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Introduction

Cerebral cavernous malformations (CCM) are dysplasias 
that occur predominantly in the neurovasculature, but can 
also occur in the eye or skin [1–3]. The lesions caused by 
the disease, also known as cavernoma, can lead to stroke, 
intracranial hemorrhage, and focal neurological outcomes 
[4]. Occurrence of CCM is relatively common, with up to 
0.5 % of the population harboring at least one cavernoma 
in postmortem studies [5]. The cause of CCM can be either 
sporadic or genetic. Sporadic cases account for approxi-
mately 80  % of CCM [6] and are mostly associated with 
formation of a single lesion [6, 7]. In contrast, the herit-
able form is thought to occur following a ‘second-hit’, or 
Knudsonian, mutation [8–10], although there remains the 
possibility that additional factors which are potentially spe-
cific to the neurovascular environment could be necessary 
for acquisition of lesions [11, 12]. Nonetheless, the genetic 
form of the disease is usually more severe because these 
patients tend to have multiple lesions [13], with the number 
and size of lesions increasing as the patient ages [14].

Identification of the genes responsible for CCM disease 
began with the discovery of a chromosome 7q founder 
mutation in a Hispanic population [15–17] that genetic 
sequencing identified as the KRIT1/CCM1 gene [18, 19]. 
Subsequently, two other genes were also identified to 
be associated with CCM acquisition: CCM2/MGC4607/
OSM/Malcavernin [20] and CCM3/PDCD10/TFAR15 [21, 
22]. Following the identification of these genes, several 
transgenic mouse and zebrafish models [23–33] validated 
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the correlation of these genes to disease [11, 23–30]. Cer-
ebral cavernous malformations are associated with het-
erozygous loss of one allele for KRIT1, CCM2, or CCM3, 
followed by a second-hit mutation that usually results in 
the complete loss of one of their protein products [8–10]. 
Mutations in CCM3 tend to result in a more aggressive 
form of the disease than those in KRIT1 or CCM2 [14], 
suggesting potential differences in the signaling pathways 
in which CCM3 is involved.

KRIT1, CCM2, and CCM3 encode for the KRIT1, 
CCM2, and CCM3 proteins, respectively. Given that the 
architectural features of the proteins are distinct from one 
another and that they may play roles in different signal-
ing pathways, it has become important to understand how 
KRIT1, CCM2, and CCM3 function, what roles they play 
in signaling transduction, and where their signaling path-
ways cross. In the past several years, structural biology has 
begun to shed light on the domain architecture of KRIT1, 
CCM2, and CCM3. These studies have both uncovered 
unpredicted domains within each of the proteins and elu-
cidated novel modes of binding with some of their inter-
action partners. Although there is much yet to be learned 
about CCM protein structure and function, we are now sig-
nificantly closer to understanding what these proteins look 
like, and, by extension, are in an optimal position to use 
this new information to more deeply and comprehensively 
probe their cellular functions. Understanding where the key 
nodal points reside that allow cross-talk between the sign-
aling pathways could potentially facilitate a therapeutically 
useful strategy for all CCM patients. The recent discover-
ies of structures of all three CCM proteins, including some 
of complexes with binding partners, will be invaluable 
towards this understanding, and will help to guide future 
studies probing the biological roles of these proteins.

Architecture of the CCM proteins

Recent studies have significantly improved the understand-
ing of the molecular architecture of the CCM proteins 
(KRIT1, CCM2, CCM3), having implications for under-
standing how these proteins function in their respective 
signaling pathways.

KRIT1 (CCM1)

KRIT1 is a 736 amino acid protein that was originally 
described to contain a C-terminal FERM (band 4.1, ezrin, 
radixin, moesin) domain that interacts with the small 
GTPase Krev-1 (Rap1) and an ankyrin repeat domain N-ter-
minal to the FERM domain consisting of 4 ankyrin repeats 
[34]. KRIT1 was later discovered to contain three canonical 
motifs for direct binding to PTB (phosphotyrosine binding) 

domains [35]. These NPxY/F motifs (192NPAY, 231NPLF, 
250NPYF) are important for the protein–protein interactions 
of KRIT1 and have also been suggested to play a role in 
regulating intra-molecular KRIT1 conformational changes 
and their functional outputs [36, 37].

