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Introduction

Proteins are principal molecular machines in the cell—cata-
lyzing enzymatic reactions, building key cellular structures, 
and mediating information transfer from DNA to RNA to 
protein. The centrality of proteins to cellular physiology 
means that the cell must produce and maintain a cohort of 
functional proteins that are folded into correct conforma-
tions, assembled into appropriate complexes, localized to 
proper subcellular compartments, regulated by important 
signals, and sustained at suitable concentrations. The cell’s 
collective ability to do this has been generally referred to as 
protein homeostasis (or proteostasis [1]).

Of considerable importance in protein homeostasis is the 
folding state of proteins. The birth of every protein begins 
as a nascent peptide produced by the ribosomal translation 
of mRNA. Nascent peptides must subsequently be folded 
into specific three-dimensional conformations to confer 
final protein function and interactions with other proteins, 
membranes, DNA, RNA, or small molecules. And while 
the initial folding of a protein is essential for its function, 
so too is the maintenance of a protein’s functional struc-
ture throughout the lifetime of the protein. The initial fold-
ing of a protein and the continued maintenance of its folded 
structure are vulnerable to misfolding events that can be 
triggered by genetic mutations, synthesis errors, or post-
synthesis damage caused by physical or chemical stresses. 
When protein folding goes awry, not only is protein func-
tion lost, misfolded proteins can acquire aggregation-prone 
states that are toxic to the cell.

The deleterious nature of protein misfolding and subse-
quent aggregation is best viewed through the lens of human 
health. It has been revealed that misfolded protein aggrega-
tion underlies the pathology for many devastating human 
disorders such as Alzheimer’s disease, Parkinson’s disease, 
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Huntington’s disease, amyotrophic lateral sclerosis (ALS), 
and prion disorders like Creutzfeldt–Jakob [2]. Presently, it 
is not clear how misfolding and aggregation cause cellular 
toxicity in each pathology. In the simplest sense, the mis-
folded proteins produced could overwhelm the cell’s capac-
ity to maintain general protein homeostasis. Alternatively, 
the misfolded proteins could gain a toxic function that affects 
specific cellular pathways. One important feature of most 
protein aggregation diseases is that they are degenerative 
and typically manifest their symptoms later in life [3], sug-
gesting that one or more age-dependent factors is required 
for the pathogenesis of these diseases. It is also thought that 
aging itself might result from the increasing accumulation 
and aggregation of misfolded proteins with age [4]. How 
misfolded proteins contribute to the aging process and how 
aging contributes to protein aggregation diseases is cur-
rently a topic of intense interest. The precise mechanism(s) 
by which a misfolded protein affects a cell will depend upon 
the nature of the misfolded protein, the cellular compartment 
in which it is expressed, the state of the cellular milieu dur-
ing its expression, and the particular cell type in which it is 
expressed. The failures in protein folding that lead to protein 
aggregation diseases underscores the need to understand the 
ways in which the cell normally manages misfolded proteins 
to prevent toxic misfolded protein aggregation.

General cellular protein quality control

Due to the deleterious nature of protein misfolding, the 
eukaryotic cell has evolved a battery of compartment-specific 

protein quality control (PQC) systems to handle misfolded 
proteins as they arise within a specific organelle. In gen-
eral, cellular PQC management of misfolded proteins can 
be divided into three functions: the repair, sequestration, and 
degradation of misfolded proteins (Fig.  1). The repair and 
sequestration aspects of PQC primarily involve protein chap-
erones that aid in the folding of nascent proteins, refolding 
of misfolded proteins, disassembling of aggregates, bind-
ing of misfolded proteins to prevent their aggregation, and 
sequestering of misfolded protein aggregates into cellular 
inclusions [5–7]. The destruction aspect of PQC typically 
employs ubiquitin-protein ligases that recognize and ubiq-
uitinate misfolded proteins for proteasomal degradation [8]. 
Autophagy is another key route for the destruction of mis-
folded proteins [9]. For the most part, each cellular com-
partment possesses its own distinct PQC systems to manage 
misfolded proteins as they arise locally. Compartment-spe-
cific repair, sequestration, and destruction systems are also 
thought to function together in a “triage” hierarchy [10, 11], 
which would provide each cellular compartment the abil-
ity to determine the best action towards a misfolded protein 
depending on whether it can be salvaged. For example, if 
chaperones cannot unfold/refold a misfolded protein, they 
would direct the misfolded protein to degradation machinery 
for its destruction.

In addition to the compartment-specific primary PQC 
systems that directly manage misfolded proteins, the cell 
also possesses compartment-specific secondary PQC sys-
tems that sense the burden of misfolded proteins and adjust 
production of the primary PQC components in an orga-
nelle accordingly. For example, the ER unfolded protein 

Fig. 1   Primary PQC systems in 
the eukaryotic cell. Misfolded 
proteins can be generated 
through mutations, synthesis 
errors, and damage through 
physical or chemical stress 
during and after nascent peptide 
folding. Stages of the main PQC 
system action are indicated
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response modulates the expression of the primary ER PQC 
systems to accommodate the burden of misfolded proteins 
in the ER during ER stress [12]. Similarly, the mitochon-
drial unfolded protein response regulates the expression 
of the primary mitochondrial PQC systems as misfolded 
proteins accumulate in mitochondria [13]. These second-
ary PQC systems are critical because the misfolded protein 
load in a cellular compartment often changes with varying 
external environmental or internal metabolic conditions, 
and the primary PQC repair, sequestration, and degrada-
tion systems must be coordinately modulated to meet these 
changing demands.

