bbagrm.2011.05.001
- 12. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 2013; 74:840-51; PMID:23480361; http://dx.doi. org/10.1111/tpj.12169
- 13. Sunkar R, Zhu JK. Novel and stress-regulated microR-NAs and other small RNAs from Arabidopsis. Plant Cell 2004; 16:2001-19; PMID:15258262; http:// dx.doi.org/10.1105/tpc.104.022830
- 14. Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 2008; 67:403-17; PMID:18392778; http://dx.doi.org/10.1007/s11103-008-9329-1