Until recently, the region of KRIT1 consisting of 
the 170 residues at its N-terminus that precede its first 
NPxY/F motif had been thought to be disordered [38–40]. 
This N-terminal region contains a Nuclear Localization 
Sequence [39], a putative Nuclear Export Sequence [41], 
and a tubulin binding sequence [37], but very little func-
tional work has been conducted to investigate its role. 
Crystallographic studies have now discovered that this 
region encompasses a nucleotide diphosphate linked to an 
X moiety (Nudix) domain [42]. This fold is adopted by an 
extremely diverse superfamily of hydrolases [43] that have 
a large scope of substrates, but most frequently hydrolyze 
diphosphate linkages. Based on structural analysis, the 
KRIT1 Nudix domain cannot be classified into any of the 
known Nudix domain sub-families and, furthermore, it 
lacks conserved residues required for enzymatic activity 
[42]. Although the function of the KRIT1  Nudix domain 
has yet to be elucidated, these unusual attributes resemble 
those of the pseudokinase class of protein kinases, which 
maintain a protein kinase fold, but not enzymatic activity 
[44]. It is therefore possible that KRIT1 is a ‘pseudonudix’ 
domain protein, but further work will be required to deter-
mine its precise function.

FERM domains are archetypal modular domains that 
contain three lobes (F1, F2, and F3), each of which fold sim-
ilarly to other known protein domains. The FERM domain 
F1 lobe adopts a ubiquitin-like fold, the F2 lobe adopts an 
acyl-CoA binding protein fold, and the F3 lobe adopts a 
PH/PTB domain-like fold. These domains are often used as 
sites of intermolecular interaction, as is also observed for 
KRIT1 in the context of its associations with both Rap1 [45, 
46] and HEG1 [46, 47], discussed in detail below.

It has also been suggested that KRIT1 can engage in 
a head-to-tail interaction with itself. Studies by multi-
ple groups have suggested that the KRIT1 FERM domain 
interacts with N-terminal portions of the protein. As the 
NPxY/F motifs of KRIT1 are within the N-terminus, and 
NPxY/F motifs are known to serve as PTB-domain interac-
tion partners, the PTB-like F3 lobe of the FERM domain is 
believed to engage with one or more of the NPxY/F motifs 
at the N-terminus [36, 37]. There is controversy, however, 
over which of the NPxY/F motifs is the critical factor in 
this putative ‘head–tail’ KRIT1 interaction [36, 37], and 
there remains the potential that the Nudix domain might 
play some role in the interaction [36]. Nonetheless, inter-
ruption of this interaction by binding partners (e.g., ICAP1, 
Rap1) is suggested to be important for altering the subcel-
lular localization of KRIT1. Conformational lability of 
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KRIT1 is therefore thought to be important for its sub-cel-
lular localization and, consequently, the localization of the 
CCM complex signaling platform [36, 37]. Further studies 
are required to better understand how its binding partners 
regulate the conformational rearrangement of KRIT1 and 
what impact this has on signal transduction.

CCM2 (malcavernin/OSM)

CCM2 is a 444 amino acid protein originally predicted to 
contain a folded domain only at its N-terminus thought to 
belong to the PH/PTB superfamily [20, 48]. This predicted 
CCM2 PTB domain has been studied to investigate whether 
it could mediate interactions with KRIT1. Yeast two-hybrid 
studies suggest that it binds both the second and third of the 
three conserved NPxY/F motifs in the KRIT1 N-terminus 
[41], although other studies have failed to show a CCM2 
PTB interaction with the KRIT1 NPxY/F motifs [49]. The 
CCM2 PTB domain also seems to function in several other 
signaling pathways. For example, it has interactions with the 
juxtamembrane region of the TrkA receptor tyrosine kinase 
[50] and with the E3 ubiquitin ligase SMURF1 (SMAD 
ubiquitination regulatory factor 1) [51], although it is not 
clear how these interactions may occur. Recent work has 
also discovered that there is a folded domain at the C-termi-
nus of CCM2 [52] with strong structural homology to a pro-
tein interaction domain in the cochlear hair cell scaffolding 
protein harmonin [52, 53]. This fold has only been identified 
in CCM2, in harmonin itself, and in RTEL1, a DNA helicase 
of unknown function [54]. While the role of this domain in 
RTEL1 has not been determined, harmonin uses its equiva-
lent domain as a scaffold that mediates interactions with 
binding partners such as cadherin-23 [53]. Therefore, it is 
likely that CCM2 also uses its harmonin-homology domain 
(HHD) to engage in interactions with binding partners. It 
will be intriguing to discover with which of CCM2’s binding 
partners the HHD interacts, and how these interactions might 
help to regulate specific signaling events.

Recently, a CCM2 paralog termed CCM2L was identi-
fied [55, 56]. This protein has high sequence similarity to 
CCM2 but is significantly larger (613 amino acids) due 
to inclusion of large loops within the PTB domain and 
between the PTB and HHD domains. CCM2L can bind 
to KRIT1 in competition with CCM2, but does not bind 
CCM3. The role of CCM2L seems to be to compete with 
the vascular stabilizing effects of the CCM complex to 
allow cell growth and proliferation [56].