The nucleus and protein quality control

More than 15 human diseases are associated with mis-
folded protein aggregation and inclusion formation of 
misfolded proteins in the nucleus [14]. These include the 
known polyQ-expansion diseases: Huntington’s disease, 
six different spinal cerebellar ataxias, spinal-bulbar mus-
cular atrophy (Kennedy’s disease), and dentatorubral-pal-
lidoluysian atrophy [15]. One polyA-expansion disease, 
oculopharyngeal muscular dystrophy, is also associated 
with aggregation of proteins in the nucleus [16]. Nuclear 
inclusions are also observed in diseases caused by muta-
tions that are not tract-expanding such as neuronal intra-
nuclear inclusion disease (NIID), neuronal intermediate 
filament inclusion disease (NIFID), multiple system atro-
phy (MSA), neuroferritinopathy, and inclusion body myo-
pathy with early onset Paget's disease and frontotemporal 
dementia (IBMPFD) [14].

The existence of nuclear aggregation diseases indi-
cates that the nuclear environment is susceptible to the 
toxicity of misfolded proteins, but it is not clear why. Do 
misfolded proteins disrupt chromatin organization, DNA 
replication, DNA repair, transcription, ribosome biogene-
sis, nuclear import/export, or nuclear structure? What are 
the PQC systems in the nucleus that protect it from toxic 
misfolded proteins? What do they recognize as abnormal, 
and are they incapable of targeting or processing cer-
tain types of misfolded proteins? If they are capable, are 
lesions in the nuclear PQC systems required for nuclear 
aggregation diseases to develop? Alternatively, are there 
age-dependent decrements in nuclear PQC function 
that contribute to the toxic accumulation and aggrega-
tion of misfolded proteins? Before these questions can 
be answered, it is important to understand how proteins 
arrive in the nucleus and the environment to which they 
are exposed while in the nucleus.

Nuclear proteins are first synthesized in the cytoplasm 
(Fig.  2). Thus, unlike the cytoplasm, the nucleus is not a 
primary site of protein synthesis and does not have to con-
tend with a high burden of nascent proteins that must be 
folded immediately after translation by ribosomes. We do 
note, however, there are reports suggesting that some trans-
lation might occur in the nucleus [17, 18], perhaps in part 
to mediate nonsense-mediated decay of defectively pro-
duced mRNAs [19, 20]. If nuclear translation does occur 
to facilitate nonsense-mediated decay, the nucleus would 
need to manage the translation products generated, espe-
cially those produced from defective mRNAs. At this time, 
the existence and functional purpose for nuclear translation 
remains controversial [21–24], but could be an important 

Fig. 2   Nuclear import versus 
ER translocation. Nuclear 
proteins are transported through 
the nuclear pore in intact, folded 
states, whereas ER proteins are 
transported as nascent peptides 
across the ER translocon and 
folded in the ER lumen
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parameter to consider in the context of protein misfolding 
in the nucleus.

After synthesis in the cytoplasm, nuclear proteins enter 
the nucleus through either passive diffusion (only if they 
are below the ~40-kDa passive diffusion limit of the nuclear 
pore) or active transport by karyopherins (importins) [25] 
(Fig.  2). During active transport, the nuclear pore can 
expand from 9 to ~39  nm [26], allowing it to accommo-
date very large single-subunit proteins and multi-subunit 
protein complexes that can reach megadaltons in size [25]. 
Import of proteins into the nucleus is therefore very differ-
ent from import of proteins into the ER or mitochondria, 
in which nascent proteins targeted to these compartments 
are trafficked across the ER membrane or outer mitochon-
drial membrane in an unfolded state by threading through 
a membrane translocon [27, 28] (Fig. 2). Given the ability 
of nuclear pores to expand greatly during active transport, 
it is generally thought that most resident nuclear proteins 
are in a properly folded state and assembled into appropri-
ate subcomplexes prior to their transport into the nucleus 
[25, 26]. Based on the ability of nuclear pores to accom-
modate folded proteins, it is reasonable to suspect that PQC 
in the nucleus will be predominantly involved in managing 
nuclear proteins that have become damaged and misfolded 
after transiting the nuclear pore.

However, recent evidence suggests that the nucleus 
might also be a site of PQC for misfolded cytoplasmic 
proteins. While it would be predicted that misfolded pro-
teins arising de novo in the cytoplasm should be handled 
by cytoplasmic PQC mechanisms, there is now a grow-
ing body of literature demonstrating that some misfolded 
cytoplasmic proteins in yeast are trafficked to the nucleus 
for PQC degradation [29–34]. It is currently unknown how 
these misfolded cytoplasmic proteins enter the nucleus. In 
some cases, the misfolded protein’s size is at or below the 
~40-kDa passive diffusion limit of the yeast nuclear pore, 
such as Δ2GFP (~27 kDa) and Ste6*C (~28 kDa) [32, 33]. 
Thus, they could enter the nucleus via passive diffusion. In 
other cases, the misfolded protein’s size exceeds the passive 
diffusion limit, such as ΔssPrA (~43 kDa) and CPY†-GFP 
(~85  kDa) [30, 32]. An active import mechanism would 
be required for nuclear localization of these proteins. Why 
misfolded cytoplasmic proteins would be actively imported 
into the nucleus remains a mystery. Perhaps it is a function 
of protein synthesis, where the cytoplasm must manage 
the folding of nascent peptides and the nucleus does not. 
As a consequence, the nucleus could have evolved to har-
bor the most aggressive PQC degradation systems aimed 
at destroying any protein that is not in a properly folded 
state. In fact, the proteasome is enriched in the nucleus 
[35], indicating that the nucleus likely has robust degra-
dative capabilities. A mechanism that sends grossly mis-
folded cytoplasmic proteins to the nucleus could have been 

evolutionarily selected to partition PQC degradation from 
nascent PQC folding.

