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Abstract

Background—Aseptic trauma engages the innate immune response to trigger a

neuroinflammatory reaction that results in postoperative cognitive decline. We sought to

determine whether high-mobility group box 1 protein (HMGB1), an ubiquitous nucleosomal

protein, initiates this process through activation and trafficking of circulating bone marrow-

derived macrophages to the brain.

Methods—The effects of HMGB1 on memory (using trace fear conditioning) were tested in

adult C57BL/6J male mice; separate cohorts were tested after bone marrow-derived macrophages

were depleted by clodrolip. The effect of anti-HMGB1 neutralizing antibody on the inflammatory

and behavioral responses to tibial surgery were investigated.

Results—A single injection of HMGB1 caused memory decline, as evidenced by a decrease in

freezing time (52 ± 11% vs. 39 ± 5%; n = 16-17); memory decline was prevented when bone

marrow-derived macrophages were depleted (39 ± 5% vs. 50 ± 9%; n = 17). Disabling HMGB1

with a blocking monoclonal antibody, before surgery, reduced postoperative memory decline (52

± 11% vs. 29 ± 5%, n = 15-16); also, hippocampal expression of monocyte chemotactic protein-1

(MCP-1) was prevented by the neutralizing antibody (n = 6). Neither the systemic nor the
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hippocampal inflammatory responses to surgery occurred in mice pre-treated with anti-HMGB1

neutralizing antibody (n = 6).

Discussion—Postoperative neuroinflammation and cognitive decline can be prevented by

abrogating the effects of HMGB1. Following the earlier characterization of the resolution of

surgery-induced memory decline, the mechanisms of its initiation are now described. Together,

these data may be used to preoperatively test the risk to surgical patients for the development of

exaggerated and prolonged postoperative memory decline that is reflected in delirium and

postoperative cognitive dysfunction, respectively.

INTRODUCTION

Aseptic surgical trauma provokes a neuroinflammatory response, presumably, to defend the

organism from further injury.1,2 When this homeostatic response is dysregulated,

detrimental consequences can follow, including postoperative cognitive decline that can

persist in up to 10% of surgical patients over the age of 65 yr.3,4 While it is possible that the

cognitive response to surgery may also include enhancement (if the surgery “cures” a

process that interferes with cognition) or no change (short-lived initiation and resolution of

aseptic trauma-induced inflammation), we have explored, in rodent models, the process that

mediates persistent postoperative cognitive decline.1,2,5 Following tissue injury the innate

immune response is engaged resulting in penetration of bone marrow-derived macrophages

(BM-DM) into the brain through a disrupted blood brain barrier.2 Within the hippocampus

these activated macrophages release proinflammatory cytokines that are capable of

attenuating long-term potentiation that is the neurobiologic correlate of learning and

memory.6,7 These processes are reversed within days through inflammation-resolving

mechanisms involving both neural and humoral pathways.2 Failure to resolve the

neuroinflammatory response results in exaggerated and persistent postoperative cognitive

decline.1,8,9 In an attempt to devise strategies that can detect and mitigate this risk, the most

vulnerable patients need to be identified; in pursuit of this goal we sought to precisely define

the initiating processes in order to devise a preoperative functional assay that is predictive of

the patient's likely immune response to aseptic trauma.

Alarmins, a family of damaged-associated molecular patterns, are capable of activating the

innate immune response through its interaction with pattern recognition receptors on

circulating monocytes.10 In particular, high-mobility group box 1 protein (HMGB1) is an

alarmin that is passively released into the circulation from traumatized necrotic cells; also,

HMGB1 can be rapidly secreted by stimulated leukocytes and epithelial cells.10,11 We

previously demonstrated that circulating HMGB1 increases after surgery in humans and also

in a murine aseptic trauma model12,13; furthermore, we reported that this species of alarmin

is required for trauma-induced exacerbation of the morphological and functional

consequences of stroke.12

Now we describe data from experiments designed to test the hypothesis that the early release

of HMGB1 triggers the neuroinflammatory and behavioral responses to trauma. These data

set the stage for the development of a functional assay that assesses the initiation and

resolution of inflammatory processes that are pivotal in postoperative cognitive decline.
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MATERIALS AND METHODS

Animals

All experimental procedures involving animals were approved by the Institutional Animal

Care and Use Committee of the University of California, San Francisco, and conformed to

the National Institutes of Health Guidelines. All animals were fed standard rodent food and

water ad libitum, and were housed (5 mice per cage) in sawdust-lined cages in an air-

conditioned environment with 12-h light/dark cycles. Wild-type male mice (C57BL/6J,

12-14 weeks old) were purchased from Jackson Laboratory (Bar Harbor, ME) for the

behavior tests (fig. 1A and B) and for the cytokine expression (fig. 1C).