CCM3 (PDCD10)

CCM3, a 212 amino acid protein, initially evaded structural 
characterization [57], but crystallographic studies of CCM3 
surprisingly revealed it to fold as a two-domain protein [58]. 

The N-terminal domain is a unique fold consisting of four 
helices that interlock with a second CCM3 molecule to form 
a tight homodimer. The C-terminus of CCM3 is a core four-
helix bundle that displays striking similarities to the focal 
adhesion targeting (FAT) domain found in non-receptor 
tyrosine kinases Pyk2 and FAK. A flexible hinge region 
links CCM3’s N-terminal dimerization and C-terminal FAT-
homology (FAT-H) domains [58]. Structural studies have 
suggested that this region is important for the interaction 
of CCM3 with inositol-(1,3,4,5)-tetrakisphosphate [59] and 
with paxillin [60]. Additionally, a significant conformational 
change occurs upon CCM3 heterodimerization with mem-
bers of the germinal center kinase III (GCKIII) sub-family 
of the Sterile-20 group of serine/threonine kinases [61, 62]. 
These conformational movements, combined with the dis-
covery of specific domains within CCM3, have allowed 
some of the roles of CCM3 in specific signaling pathways to 
be parsed out, the details of which will be discussed below.

Formation of a heterotrimeric KRIT1–CCM2–CCM3 
‘CCM complex signaling platform’

Early work suggested the direct interaction of the CCM 
proteins with one another to form a signaling platform 
around a ternary KRIT1–CCM2–CCM3 complex [27, 41, 
49, 63, 64]. In this platform, CCM2 acts as the central hub, 
using two independent binding sites to simultaneously 
interact with KRIT1 and CCM3 [27, 65]. CCM2 is thought 
to use its PTB domain to bind KRIT1, potentially via the 
second and third KRIT1 NPxY/F motifs [41]. In con-
trast, CCM2 is predicted to use a conserved motif slightly 
C-terminal to its PTB domain to interact with the CCM3 
FAT-H domain [66], but this has yet to be demonstrated 
experimentally. Although the three CCM proteins have 
been found to be capable of existing within the same com-
plex [27, 41, 49, 63, 64], there is also a great deal of evi-
dence suggesting that this complex has a dynamic nature. 
For example, loss of CCM3 results in a significantly more 
aggressive disease phenotype than that observed upon loss 
of either KRIT1 or CCM2 (which are clinically indistin-
guishable from one another) [14]. Furthermore, the inter-
actions of CCM3 with members of the GCKIII family are 
observed more readily than CCM3 interactions with CCM2 
using proteomics techniques [63]. Additionally, CCM3 
is more evolutionarily conserved than either KRIT1 or 
CCM2. CCM3 is conserved from humans to insects [58], 
while KRIT1 and CCM2 are strongly conserved from 
humans to fish [42, 45, 52], with no invertebrate orthologs 
of CCM2 and only the kri-1 ortholog of KRIT1 in Cae-
norhabditis elegans [67]. The direct interaction of these 
proteins may therefore describe only one of several multi-
protein complexes involving the CCM proteins and could 
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potentially imply a cell-type-specific function of the CCM 
proteins. The interplay between association with the CCM 
complex and with association with other proteins that may 
or may not involve all three CCM proteins will need to be 
addressed in the future. However, with the initial ground-
work laid out by the structural studies of recent years that 
have explored the architecture of the three CCM proteins 
at the atomic level, the framework is now in place for 
future studies to look more deeply at not only the roles of 
CCM proteins in various pathways but also which of their 
domains are involved (Figs. 1, 2).

CCM proteins and their involvement in cellular 
pathways

The CCM proteins and adhesion complexes

In addition to their interactions with one another, the CCM 
proteins have also been implicated in directly binding 
protein partners that affect cell adhesion. These partners 
include the small GTPase Rap1, integrin cytoplasmic-
associated protein 1 (ICAP1), the orphan cell adhesion 
receptor heart-of-glass 1 (HEG1), vascular endothelial cad-
herin, and β-catenin. Recent structural studies have led to a 
much better understanding of some of these critical CCM 
interactions.