While there appears to be a directed action towards send-
ing some misfolded cytoplasmic proteins to the nucleus in 
yeast, this has yet to be established in mammalian cells. 
However, it has been shown that nuclear pores break down 
in mammalian cells as a consequence of aging and become 
more permissive to larger cytoplasmic proteins, such as tubu-
lin, leaking into the nucleus [36]. Nuclear pore breakdown 
during the course of aging, subsequently leading to increased 
access of cytoplasmic proteins to the nucleus, has the poten-
tial to challenge nuclear PQC mechanisms as the cell ages.

The observations showing that cytoplasmic proteins gain 
access to the nucleus have important implications in terms 
nuclear protein aggregation diseases. Purposeful trafficking 
or accidental leakage of misfolded proteins into the nucleus 
could have dire consequences for the health of the cell if 
the imported misfolded proteins are not managed appro-
priately within the confines of the nucleus. For example, if 
the misfolded cytoplasmic proteins reach sufficient levels 
in the nucleus, they could overwhelm nuclear PQC systems 
leading to a general increase in the burden of misfolded 
proteins in the nucleus. Alternatively, the misfolded cyto-
plasmic proteins themselves could confer a specific toxicity 
in the nucleus. This latter scenario might be the case for 
Huntington’s disease, which is caused by aggregation of a 
polyQ-expanded, truncated form of the huntingtin protein 
[37]. Huntingtin, in its full-length form, is primarily local-
ized to the cytoplasm and associated with secretory vesicles 
in neurons [38]. However, polyQ-expanded, truncated hun-
tingtin localizes to nuclear inclusions [39], and is particu-
larly toxic in the nucleus [40, 41]. How common a trend it 
is for misfolded cytoplasmic proteins to mislocalize to the 
nucleus in nuclear protein aggregation diseases remains to 
be determined. Many misfolded proteins causally linked to 
nuclear protein aggregation diseases are normally nuclear 
localized such as the nuclear transcriptional corepressor 
atrophin-1 in dentatorubral-pallidoluysian atrophy [42], 
the nuclear transcription factor androgen receptor in spinal-
bulbar muscular atrophy (Kennedy’s disease) [43], and the 
nuclear mRNA polyadenine-binding protein PABPN1 in 
oculopharyngeal muscular dystrophy [44].

Once in the nucleus, proteins face a different environ-
ment than the cytoplasm in terms of the molecules they 
encounter and the compartments to which they partition. 
Molecular crowding is similar between the nucleoplasm 
and cytoplasm [45, 46], indicating that overall movement 
and molecular collisions will be fairly equivalent. However, 
the nucleus is not homogenous and is divided into a num-
ber of distinct subcompartments. Thus, it is possible that 
the unique nature of each subcompartment poses different 
threats for misfolding and necessitates PQC mechanisms 
discrete from each other.
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The most generally recognized feature of the nucleus 
is that it harbors the cell’s genetic material packaged into 
chromatin. There are potential dangers associated with 
chromatin related to protein misfolding. Most notably, 
the processes that regulate chromatin structure could con-
tribute to protein misfolding in the nucleus. For example, 
access of transcription factors, histone-modifying enzymes, 
and RNA and DNA polymerases to compacted chromatin 
requires powerful ATP-dependent chromatin remodelers 
[47], which could unfold proteins during the chromatin-
remodeling process. Key protein-dependent chromatin pro-
cesses that could be impaired by protein misfolding and 
failures in nuclear PQC include DNA stability and repair, 
DNA replication, chromosome segregation, transcription, 
and gene silencing.

Another important subcompartment in the nucleus is 
the nucleolus, which encompasses the cell’s ribosomal 
DNA and is the center of ribosome biogenesis and assem-
bly [48]. The process of ribosome biogenesis could burden 
PQC systems in the nucleus due to the dozens of ribosomal 
proteins in exceptionally high concentrations that must be 
correctly incorporated into immature ribosome subunits as 
they are built in the nucleolus. Any stoichiometric imbal-
ances in the ribosomal proteins or the dozens of complexes 
that build the subunits could significantly add to the PQC 
burden within the nucleus. Furthermore, protein misfolding 
or failures of PQC in the nucleolus could negatively impact 
production of the cell’s cohort of ribosomes, which in turn 
could disrupt global protein homeostasis in the cell.

There are other, well-defined nuclear subcompartments 
where protein misfolding could affect the viability of the 
cell. Cajal bodies are implicated in many RNA-related 
functions including snRNP biogenesis, mRNA processing, 
and telomere maintenance [49]. PML bodies are punctate 
structures associated with transcriptional activation, DNA-
damage repair, resistance to viral infection, and apoptosis 
[50]. Nuclear lamins provide an underlying architecture for 
the nucleus and are involved in an array of nuclear func-
tions including transcription, DNA replication, and DNA 
repair [51]. Alteration of nuclear lamin structure is known 
to cause various premature aging diseases [52], which 
could be exacerbated if lamin structure is perturbed by pro-
tein misfolding.