Animals were tagged and randomly allocated to each group before any treatment or

procedure. Researchers were blinded to the group assignment that was revealed only after

the analysis phase.

Body weight was measured before any procedure or treatment and 3 days later, following

assessment of freezing behavior.

Surgical Trauma

Under aseptic conditions, groups of mice were subjected to an open tibia fracture of the left

hind paw with an intramedullary fixation as previously described.2,12,14,15 Briefly, mice

received general anesthesia with 2% isoflurane and analgesia was achieved with

buprenorphine 0.1 mg/kg subcutaneously, immediately after anesthetic induction and before

surgical insult. Warming pads and temperature-controlled lights were used to maintain body

temperature at 37°C ± 0.5°C. The entire procedure from induction of anesthesia to end of

surgery lasted 12 ± 5 min.

Trace-Fear Conditioning

Fear conditioning is used to assess learning and memory in rodents, which are trained to

associate a conditional stimulus, such as a tone, with an aversive, unconditional stimulus,

such as a foot-shock.16 Freezing behavior is an indicator of aversive memory that is

measured when subjects are re-exposed to the conditional stimulus.

For this study we used a previously published paradigm.1,5,12,15,17 Briefly, the behavioral

study was conducted using a conditioning chamber (Med. Associates Inc., St. Albans, VT)

and an unconditional stimulus (two periods of 2-s foot-shock of 0.75 mAmp). Behavior was

captured with an infrared video camera (Video Freeze, Med. Associates Inc.). Thirty

minutes after a particular intervention animals underwent the training session after which

they were returned to their housing cage. Three days after training, mice underwent a

context test, during which no tones or foot-shocks were delivered. Freezing behavior,

recognized as lack of movement, was recorded by video and analyzed by software. A

decrease in the percentage of time spent freezing indicated impairment of memory.
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Systemic Inflammatory response to surgery

One and 24 h after aseptic surgical trauma, blood was collected transcardially after

thoracotomy under terminal isoflurane anesthesia and placed into heparin-coated syringes,

Samples were centrifuged at 3,400 rotations/min for 10 min and plasma was collected and

stored at −80°C until these were assayed. Blood samples taken from animals without

intervention served as controls. Plasma interleukin (IL)-6 and HMGB1 were measured using

commercially available enzyme-linked immunosorbent kits, according to the manufacturer's

instructions (Invitrogen, Grand Island, NY and IBL international, Toronto, Ontario, Canada,

respectively).

Neuroinflammatory response to surgery

Twenty four hours after surgery, mice were perfused with saline and the hippocampus was

then rapidly extracted, placed in RNAlater™ solution (Qiagen, Valencia, CA) and stored at

4°C overnight. Total RNA was extracted using RNeasy Lipid tissue Kit (Qiagen). Extracted

RNA was treated with recombinant DNase I using a RNase-Free Dnase set™ (Qiagen).

Messenger RNA (mRNA) concentrations were determined with a ND-1000

spectrophotometer (NanoDrop® Thermo Fisher Scientific, Wilmington, DE) and mRNA

was reverse transcribed to complementary DNA with a High Capacity RNA to-cDNA Kit

(Applied Biosystems, Carlsbad, CA).

TaqMan Fast Advanced Master Mix (Applied Biosystems) and specific gene expression

assays were use for qPCR as follows: actin beta (NM_007393.1), IL-6 (Mm00446190_m1),

tumor necrosis factor (TNF)-α (Mm00443258_m1), IL-1β (Mm01336189_m1) and

monocyte chemotactic protein-1 (MCP-1) (Mm00441242_m1). qPCR was performed using

StepOnePlus™ (Applied Biosystems). Each sample was run in triplicate, and relative gene

expression was calculated using the comparative threshold cycle ΔΔCt and normalized to

beta-actin. Results are expressed as fold-increases relative to controls.