Fig. 1   Domain diagrams and interaction partners of the CCM com-
plex signaling platform. Current knowledge of the domains of the 
CCM proteins is shown. Binding partners are shown, with the bind-
ing location indicated where known. Four previously unpredicted 
domains within the CCM proteins have been discovered by X-ray 
crystallography and have opened up important new avenues to bet-
ter understand CCM complex signal transduction. These previously 
unpredicted domains are the KRIT1 N-terminal Nudix domain [42], 
the CCM2 C-terminal harmonin-homology domain [52] and the 
CCM3 N-terminal dimerization domain and C-terminal FAT-homol-
ogy domain [58]. Nudix nucleotide diphosphate linked to an X moi-
ety, RR arginine–arginine motif, NPxY Asn-Pro-X-Tyr motif, NPxF 
Asn-Pro-X-Phe motif, ARD ankyrin repeat domain, FERM band 4.1, 
ezrin, radixin, moesin, PTB phosphotyrosine binding domain, HHD 
harmonin-homology domain, FAT-H focal adhesion targeting-homol-
ogy

Fig. 2   CCM proteins in signal 
transduction. Signal transduc-
tion from the CCM complex 
signaling platform is shown 
and the roles of CCM proteins 
outside of the CCM complex 
signaling platform are also indi-
cated. The CCM proteins play 
roles in cell adhesion complexes 
and integrin signaling, in kinase 
signaling cascades, and in deg-
radation/regulation of the Rho 
family of small GTPases
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Rap1 (Krev‑1)‑related signaling pathways

KRIT1 was initially discovered as a binding partner for 
Ras-related protein Rap-1 (Rap1; Ras-related protein Krev-
1; KREV1) [34]. Rap1 is a small GTPase that functions to 
control cell polarity, to regulate cell–cell contacts, and to 
control integrin-mediated cell adhesion via inside-out inte-
grin activation [68]. Like most small GTPases, Rap1 cycles 
between inactive and active states, a process facilitated by 
the actions of GTPase activating proteins (GAPs) and gua-
nine nucleotide exchange factors (GEFs) [69]. KRIT1 is an 
effector of Rap1 and binds specifically to the GTP-loaded 
(active) form [37, 70] with an affinity of ~2  μM [71]. 
Because both FERM domain F1 lobes and small GTPase 
RA (Ras-association) domains adopt a ubiquitin-like fold, it 
was predicted that the KRIT1 FERM domain would bind to 
Rap1 using its F1 lobe [71]. Recent crystallographic analy-
ses of KRIT1, however, have shown that the KRIT1 binding 
interface with Rap1 is significantly larger than those usually 
found in small GTPase interactions with RA domains [45]. 
The KRIT1–Rap1 binding surface encompasses regions 
from both the F1 and F2 lobes of the KRIT1 FERM domain 
and is completely conserved over evolution [45]. This new 
structural data explains the specificity that KRIT1 has for 
Rap1 over H-Ras [45, 46] and places KRIT1 relocalization 
to cell membranes firmly under the control of Rap1 [37, 70, 
71]. The interaction of these proteins affects KRIT1 locali-
zation in the cell by targeting KRIT1 to cell–cell junctions 
[37, 70], and consequently affects KRIT1 interactions with 
other binding partners. The molecular basis for the specific-
ity of KRIT1 for Rap1 over other Ras-family small GTPases 
was recently discovered by structural analysis [45, 46], and 
will help guide further studies into how Rap1 regulates sub-
cellular localization of KRIT1.

KRIT1 has also been found to co-localize with 
β-catenin, VE-cadherin, and other junctional proteins in 
a Rap1-dependent manner to stabilize cell–cell junctions 
[70]. Indeed, loss of KRIT1 seems to increase nuclear 
localization of β-catenin, implicating a junctional stabiliza-
tion role for KRIT1 in both endothelial and non-endothelial 
tissues [72] that may represent a critical node in cell–cell 
and cell–ECM contacts. Whether the interaction of KRIT1 
with β-catenin or VE-cadherin is direct has not yet been 
determined, so intermediary proteins may act to stabilize 
this complex. There is also some evidence emerging for 
cross-talk between integrin-mediated and cadherin-medi-
ated signaling via the CCM complex [73], although how 
this occurs is still to be defined.

ICAP1

KRIT1 has also been shown to interact with ICAP1, 
a small 200 amino acid protein that encodes a short 