In addition to considering that the mode of nuclear PQC 
might be distinct between nuclear subcompartments, it is 
also worth contemplating whether nuclear PQC varies 
between different cell types. The a priori assumption would 
be that nuclear PQC would be the same between cell types 
because the same nuclear functions occur in all nondivid-
ing somatic cells: e.g., DNA transcription, mRNA process-
ing, ribosome biogenesis, nuclear transport, and mainte-
nance of nuclear architecture. However, there does appear 
to be cell-type sensitivity for misfolded protein toxicity in 

nuclear protein aggregation diseases as neurons are primar-
ily affected [14]. The neuronal cell bias could exist because 
nuclear protein aggregation simply has not yet been identi-
fied in the etiology of other diseases affecting non-neuronal 
cell types. On the other hand, this bias could have arisen 
because neurons are one of the longest-lived cell types and 
may be more affected by decrements in nuclear protein 
homeostasis as they age compared to other cell types. Even 
among the nuclear protein aggregation diseases, not all 
neurons are equally affected despite the fact that the delete-
rious misfolded protein is often widely expressed in many 
different cell types. For example, it is striatal medium spiny 
neurons that are the most vulnerable to polyQ-expanded 
huntingtin in Huntington’s disease [53], whereas it is lower 
motor neurons in the spinal cord and brainstem that are the 
most vulnerable to polyQ-expanded androgen receptor in 
spinal bulbar muscular atrophy (SBMA) [43]. It is possi-
ble that selective vulnerability of distinct neuronal cells is 
due to a cell-specific effect of the misfolded protein, such 
as cell-specific transcriptional dysregulation [54]. Alterna-
tively, cell-specific sensitivity to the particular misfolded 
protein could arise due to differences in the nuclear PQC 
capabilities between cell types.

At this point, we do not understand the full scope of 
PQC capabilities in the nucleus. Thus, we do not know if 
distinct nuclear PQC systems generally operate through-
out the nucleus or are specific to individual subcompart-
ments in the nucleus. We also do not understand if there 
are differences in the nature or robustness of nuclear PQC 
between different cell types that could lead to selective vul-
nerability. In the following sections, we discuss what is cur-
rently known about PQC systems that protect the nuclear 
environment.

Nuclear PQC: chaperones

Chaperones are central components of cellular PQC and 
are pivotal in the proper folding of nascent polypeptides, 
the assembly or disassembly of macromolecular com-
plexes, the transport of proteins across membranes, the 
unfolding/refolding of misfolded proteins, and the disasso-
ciation of protein aggregates [55]. In addition, there is sig-
nificant crosstalk between chaperones and PQC degrada-
tion systems such as the ubiquitin–proteasome system [56]. 
To understand the primary, direct role for chaperones in 
nuclear PQC, we think it is important to separate chaperone 
functions in the folding of newly synthesized nuclear pro-
teins in the cytoplasm from PQC functions explicitly in the 
nucleus. Thus, we will limit our discussion to those chap-
erones that have demonstrated nuclear localization. Since 
we will not provide a detailed review of how these chaper-
ones function mechanistically in terms of protein folding, 
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refolding, and disaggregation, we refer the reader to the 
recent excellent review on chaperone function by Hartl and 
colleagues [55].

The main evidence demonstrating a role for chaperones 
in maintaining nuclear protein homeostasis comes from 
studies examining the localization of chaperones under 
stress conditions known to cause protein misfolding. For 
example, a number of Hsp70 chaperones undergo consid-
erable relocalization to the nucleus during heat shock in 
mammalian cells [57–63]. The budding yeast Hsp70 chap-
erone Ssa4 becomes enriched in the nucleus after ethanol 
or starvation stress [64–66]. Similarly, yeast Hsp104 also 
undergoes significant nuclear relocalization during heat 
shock [67–69]. In mammalian and yeast cells, the small 
heat shock protein Hsp26 has notable relocalization to the 
nucleus under heat shock conditions [70, 71]. Our under-
standing of nuclear PQC and the factors that function in the 
nuclear environment is still fledgling. As such, we think it 
is likely that other chaperones relocalize to the nucleus dur-
ing protein misfolding stress. However, these are the best 
examples to date for chaperones involved in nuclear PQC.

Enhanced nuclear localization of chaperones under 
protein misfolding stress conditions, such as heat shock 
or oxidative stress, is quite interesting due to the fact that 
protein misfolding stress conditions inhibit normal nuclear 
protein import [72–77]. Inhibition of normal nuclear import 
during protein misfolding stress happens, in large part, by 
prevention of nuclear export of the karyopherin proteins 
(importins) that are required for active nuclear transport 
[72–77]. Because the karyopherins are not recycled to the 
cytoplasm, they can no longer function in nuclear import. 
Nuclear export blockade of karyopherins has been posited 
to be due to disruption of the Ran gradient essential for 
recycling of the karyopherins [72–75, 78]. Alternatively, it 
could be due to the misfolding of the karyopherins under 
stress conditions. Whatever the mechanism(s), normal 
nuclear import is decreased during stress conditions, yet 
nuclear localization of chaperones is increased [62, 65]. 
To facilitate increased chaperone levels in the nucleus dur-
ing misfolded protein stress conditions, the cell appears to 
use two mechanisms: reduced chaperone export from the 
nucleus [57, 65, 79], and enhanced import of chaperones 
into the nucleus using specialized nuclear transport car-
riers that are unaffected by protein stress [62]. The over-
all effect of reduced normal nuclear import and increased 
chaperone nuclear localization is likely to be an important 
combined physiological response to protein misfolding in 
the nucleus. It would be advantageous for the cell to pre-
vent new nuclear proteins from entering the nucleus until 
the burden of misfolded proteins in the nucleus generated 
under the current stress is resolved.

In addition to relocalizing to the nucleus under condi-
tions of protein misfolding stress, chaperones have also 

been shown to colocalize with nuclear inclusions formed 
by misfolded proteins associated with human disease. For 
example, nuclear inclusions formed by polyQ expansions 
in huntingtin (htt), androgen receptor, ataxin-1, ataxin-3, 
and ataxin-7 show considerable colocalization with Hsp70, 
Hsp40, and/or Hsp110 chaperones [80–88]. Nuclear 
inclusions formed by polyA expansions in PABPN1 and 
ataxin-3 also demonstrate colocalization with Hsp70 and 
Hsp40 chaperones [86, 89–92]. Nuclear inclusions formed 
by other misfolded proteins have also been found to include 
Hsp70 and Hsp40 chaperones [93–95]. The functional pur-
pose of chaperones in nuclear inclusions is not yet clear. 
Perhaps they help to form the inclusion, thereby reducing 
the amount of free misfolded species within the nucleus. 
Alternatively, they may act to disaggregate the inclusion to 
facilitate refolding or degradation. Whatever their particu-
lar mode of action in the inclusion, the fact that chaperones 
localize to nuclear inclusions is another key piece of evi-
dence for chaperone function in nuclear PQC.