Interventions

(a) Depletion of bone-marrow derived macrophages—Clodrolip is a liposomal

formulation of clodronate (dichloromethylene bisphosphonic acid), a nontoxic

bisphosphonate. Liposomes (lipid vesicles consisting of concentric phospholipid bilayers

surrounding aqueous compartments) encapsulate clodronate, which are then ingested and

digested by phagocytes, followed by an intracellular release and accumulation of clodronate.

At a certain intracellular concentration, clodronate induces apoptosis of the phagocytes.

Clodrolip was obtained from clodronateliposomes.org (Vrije Universiteit, Amsterdam,

Netherlands) at 7 mg/ml concentration and prepared as previously described.18,19 Clodrolip

(200 μl, about 100 mg/kg) was injected intraperitoneally 60 min before aseptic surgical

trauma. Control animals received 200 μl of control liposomal solution.

b. Administration of reagents to simulate or block the HMGB1 response to
trauma—Fifty μg/kg (100 μl) of recombinant HMGB1 (R&D System, Minneapolis, MN)

was administered intraperitoneally. To neutralize trauma-released HMGB1, 50 μg of anti-

HMGB1 neutralizing monoclonal antibody (2G7, mouse IgG2b supplied by Dr. Tracey's

Laboratory, Manhasset, NY) in 100 μl of saline was administered intraperitoneally, 60 min
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before bone fracture. Control animals received the same volume (100 μl) of the vehicle

(saline).

Statistical Analysis

Data are presented as mean ± standard deviation (SD). Normality was tested with the

Kolmogorov-Smirnov normality test. Equality of variances was tested with the F-test. We

applied a log transformation (ln(X)) to the response of HMGB1 and IL-6 blood

concentrations and mRNA expression before performing analyses to better adhere to

analysis of variance (ANOVA) model's assumptions of normally distributed residuals and

homogeneity of variance.

For comparisons of more than two groups, means were compared using one-way ANOVA

followed by t-tests with a Bonferroni-corrected alpha level. We used the two-way ANOVA

procedure to determine whether or not time and antibody treatment were significant factors

in predicting HMGB1 and IL-6 concentrations in the serum followed by Bonferroni post hoc

analyses.

For our study, the primary outcome was the percentage of freezing time during the context

session observed in anti-HMGB1 neutralizing monoclonal antibody and control groups.

Based on previous freezing time data15, we estimated that a sample of 13 C57BL/6J surgical

mice per group was necessary to demonstrate a 20% increase in percentage freezing time,

with 80% power at the 0.0125 alpha level (after adjusting for four comparisons) to reach a

significant difference.

A two-tailed p value < 0.05 was considered statistically significant for 2-group comparisons

and the significance threshold was adjusted for multiple comparisons with a Bonferroni

correction. Prism 6 (GraphPad Software Inc, La Jolla, CA) was used to conduct the

statistical analyses.

RESULTS

HMGB1 antigen is sufficient to cause Cognitive Decline through the participation of Bone
Marrow-Derived Macrophages

A single administration of HMGB1 produced cognitive decline as evidenced by a significant

reduction in freezing time (52 ± 11% vs. 39 ± 5%, n = 16 in control group, n = 17 in

HMGB1 antigen group, p = 0.012) (fig. 2).

Recently, we showed that depletion of BM-DM by clodrolip exposure blocks surgery-

induced neuroinflammation and cognitive decline.15 To determine whether HMGB1-

induced cognitive decline requires the participation of BM-DM, mice were exposed to

clodrolip or its vehicle prior to administration of HMGB1. Training was unaffected by the

clodrolip exposure (data not shown). We lost one animal in the clodrolip group and another

in the control liposome group on day 2. According to the manufacturer this may happen if

there is transference of microorganisms from the skin or by injection of a nonhomogeneous

suspension of liposome. We did not experience any death in the surgical groups. The
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HMGB1-induced decline in contextual freezing time was prevented by prior clodrolip

exposure (39 ± 5% vs. 50 ± 9%, n = 17, p = 0.039) (fig. 2).

HMGB1 antibody prevented postsurgical cognitive decline

During the preoperative training period, learning was similar in the anti-HMGB1-exposed

group and the control (nonexposed) groups (data not shown). Surgery significantly

decreased the percentage of freezing time when compared to the control group (52 ± 11%

vs. 29 ± 5%, n = 16 in control group, n = 15 in surgical group, p < 0.001); preoperative

exposure to anti-HMGB1 attenuated the surgery-induced freezing behavior rendering the

response to be no different from the nonsurgical control group (52 ± 11% vs. 47 ± 11%, n =

16 in control group, n = 15 in anti-HMGB1+surgery group, ns) (fig. 3).