N-terminal region that can be phosphorylated by CaM-
KII [74] and a C-terminal PTB domain [75]. The PTB 
domain of ICAP1 has long been thought to directly inter-
act with integrin cytoplasmic tails [75–78]. Because it 
was believed to compete with talin, the master regulator 
of integrin activation, ICAP1 was thought to be an integ-
rin suppressor [79–81], and this was recently clearly dem-
onstrated [42]. ICAP1 is also a known binder of KRIT1 
[35, 82], and was thought to sequester ICAP1 away from 
integrin tails, allowing talin- and kindlin-mediated activa-
tion [74, 79, 80, 83]. Recent structural work has revealed 
that KRIT1 and integrin β1 directly compete for bind-
ing to ICAP1 by its PTB domain, and that both the first 
KRIT1  NPxY/F motif and the integrin β1 NPxY motif 
occupy the same binding site on ICAP1 [42]. Interestingly, 
the KRIT1 binding site for ICAP1 encompasses the first of 
the three KRIT1 NPxY/F motifs plus a region N-terminal 
of this motif (residues 170–198). These interfaces make a 
bidentate KRIT1–ICAP1 binding surface, with a canoni-
cal PTB–NPxY interaction and a previously unpredicted 
interface that is unique among PTB–fold interactions [42]. 
Functionally, these recent studies clearly showed that the 
role of the KRIT1–ICAP1 interaction is to modulate the 
integrin activation state by sequestration of ICAP1 away 
from the membrane, allowing consequent talin-mediated 
integrin activation. However, ICAP1 may also have a role 
in stabilization of KRIT1, an effect that seems to be cell-
type-specific [73]. CCM2 may also play a role in stabiliza-
tion of KRIT1 and ICAP1 [73], but how this may occur 
given the lack of direct interaction between CCM2 and 
ICAP1 is not yet understood. ICAP1 may also play a role 
in regulation of junctional stability by having an impact 
on ECM remodeling and integrin activation [73]. KRIT1 
is also thought to sequester ICAP1 to the nucleus [84], 
although the nuclear roles of KRIT1 and ICAP1 are still 
to be discerned. In addition, loss of KRIT1, ICAP1, and 
CCM3 downregulate DELTA-NOTCH signaling, lead-
ing to increased angiogenesis [85–87]. The mechanism 
by which this occurs is not yet known, and currently there 
is no evidence to support direct interactions between the 
CCM complex and NOTCH.

HEG1

The heart-of-glass receptor (HEG1) is an orphan trans-
membrane receptor whose only known binding partner is 
KRIT1. The role of HEG1 is still being determined, but 
multiple studies now suggest that it is an important bind-
ing partner of KRIT1, suggesting a role for it within the 
CCM complex and in control of junctional stability [25, 
47]. Because HEG1 contains an NPxY motif in its cyto-
plasmic region, the expectation was that the KRIT1 FERM 
domain would interact with this motif via a canonical 
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FERM domain F3 lobe–NPxY motif interaction. Unex-
pectedly, however, point mutagenesis and determination 
of the co-crystal structure of the KRIT1 FERM domain 
in complex with the HEG1 cytoplasmic tail showed that 
the extreme C-terminus of HEG1, a sequence encoding 
residues Asp-Tyr-Phe, inserts into a hydrophobic pocket 
located between the F1 and F3 lobes. The location of this 
binding site closely correlates to the inositol phosphate 
binding site seen in other FERM domains [88]. Although 
the HEG1 binding site is adjacent to the canonical F3 lobe 
binding site for NPxY motifs, these two sites to do not 
overlap with one another, implying that KRIT1 may have 
the capability to bind HEG1 receptor and an NPxY motif 
protein simultaneously. Rap1 binding to KRIT1 also does 
not alter HEG1 binding [46], so the KRIT1 FERM domain 
may be able to simultaneously bind Rap1, HEG1, and an 
NPxY motif protein. The structural data therefore suggest 
that the KRIT1 FERM domain may act as a node, or hub, 
that functions by scaffolding multiple proteins together. 
Supporting this idea, loss of heg1 in zebrafish results in a 
similar phenotype to loss of the fish homologues of KRIT1 
and CCM2 (santa and valentine), potentially linking them 
to a common pathway [25, 28]. This is further confirmed 
by the finding that loss of heg1 binding by mutated krit1 
expressed in zebrafish results in similar cardiovascular 
development phenotypes to krit1 mutants that cannot bind 
rap1 or ccm2 [47].

Paxillin

The C-terminal domain of CCM3 folds extremely similarly 
to the Focal Adhesion Targeting domains of the FAK and 
Pyk2 non-receptor tyrosine kinases. This observation led 
to the hypothesis that CCM3 might interact with a known 
binding partner of FAK and Pyk2: the scaffolding protein 
paxillin [58]. This was confirmed by biochemical and crys-
tallographic experiments, and CCM3 and paxillin were 
observed to co-localize in leading edges in pericytes [60]. 
Although the full functional significance of this interaction 
is not yet understood, there is some evidence for a role of 
the GCKIII kinase MST3 in cell migration by regulation of 
paxillin phosphorylation [89].

CCM proteins and signaling cascades

The CCM proteins directly interact with multiple pro-
tein kinases, but it is not known if the CCM proteins act 
as direct modifiers of protein kinase enzymatic activity for 
any of their binding partners. Although our understand-
ing of CCM proteins in the context of kinase signaling is 
limited at the moment, recent structural work has helped to 
shed more light on some of these pathways.