As mentioned earlier in the review, recent studies have 
shown that a number of misfolded cytoplasmic proteins 
enter the nucleus and are subject to nuclear PQC degra-
dation [29–33]. In budding yeast, the Hsp70 chaperones 
Ssa1/Ssa2, the Hsp110 chaperone Sse1, the Hsp40 chaper-
ones Ydj1 and Sis1 are involved in the nuclear PQC deg-
radation of this class of misfolded protein [29–33]. How 
these chaperones function in nuclear PQC degradation is 
not clear at this time. Interestingly, both Sse1 and Sis1 have 
been implicated in the nuclear transport of certain mis-
folded cytoplasmic proteins [30–32], which suggests that at 
least one function for these chaperones may be to facilitate 
the trafficking of misfolded cytoplasmic proteins into the 
nucleus.

Nuclear PQC: ubiquitin‑protein ligases

The ubiquitin–proteasome system is a principal means 
for the destruction of misfolded proteins in the cell [8]. 
As mentioned above, the proteasome is enriched in the 
nucleus [35], supporting the idea that ubiquitin-mediated 
proteasomal degradation is a primary route for misfolded 
protein elimination in the nucleus. The small signaling pro-
tein ubiquitin is covalently attached to target substrates via 
a conserved enzymatic cascade [96]. Initially, a ubiquitin-
activating enzyme, or E1, binds ubiquitin in a high-energy 
thiol-ester bond. A ubiquitin-conjugating enzyme, or E2, 
then accepts ubiquitin from the activating enzyme with a 
similar high-energy thiol-ester bond. Lastly, a ubiquitin-
protein ligase, or E3, acts to transfer the ubiquitin mol-
ecule to the substrate. The E3 is typically thought to con-
fer substrate specificity via intrinsic interaction domains or 
recruitment of ancillary substrate-recognition factors [97]. 
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Identification of the E3s that function in PQC degradation 
in the nucleus and characterization of how they function 
are current topics of investigation. Here we focus our dis-
cussion on E3s with demonstrated nuclear localization and 
defined roles in the degradation of misfolded proteins.

In the budding yeast Saccharomyces cerevisiae, the 
major E3 that is involved in the PQC degradation of mis-
folded proteins in the nucleus is San1 [98–102]. In sup-
port of San1 mediating nuclear PQC, San1 is predomi-
nantly localized to the nucleus [99], and cannot recognize 
misfolded protein substrates if they are redirected to the 
cytoplasm [103]. Furthermore, San1 is highly selective 
for misfolded proteins and does not target normally folded 
proteins for degradation [99, 103]. Substrate recognition 
by San1 occurs through the binding of misfolded proteins 
to regions in San1 located N- and C-terminal to its RING 
domain [103]. These N- and C-terminal regions are pre-
dicted to contain short, linear, substrate-binding modules 
separated by highly disordered linker sequences [103]. This 
distinct configuration is thought to provide San1 with a 
conformationally plastic structure that allows San1 the abil-
ity to adapt itself to the wide variety of shapes its misfolded 
substrates are likely to adopt [103]. Within its misfolded 
protein substrates, San1 generally recognizes exposed 
hydrophobicity that is at the threshold that can cause aggre-
gation of the misfolded protein [104, 105]. San1 homologs 
exist in a variety of other fungi [103, 106], with a fission 
yeast Schizosaccharomyces pombe homolog also shown to 
function in the PQC degradation of misfolded nuclear pro-
teins [107].

Although no mammalian homolog of San1 has been 
identified to date, the mammalian E3s UHRF-2, PML IV, 
and E6-AP have been suggested to function in nuclear PQC 
degradation [87, 93, 108, 109]. The nuclear PQC degrada-
tion function of UHRF-2 is proposed from its involvement 
in the nuclear degradation of polyQ-expanded, truncated 
huntingtin [108]. The nuclear PQC degradation function 
for PML IV is posited from its role in the degradation of a 
nuclear protein with an expanded polyQ tract [87]. In addi-
tion, PML IV colocalizes with nuclear inclusions formed 
by polyQ-expanded proteins [87, 93]. Lastly, E6-AP has 
been implicated in nuclear PQC by its involvement in the 
degradation of polyQ-expanded, truncated huntingtin and 
its localization to huntingtin nuclear inclusions [109]. 
Because these E3s have only been shown to target polyQ-
expanded proteins, further studies on other misfolded pro-
teins are required to support bona fide global functions for 
these E3s in nuclear PQC degradation.

In addition to San1 in budding yeast, the yeast E3 Ubr1 
is also involved in the PQC degradation of misfolded pro-
teins that have been shown to be nuclear localized [29–34]. 
This function is likely conserved as Ubr1 homologs exist 
in mammalian cells [110], and mammalian UBR1 has 

been implicated in controlling the levels of Hsp90 client 
proteins [111]. The protein degradation functions of Ubr1 
were initially characterized in terms of its ability to select 
proteins containing particular destabilizing N-terminal 
residues [112, 113], with Ubr1 as the major recognition 
component of the N-end rule pathway [114]. By contrast, 
how Ubr1 selects misfolded proteins for PQC degradation 
is not yet known. In particular, it is not clear what feature 
of misfolding Ubr1 recognizes. The N-terminal residue of 
misfolded proteins does not appear to be the recognized 
feature [30], indicating that the PQC recognition aspect of 
Ubr1 is independent of its N-end rule recognition function. 
Despite that, it is worth considering the N-end rule func-
tion of Ubr1 in the context of nuclear PQC. For example, 
it is conceivable that improper post-translational processing 
of a nuclear protein’s  N-terminus could affect its folding 
or associations [115, 116]. Also, nuclear proteins that have 
undergone regulated proteolytic cleavage have been shown 
to expose destabilizing N-end rule residues in the truncated 
C-terminal fragments that are recognized by Ubr1 [117–
119]. Persistence of these truncated proteins in the absence 
of Ubr1 function could exert dominant-negative effects in 
their normal physiological pathways [117–119], or allow 
misfolded fragments to aggregate and potentially lead to 
neurodegeneration [120].