HMGB1 antibody reduces systemic and neuroinflammatory response to surgery

As expected12, we observed a significant decrease of the early increase of HMGB1 blood

level between the first hour and 24 h after surgery (two way ANOVA, p = 0.002 for the time

effect) (fig. 4). However, the neutralizing anti-HMGB1 reduced the systemic levels of

HMGB1 (two way ANOVA, p = 0.005 for the treatment effect and p = 0.010 for interaction

between time and treatment) and this reduction was significant one hour after the trauma (p

= 0.04 with Bonferroni's post-hoc analysis) (fig. 4A). Concerning IL-6 increase following

surgery, we observed a significant decreased within the first day (two way ANOVA, p =

0.015 for the time effect) HMGB1 neutralizing antibody was also a significant predicting

factor for IL-6 concentration (two way ANOVA, p < 0.001 for treatment effect). Using

HMGB1 neutralizing antibody, we observed a reduction in IL-6 concentration one hour after

trauma (p = 0.006 with Bonferroni's post-hoc analysis) (fig. 4B).

Twenty-four hours after surgery, the increase in hippocampal mRNA expression of IL-6 (n

= 6; p = 0.009) and TNF-α (n = 6; p < 0.001) was blocked by exposure to the neutralizing

anti-HMGB1 antibody. Treatment did not significantly change mRNA transcription of IL-1β
(n = 6; p = 0.085) (fig. 5A–C).

Circulating CCR2-expressing BM-DM are recruited into the brain by the chemoattractant,

MCP-1.12 After surgery there was an increase of hippocampal mRNA transcription of

MCP-1 (n = 6; p = 0.003); treatment with the anti-HMGB1 neutralizing antibody prevented

surgery-induced expression of MCP-1 (n = 6; p = 0.005) (fig. 5D).

DISCUSSION

This study posits that HMGB1, when released from a sterile traumatic injury, plays a pivotal

role in postoperative memory dysfunction. Together with the detection of the cell type

involved in the initiation of the surgery-induced inflammatory cascade these findings

establish both the precise elements of the immune response that need to be interrogated for

establishing risk of dysregulated trauma-induced inflammation as well as putative targets for

interventions designed to limit or reverse persistent postoperative cognitive decline.

The independent role of the alarmin HMGB1 in disrupting cognitive processing was

established by the fact that a single injection of HMGB1 was capable of reproducing a
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deficit in an hippocampal memory test similar to the surgical phenotype that we previously

described.1 Furthermore, its dependence on bone marrow-derived monocytes was evidenced

by the attenuation of HMGB1-induced cognitive decline if clodrolip is first administered to

induce apoptosis of these circulating phagocytes (fig. 2); this is similar to that previously

reported in the setting of surgery.1,5

After the aseptic trauma of elective surgery, either experimentally (fig. 4A) or clinically,

HMGB1 is released into the circulation where it can interact with pattern recognition

receptors (toll-like receptors 2 and 4 as well as receptor for advanced glycation end-

products) on immunocytes.15 By neutralizing the early release of alarmins, HMGB1

antibody both decreased surgery-induced inflammation (fig. 4 and 5) as well as cognitive

decline (fig. 3) further establishing the importance of hippocampal inflammation for the

development of postoperative memory dysfunction.1,5

After peripheral surgery, CCR2+ expressing cells migrate to the brain, attracted by signaling

from hippocampal MCP-1, a chemokine that regulates migration and infiltration of

monocytes/macrophages15,20. Interestingly, by depleting BM-DM, the expression of MCP-1

in the surgical model remained unaffected, indicating that BM-DM are not the self-

perpetuating source of this chemoattractant for its own recruitment.15 We now show that

treatment with HMGB1 antibody was able to prevent the synthesis of MCP-1 in the

hippocampus establishing the dependence of its increased expression on the release of

HMGB1. Taking our previous report15 and our present findings together, it follows that

HMGB1 is signaling to the hippocampus to produce the chemoattractant, MCP-1, through a

mechanism that is independent of BM-DM; this HMGB1-dependent hippocampal

expression of MCP-1 could involve either a neural or humoral pathway.