CCM3, Germinal Center Kinases, and the STRIPAK 
complex

CCM3 directly interacts with each of the three germinal 
center kinase III (GCKIII) serine/threonine kinases: STK24 
(MST3), STK25 (Ysk1; Sok1), and MST4 (MASK) [57, 
61, 90, 91]. These three proteins are members of the Ster-
ile 20-like group of human kinases and play roles in cell 
polarization and migration [89, 92, 93]. Recent crystal 
structures reveal that CCM3 and MST4, and CCM3 and 
STK25 both form heterodimers through an interaction 
between the dimerization domain of CCM3 and the C-ter-
minal domain of the kinase [61, 62]. CCM3 binds with 
nanomolar affinity to GCKIII kinases and this interaction 
increases cell migration and proliferation [61]. The CCM3–
GCKIII interactions are likely important for targeting 
STK24, STK25, and MST4 to specific locations in the cell, 
including the cell membrane, where they can phosphoryl-
ate the ERM proteins (ezrin, radixin, and moesin) that link 
the actin cytoskeleton to the membrane. Knockdown of 
the ERM proteins activates RhoA [94], potentially tying a 
CCM3-mediated targeting of GCKIII kinases to Rho sign-
aling [95]. The GCKIII kinases have also been shown to 
phosphorylate PTP-PEST to regulate paxillin phosphoryla-
tion [89], further linking the CCM3–GCKIII complex with 
paxillin. Additionally, the GCKIII kinases and CCM3 are 
also part of the STRIPAK (striatin-interacting phosphatase 
and kinase) complex, a multiprotein complex implicated in 
regulation of Golgi polarization [66, 96]. CCM3 and stri-
atin have opposite roles in Golgi polarization, as CCM3 
promotes correct Golgi positioning while striatin reduces it 
[66]. CCM3 is thought to bind CCM2, striatin and paxil-
lin using the same interface, a hydrophobic cleft between 
two helices in the CCM3 FAT-homology domain [58, 60, 
66], necessitating the exquisite evolutionary conservation 
observed for this surface [58]. Based on these structural 
findings, it seems likely that CCM3 can interact with both 
GCKIII kinases (through the dimerization domain) and 
with striatin, a regulatory subunit of the PP2A phosphatase 
holoenzyme (through the FAT-homology domain). There-
fore, CCM3 likely functions as a bridge within the com-
plex, bringing the GCKIII proteins to the STRIPAK phos-
phatase, which is thought to play a role in cell polarity [66, 
96].

Signaling to cell death pathways

One interaction partner of CCM2 is the TrkA receptor 
tyrosine kinase. The CCM2 PTB domain was shown to 
bind to a portion of the juxtamembrane region of TrkA 
[50], while its C-terminus then signals to cell death path-
ways by an unknown mechanism. Interestingly, CCM3 and 
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the GCKIII kinases seem also to be recruited to TrkA [64], 
but this may happen through an indirect CCM2–CCM3–
GCKIII interaction. Given the newly identified CCM2 
HHD, it will be interesting to determine if the mechanism 
for cell death is mediated through an interaction between 
the HHD and another yet-to-be-determined protein.

RhoA, ROCK and SMURF1

Knockdown of the CCM proteins in endothelial cell culture 
results in increased activity of the small GTPase RhoA and 
consequent increased stress fiber formation [24, 70, 95, 97, 
98]. Small molecule inhibition of the RhoA-activated kinase 
ROCK (Rho-associated coiled coil-forming kinase) rescues 
the CCM phenotype in cells that do not express CCM1, 
CCM2, or CCM3 [98], correlating well with CCM complex 
regulation of RhoA activity. The CCM complex seems to 
regulate RhoA activity by using the CCM2 PTB domain to 
recruit SMURF1, a RhoA-specific E3 ubiquitin ligase [51]. 
Although the mechanism for this is still not defined at the 
molecular level, it appears that CCM2 uses its PTB domain 
to interact with the HECT domain of SMURF1 [51]. Recent 
work further points out that integrin β1 can also control 
ROCK, potentially suggesting an alternative mechanism for 
signaling [73]. Nonetheless, the CCM complex can regulate 
localized RhoA activity at the cell membrane, with loss of 
the CCM complex resulting in the phenotypes that correlate 
well with increased RhoA activity.

CCM2 and MAP kinase signaling

CCM2 was initially named osmosensing scaffold for 
MEKK3 [99], as it was discovered to play a scaffolding 
role between RAC1 and MEKK3 in the p38 MAP kinase 
cascade response to osmotic stress [99]. This work revealed 
that CCM2 binds to MEKK3 in yeast two-hybrid assays, 
and recruits MEKK3 to membrane ruffles [99]. Recent 
work confirms that RAC1 and CCM2 signal in the same 
pathway in response to osmotic stress, but suggests that 
the signaling occurs through PLC-γ1 [100]. Nonetheless, 
further studies are still required to understand the role of 
the CCM complex in this pathway, the requirements for the 
RAC1 interaction with the CCM complex, and whether this 
is a GTP-dependent mechanism.