In considering the nuclear PQC functions of yeast Ubr1 
and San1, there is some overlap between the E3s in the 
misfolded proteins that they target for degradation [29–34]. 
However, the majority of misfolded San1 substrates are 
solely targeted by San1 [99, 103–105] and some misfolded 
Ubr1 substrates are solely targeted by Ubr1 [30, 121], dem-
onstrating that Ubr1 and San1 do have at least a partial sep-
aration of function in PQC degradation. One explanation 
is that some misfolded proteins display both the feature of 
misfolding recognized by San1 and the feature of misfold-
ing recognized by Ubr1 thus leading to their degradation by 
both pathways. On the other hand, some substrates might 
display only the feature of misfolding recognized by either 
San1 or Ubr1 and are thus subject to degradation solely by 
either pathway. Until the feature of misfolding recognized 
by Ubr1 is discovered as has been for San1 [104, 105], this 
question will remain unresolved.

Alternatively, it is possible that the separation in PQC 
degradation functions for Ubr1 and San1 are due to the 
PQC degradation role of Ubr1 being limited to the cyto-
plasm [30], and the PQC degradation role of San1 limited 
to the nucleus [99]. If compartmentalization of San1 and 
Ubr1 underlies their partial separation of function, then the 
Ubr1-dependency for a misfolded nuclear protein’s PQC 
degradation might consequently depend upon the time 
the misfolded protein spends in the cytoplasm prior to its 
nuclear import. The longer the misfolded protein dwells in 
the cytoplasm, the more its PQC degradation will be Ubr1 
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dependent. Currently, the localization for budding yeast 
Ubr1 has not yet been published, but fission yeast Ubr1 is 
localized to both the cytoplasm and nucleus [122]. Addi-
tional work will be needed to clarify the exact location for 
the PQC degradation functions of budding yeast Ubr1.

Lastly, the budding yeast protein Doa10 was originally 
characterized as an ER-membrane localized E3 that ubiq-
uitinates proteins in the ER for proteasomal degradation 
[123–126]. However, the ER membrane and the nuclear 
envelope are continuous [127], and it was found that Doa10 
does indeed localize to the inner nuclear membrane where 
it is required to mediate the ubiquitination and degrada-
tion of the transcription factor Matα2 [128]. Although the 
degradation of Matα2 regulates mating-type switching in 
yeast, Doa10 has also been shown to mediate the degrada-
tion of misfolded proteins that are predicted or known to 
localize to the nucleus [126, 129, 130]. Like San1, Doa10 
appears to recognize exposed hydrophobicity [130], though 
the molecular rules for substrate hydrophobicity appear to 
be different than those for San1 recognition because there 
is little overlap between Doa10 and San1 substrates. Per-
haps San1 and Doa10 have a division of labor in terms of 
the type of exposed hydrophobicity they recognize, and this 
broadens the capabilities of the nucleus for recognizing and 
destroying misfolded proteins. Alternatively, it could be 
that San1 mediates the degradation of misfolded proteins 
that are nucleoplasmic in nature whereas Doa10 mediates 
the degradation of misfolded proteins that localize to the 
surface of the inner nuclear membrane. Future comparative 
studies will be necessary to understand the potential inter-
play and functional separation of these two nuclear PQC 
E3s. Doa10 does have a mammalian homolog called TEB4 
[131], though a nuclear PQC role for TEB4 has yet to be 
established.

Nuclear PQC: protein SUMOylation

While ubiquitination of misfolded proteins is a key post-
translational mechanism used in nuclear PQC to facilitate 
misfolded protein degradation, another posttranslational 
mechanism potentially used in nuclear PQC is modification 
of proteins by the small ubiquitin-like modifier (SUMO). 
Structurally similar to ubiquitin, SUMO has been shown to 
modify many cellular proteins, particularly during stresses 
that can cause protein misfolding [132, 133]. For exam-
ple, after heat shock or oxidative stress, there is a general 
increase in the SUMOylation of predominantly nuclear 
proteins in yeast, plants, and mammalian cells [134–137]. 
The majority of these nuclear SUMOylation targets are 
involved in transcription, chromatin regulation, RNA pro-
cessing, and metabolism [134–137]. In many cases, it is 
reasonable to suspect that the stress-induced SUMOylation 

of nuclear proteins will alter their function in order to 
mediate important physiological responses to stress.

It is also important to consider that SUMOylation could 
be a direct factor involved in maintaining nuclear protein 
homeostasis during stress. For example, a subset of plant 
proteins targeted for stress-induced SUMOylation also 
undergo increased ubiquitination [134]. In addition, protea-
some impairment in yeast has been shown to increase the 
global levels of high molecular weight SUMO conjugates 
that are also ubiquitinated [138]. Furthermore, proteasome 
inhibition of mammalian cells has been found to increase 
protein SUMOylation [138, 139], to an extent similar to 
what is observed during heat shock [139]. Interestingly, the 
proteasome inhibition-dependent increase in SUMOylation 
in mammalian cells requires active protein synthesis [139], 
suggesting that SUMOylation could potentially act as a deg-
radation signal for nascent misfolded proteins. The same 
study also found that SUMO conjugates accumulate within 
insoluble inclusions during proteasome inhibition [139].

The relationship between SUMO, protein solubility, 
and protein aggregation is intriguing and complex. SUMO 
is known to be an extremely soluble protein. In fact, as an 
artificial fusion tag, it is a highly effective tool for enhanc-
ing the solubility of difficult-to-express recombinant pro-
teins [140, 141]. In recent years, SUMO has been found 
to modify a number of aggregation-prone proteins associ-
ated with neurodegenerative diseases [142]. In some cases, 
SUMO may function as a potential solubilizing factor. For 
example, SUMOylation of α-synuclein, a major compo-
nent of Lewy body inclusions [143], has been shown to 
prevent α-synuclein fibril formation in vitro and reduced 
SUMOylation of α-synuclein enhances its neurotoxicity in 
vivo [144]. By contrast, increased SUMOylation of nuclear 
polyQ-expanded ataxin-1 during oxidative stress enhances 
ataxin-1 insolubility and inclusion formation in vivo [145]. 
The modulation of huntingtin by SUMO is also complex. 
SUMOylation of polyQ-expanded huntingtin reduces its 
inclusion formation in mammalian cells but enhances neu-
rodegeneration in flies [146]. The role of SUMO in protein 
aggregation diseases is clearly not straightforward and will 
likely depend upon the particular nature of the misfolded 
protein. From the combined studies, however, it is emerg-
ing that SUMO plays a broader role in PQC than simply 
direct regulation of protein activity during stress. The stud-
ies are beginning to reveal a distinct axis in PQC in which 
SUMO likely functions in modulating misfolded protein 
solubility and stability.

Nuclear PQC: signaling pathways

Eukaryotic cells dramatically alter their transcriptome to 
adapt to stress conditions that result in an increased burden 
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of misfolded proteins. Most cellular compartments have 
been shown to possess the means to sense the levels of 
misfolded proteins in the compartment and signal to the 
nucleus to increase the transcription of the compartment’s 
primary PQC protection components. As previously men-
tioned, accumulation of misfolded proteins in the ER can 
lead to the ER unfolded protein response, which results 
in the increased transcription of ER PQC chaperones and 
E3s [12]. The mitochondria also possess a similar unfolded 
response that elevates the expression of mitochondrial PQC 
chaperones and proteases as misfolded proteins accumulate 
in the mitochondria [13]. In the cytoplasm, accumulation of 
misfolded proteins can lead to induction of the heat shock 
response, which elevates the expression of cytoplasmic 
chaperones [147–149].

While unfolded protein responses have been well char-
acterized in other cellular compartments, none have yet 
been described for the nucleus. Nevertheless, we think 
that one does exist. In our previous studies characteriz-
ing the role of the E3 San1 in nuclear PQC degradation, 
we found that there was increased expression of several 
protein chaperone and stress genes in san1Δ cells [99]. 
The chaperone genes include those that encode for Ssa4, 
Hsp104, and Hsp26, which have been shown to become 
enriched in the nucleus during protein misfolding stress 
[64–69, 71]. Because the deletion of SAN1 would lead to 
the accumulation of misfolded proteins specifically in the 
nucleus, we think that the increased expression of these 
chaperone genes in san1Δ cells is due to a secondary PQC 
system within the nucleus that senses the level of protein 
misfolding and adjusts expression of the primary nuclear 
PQC systems accordingly. However, it has yet to be estab-
lished that increased expression of these chaperones in turn 
leads to their increased presence in the nucleus, which is 
an important parameter if it is a nucleus-specific response. 
Future work will be required to clarify the consequences of 
chaperone up-regulation in the absence of San1. Should the 
increased expression of chaperones in san1Δ cells consti-
tute a nuclear unfolded protein response, it will be impor-
tant to discover the misfolded protein sensors and transcrip-
tion factors of this response to determine how it operates in 
the nucleus.

Nuclear PQC: inclusion sites

Despite the formidable chaperone and degradative PQC 
capabilities deployed by the eukaryotic cell to manage 
misfolded proteins, the burden of misfolded proteins can 
become quite high under conditions that exacerbate protein 
misfolding, such as chemical or physical stresses, nutri-
tional deficiencies, and aging [3, 4, 150]. As misfolded pro-
teins accumulate and overwhelm the primary PQC systems, 

they can progressively oligomerize and aggregate in the 
cell [151]. It is now well understood that the etiology for 
dozens of degenerative human diseases is linked to the 
oligomerization and aggregation of misfolded proteins [2, 
151]. These diseases are typically characterized by the age-
dependent accumulation of pathogenic misfolded proteins 
into visible cellular inclusions [2, 151]. Because of their 
association with degenerative human diseases, inclusions 
were long thought to be the pathological manifestation of 
misfolded protein aggregation.

Recent work, however, has indicated that inclusion for-
mation is not a passive result of aggregation and may not 
be a pathological process [152–156]. Rather, it appears that 
organization of misfolded proteins into specific subcellular 
domains is a key physiological aspect of PQC that assists in 
the efficient triage and processing of misfolded proteins by 
concentrating them into dedicated PQC regions. Inclusions 
also appear to serve as a means to sequester small solu-
ble oligomers of misfolded proteins, which are currently 
thought to be the species that cause cellular toxicity [151]. 
Prominent cellular inclusions where misfolded proteins are 
known to be directed during high levels of protein misfold-
ing stress are the perinuclear aggresome [157], the perinu-
clear JUNQ [153], and the perivacuolar IPOD [153]. For 
the purposes of this review, we will focus on cytoprotective 
inclusions associated with the nucleus—the JUNQ and the 
aggresome.