DELTA‑NOTCH

KRIT1 seems also to be important as an upstream regulator 
of DELTA-NOTCH signaling, playing a role in regulation 
of the NOTCH ligand DLL4, and the NOTCH target genes 
HEY1 and HEY2, although the molecular basis for how reg-
ulation of DELTA-NOTCH signaling by KRIT1 occurs is 
not yet clearly defined [85].

ROS Signaling

Loss of KRIT1 is also associated with increased intracellu-
lar reactive oxygen species (ROS) by regulating expression 
of the transcription factor FoxO1 and the ROS scavenger 
SOD2 [101], possibly by cooperation with Nd1-L [102]. 
This may be important in the context of CCM disease 
because altered dosage of KRIT1 could result in localized 
responses to oxidative stress events, resulting in differential 
levels of endothelial dysfunction and vascular permeability 
[101–103].

SMAD regulation

Very recent work has shown that one of the roles of the 
CCM complex is to regulate TGF-β (transforming growth 
factor-β) and BMP6 (bone morphogenic protein 6) sign-
aling by modulating SMAD (mothers against decapenta-
plegic homolog) transcription factors. Loss of KRIT1 or 
CCM3 increases SMAD activation, and, consequently, 
signals from TGF-β and BMP6 to induce an endothelial-to-
mesenchymal transition (EndMT), a critical step in CCM 
lesion formation [104]. The molecular basis for how this 
occurs is not yet understood, but it seems likely that the 
CCM complex plays an important role in direct regulation 
of SMAD activation.

Exocytosis

Two very recent studies have also discovered a role for 
CCM3 in exocytosis [105, 106]. The first showed that loss 
of CCM3 or GCKIII kinase in Drosophila results in dilated 
tracheal tubes that can be suppressed by reduced expres-
sion of NSF2, a protein required for vesicle-mediated trans-
port [106]. The second study showed that CCM3–STK24 
is a regulator of neutrophil degranulation by interacting 
with the fusion regulator UNC13D in a calcium-dependent 
manner. The CCM3–STK24 complex inhibits UNC13D 
interaction with the plasma membrane, preventing vesicle 
fusion by an STK24–UNC13D interaction. Upon increases 
in calcium levels, CCM3 binds UNC13D reducing STK24 
binding to UNC13D and allowing vesicle fusion to occur. 
Loss of CCM3 or STK24 results in increased exocytosis. 
This regulation of exocytosis is independent of STK24 
kinase activity and represents a novel function of the CCM 
proteins that may be important for the CCM disease pheno-
type [105].

Subcellular localization of the CCM proteins

The sub-cellular localization of the CCM proteins seems to 
be controlled by multiple factors. Localization of KRIT1 
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has been studied more extensively than that of CCM2 and 
CCM3, and KRIT1 has been found in multiple sub-cellular 
compartments.

KRIT1 localization, tubulin, and the nuclear question

KRIT1 subcellular localization seems to be controlled by 
its interactions with partner proteins. It is observed to be a 
microtubule-binding protein [107] whose interactions with 
microtubules can be disrupted by mutation of a basic resi-
due patch (residues K47KRK) [37] within a flexible loop of 
the Nudix domain [42]. Its interaction with microtubules 
can also be reduced by co-expression with either Rap1 or 
ICAP1 [37], although how interactions with these proteins 
might regulate microtubule binding is an open question. 
It may be that KRIT1 exists in ‘open’ and ‘closed’ states 
where binding partners can regulate conformational rear-
rangements by interrupting potential interactions between 
the KRIT1 FERM domain and its N-terminal NPxY/F 
motifs [37]. It will be interesting to investigate whether 
CCM2 or CCM3 can also localize to microtubules, as this 
has not yet been shown. Following release from microtu-
bules, KRIT1 seems to localize to cell membranes driven 
predominantly by its interaction with Rap1 [37, 71]. Once 
at the membrane, KRIT1 plays a role in endothelial cell–
cell junctions, cell polarity, and correct lumen formation 
[108]. Other interactions may also play a role in retention of 
KRIT1 at the membrane, particularly that with HEG1 [47]. 
In addition, CCM2 may also bind to membrane-targeted 
proteins including small GTPases [99, 100], and CCM3 
can bind paxillin [58, 60], so there may be multi-dentate 
forces retaining the CCM complex membrane localiza-
tion. A driving force for KRIT1 release from the membrane 
seems to be its direct interaction with ICAP1 [49]. Once 
these proteins interact with one another, the KRIT1–ICAP1 
complex is targeted to the cell nucleus (thus allowing inte-
grin activation). Interestingly, ICAP1-driven relocalization 
of KRIT1 to the nucleus may release the KRIT1–CCM2 
interaction [49]. CCM2 is a cytoplasmic protein, but a 
detailed description of its subcellular localization is not yet 
available. There are currently very little data that describe 
the role of KRIT1 or ICAP1 in the nucleus, but ICAP1 may 
play a role in c-Myc promotor activation [109]. KRIT1 may 
also interact with the sorting nexin family member SNX17 
at intracellular vesicles, potentially affecting sorting nexin-
driven integrin recycling and degradation [110–112].