In budding yeast, a key inclusion associated with the 
nucleus is the JUNQ (for juxtanuclear quality control) 
[153]. The JUNQ is formed within a proliferation of the 
nuclear envelope and contains misfolded proteins that are 
intended for ubiquitin–proteasome degradation [153]. The 
misfolded proteins localized within the JUNQ are fairly 
mobile [153], but under severe stress or in the presence of 
toxic aggregates the mobility of misfolded proteins in the 
JUNQ can decrease [158, 159]. Consistent with the notion 
that the JUNQ is an active site for PQC management of 
misfolded proteins, Hsp70 chaperones and proteasome 
subunits colocalize with the JUNQ [158]. Similar to the 
misfolded proteins that compose the JUNQ, chaperones 
that associate with the JUNQ also exchange freely with the 
cytoplasm [153, 158], but the rate of chaperone exchange 
with the cytoplasm decreases during stress [158]. Addi-
tionally, compartmentalization of misfolded proteins in the 
JUNQ plays a key PQC role in the asymmetric inheritance 
of misfolded proteins, as localization to the JUNQ prevents 
misfolded proteins from being passed to the daughter cell 
from the mother cell during mitosis [155]. Altogether, it is 
thought that the JUNQ provides a storage and processing 
platform for misfolded proteins intended for proteasomal 
degradation and perhaps refolding.

The accumulation of misfolded proteins in compart-
ments like the JUNQ depends upon the type of misfolding, 
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the nature of the stress and its duration. For example, ubiq-
uitinated misfolded proteins in budding yeast are sent to the 
JUNQ, but those that fail to be ubiquitinated are sent to the 
perivacuolar IPOD (for insoluble protein deposit) instead 
of the JUNQ [153]. By contrast, detergent insoluble amy-
loidogenic proteins are sent directly to the IPOD and not 
the JUNQ [153]. Despite their differences, both the JUNQ 
and IPOD appear to be “final destination” compartments 
for proteins that are committed to degradation or sequestra-
tion, respectively. Recently, it was found that, upon expo-
sure to protein misfolding stress, a conditionally misfolded 
protein localizes to transient intermediary inclusions called 
Stress Foci (SF) [155], which have also been called Q Bod-
ies (QB) [152]. Under prolonged exposure to protein mis-
folding stress, SF/QB subsequently coalesce into the JUNQ 
and IPOD [152, 155]. This suggests that SF/QB are impor-
tant early sites for PQC triage, although the mechanism that 
determines which misfolded proteins eventually partition to 
the JUNQ or the IPOD remains to be determined.

Studies in mammalian cells have identified several types 
of inclusions in different subcellular compartments, indi-
cating that similar sequestration mechanisms for manag-
ing misfolded proteins and aggregation exist in mamma-
lian cells [157–160]. The best-characterized mammalian 
inclusion is the perinuclear aggresome, which sequesters 
misfolded cytoplasmic proteins at the microtubule-organ-
izing center (MTOC) adjacent to the nucleus [157]. The 
aggresome has several properties similar to the JUNQ. 
Overexpression of misfolded proteins or inhibition of the 
proteasome leads to accumulation of misfolded proteins 
in the aggresome [157]. It has been shown that Hsp70 
and Hsp40 chaperones as well as proteasome subunits 
associate with the aggresome [80, 161, 162], suggesting 
that the aggresome is a site of active PQC like the JUNQ. 
Until recently, most mammalian inclusions were called 
aggresomes. However, it is becoming clear that, similar to 
yeast, mammalian cells can direct misfolded proteins to 
distinct inclusion structures that have features in common 
with the yeast JUNQ and IPOD [158, 160].

In terms of the nuclear interior, we now know that more 
than 15 human degenerative diseases are marked by visible 
inclusions within the nuclei of affected cells [14]. In many 
cases, chaperones colocalize with the nuclear inclusions 
[80–92]. Thus, the nuclear inclusions have at least one 
characteristic of the perinuclear aggresome and JUNQ. A 
key open question is whether the nuclear inclusions formed 
by distinct misfolded proteins are the same nuclear struc-
ture or if they are different in each specific case. If they 
are different, is the difference due to aggregation within 
a specific subcompartment of the nucleus? This may be 
the case in the nucleolus. It was recently reported that an 
inclusion body containing polyadenylated RNA, cyclins, 
and transcription factors forms within the nucleolus after 

proteasome inhibition [163]. Currently, it is not clear if 
the nucleolar inclusion is the result of misfolded protein 
aggregation that occurs when proteasomal degradation 
is impaired, or if it is another nuclear body formed when 
particular proteasome substrates cannot be degraded. Addi-
tional work will be required to cement the nucleolar inclu-
sion as an aggresome-like structure involved in the seques-
tration of misfolded proteins. Broadening the outlook to the 
entire nucleus, more focus will need to be applied to under-
stand the sequestration mechanisms that protect the nucleus 
from toxic misfolded protein aggregation.

Concluding remarks

Over the last two decades, our understanding of cellular 
PQC systems that protect the cell from the toxic aggrega-
tion of misfolded proteins has grown by leaps and bounds. 
Studies examining the general biochemical mechanisms for 
PQC chaperones and E3s have revealed important insights 
into their modes of action. The focus on the compartmen-
talization of PQC systems has provided a window into 
how organelles specifically manage misfolded proteins as 
they arise on site. Because the nucleus houses our genetic 
material and performs essential cellular functions, we 
think greater attention should be paid to understand how 
the cell protects this organelle from deleterious alterations 
in protein homeostasis. We think this is especially impor-
tant when viewed through the lens of the many degenera-
tive human diseases caused by protein aggregation in the 
nucleus and the loss of protein homeostasis as cells age.
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