CCM3 localization

CCM3 subcellular localization is different than that 
observed for either KRIT1 or CCM2. It seems to pro-
mote Golgi assembly and polarization, and its interactions 
with the GCKIII kinases and striatin occur in the Golgi 

[66, 91]. CCM3 is also recruited to cell membranes upon 
VEGF stimulation where it protects VEGFR2 from endo-
cytosis [26], and interaction with PtdIns(3,4,5) may also 
play a role in CCM3 localization to the plasma membrane 
[113]. Recent work has also shown that both CCM3 and 
GCKIII are important for tubulogenesis in the Drosophila 
tracheal system [106]. CCM3 therefore seems to maintain 
functions outside the CCM complex. Given the close cor-
relation between acquisition of CCM disease and improper 
formation of the CCM complex, it is interesting to specu-
late whether accurate CCM complex formation is critical 
for the normal functions of the CCM proteins.

Progress towards targeted therapy

CCM disease is still predominantly treated by neurosurgery 
to remove CCM cavernomas. As neurosurgery is not opti-
mal in all cases (for example, for cavernomas that occur 
in regions that are surgically inaccessible), a long-term 
goal in the field is to discover a non-invasive treatment for 
the disease. Current studies for treatment strategies have 
focused on reducing RhoA signaling, which is increased 
upon loss of the CCM proteins. The two complementary 
strategies are to inhibit kinase activity of ROCK, currently 
by using a selective small molecule, Fasudil, which is 
approved for clinical use in Japan [97, 114], and to reduce 
or remove RhoA from the cell membrane by using HMG-
CoA reductase inhibitors that block the pathway that ger-
nanylgeranylates RhoA [24, 115]. Although these thera-
peutic targets have clinical potential, concern remains that 
chronic targeted inhibition of one of the key enzymes for 
actin remodeling (ROCK) or the high-doses of HMG-CoA 
reductase inhibitors required to affect geranylgeranylation 
of RhoA in the clinical setting could represent high hur-
dles to overcome. Another interesting insight is the recent 
work into the link between CCM and the TGF-β and BMP6 
pathways and its implication for potential therapeutics 
[104]. Whether RhoA/ROCK signaling is a unique target 
for CCM disease, or whether there are also other targets, 
remains an open question. Further work is therefore still 
necessary to discover novel mechanisms that can inhibit 
the dysregulated signaling that occurs on loss of the CCM 
proteins.

Conclusions and outstanding questions

In the past few years, many studies have shed new light on 
the structure and function of KRIT1, CCM2, and CCM3, as 
well as begun to address how these three proteins interact 
with their many binding partners. Until recent years, with 
minimal information concerning the domain architecture 
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of these proteins, it has been difficult to establish the intri-
cacies of their roles within the cell. We now have a basic 
understanding of the structure of these proteins, allow-
ing for future studies to more readily determine how they 
interact with each other and with non-CCM binding part-
ners, and how these interactions can be formed and broken, 
which will provide better tools for understanding CCM 
biology. This has already proven useful, for example, in 
probing the balance between the KRIT1 and integrin β1 
interactions with ICAP [42]. These studies highlight the 
many roles the CCM proteins play in the cell, and will 
serve to guide future work into the biological roles of these 
proteins, why their absence or mutation leads to disease, 
and therapeutic options for cerebral cavernous malforma-
tions. However, many outstanding questions concerning the 
CCM proteins remain. These include: What is the function 
of the newly discovered KRIT1 Nudix domain? What is 
the role of the newly discovered CCM2 HHD? How do the 
CCM proteins interact with β-catenin or VE-cadherin and 
RAC1, and what is the functional role of these interactions? 
How is recruitment and detachment of CCM complex bind-
ing partners controlled, how does it affect signal transduc-
tion, and is this spatially and/or temporally controlled? Do 
proposed conformational rearrangements of KRIT1 associ-
ate with specific binding partners and functional roles for 
the CCM complex? What is the role of KRIT1 at microtu-
bules and in the nucleus? And how is SMAD signaling con-
trolled by the CCM complex? Answers to these and other 
questions over the coming years, aided by past and future 
structural studies, will provide significant improvements in 
our understanding of CCM disease and increase the poten-
tial of treating this disease with targeted therapies.
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