Accumulating evidence indicates that HMGB1 can stimulate migration of not only

monocytes, but also various types of cells including neurite21, smooth muscle cells22, tumor

cells23, mesoangioblast stem cells24, dendritic cells25,26, and neutrophils27,28. This could

explain how blocking the effect of the release of HMGB1 may have blocked signaling of

other HMGB1-derived factors. While BM-DM play a necessary role, they may not be

sufficient to completely explain the cognitive decline seen after surgery; there may be other

cells and factors involved in the genesis of postoperative cognitive dysfunction.

The following caveats apply when interpreting our findings. Our surgery model involves

disruption of the bone marrow with an intramedullary pin for internal fixation of the broken

bone. The bone marrow itself produces soluble factors that affect immune cells, such as a

proliferation-inducing ligand A (APRIL), B-cell activating factor (BAFF), both belonging to

the TNF family, CXCL12, IL-6, IL-7 and macrophage inhibitory factor.29 The possibility

exists that surgical trauma that does not involve damage to the bone marrow may not utilize

the same panoply of alarmins. In addition to its role as a primary lymphoid organ, the bone

marrow can act as a host for various mature lymphoid cell types. Several subsets of bone

marrow cells have been shown to support immune cell function.29

Given that HMGB1 resides in the nucleus and functions as an essential non-histone

chromatin-binding protein, there are no HMGB1 knockout animals. For this study we then
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decided to use a pharmacologic strategy to quickly deplete the pool of systemic

macrophages. However, because clodrolip is highly toxic to all phagocytes, it can increase

the risk of postsurgical infections, generating a phenotype of its own.30 With a single dose,

we did not observe loss of weight or other signs of sickness within three days. As this was a

short-term study, focusing on the acute exaggeration phase of neuroinflammation, we are

unable to extrapolate from these data the long-term effects and did not perform any long-

term study with clodrolip. Clodrolip should be considered a tool for mechanistic studies.

In previous reports using this model of surgical trauma, we documented the effectiveness of

preoperative administration of interventions such as IL-1 receptor antagonist, anti-TNF

monoclonal antibody and activation of the α7 subtype of nicotinic acetylcholine receptor in

preventing postoperative memory dysfunction.1,2,5 Each of these affect important host

defense mediators and risk of infection needs to be evaluated before considering these

agents.

These studies on the initiation of trauma-induced cognitive decline, coupled with our

previous reports on the resolution of postoperative cognitive decline1,2,5 sets the stage for

the development of an ex-vivo bioassay that can test the function of the innate immune

response to trauma. Such an assay may be capable of prospectively identifying surgical

patients at increased risk for the development of exaggerated and persistent cognitive

decline; stratification of a surgical cohort, enriched for the development of cognitive decline,

can result in a randomized trial to test with efficacy of interventions using fewer surgical

patients.
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MS #201307024 – Final Boxed Summary Statement

What we already know about this topic:

• Surgical trauma induces a neuroinflammatory response that contributes to

cognitive dysfunction in rodent models

• Penetration of bone marrow-derived macrophages into the brain with release of

proinflammatory cytokines plays a major role in this neuroinflammatory

response to injury

What this article tells us that is new:

• Administration of the alarmin high-mobility group box 1 protein (HMGB1)

produced memory dysfunction in mice

• A neutralizing antibody to HMGB1 reduced memory dysfunction and prevented

the inflammatory response following tibial surgery, indicating a major initiating

role for this mediator in postoperative memory dysfunction
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Figure 1.
Study design. (A) First experiment; mice were divided in 5 groups treated with IP injection of control liposome versus clodrolip

1h before HMGB1 Ag versus saline injection. Control animals received saline injections. The training session of the memory

test was performed 30 min after the clodrolip/control liposome injection and 30 min before HMGB1 Ag/saline injection; and the

context session was performed 72 h later. (B) Second experiment; mice were divided in 4 groups treated with anti-HMGB1

versus saline 1 h before tibia fracture. The training session of the memory test was performed 30 min after the IP injection and

30 min before tibia fracture. (C) Third experiment; Mice were divided in 4 groups treated with anti-HMGB1 versus saline 1h

before tibia fracture and sacrificed 1 h and 24 h after the tibia fracture. Anti-HMGB1 = neutralizing HMGB1 monoclonal

antibody; CT-lip = control liposome; HMGB1 = high-mobility group box 1 protein; HMGB1 Ag = HMGB1 antigen; IP =

intraperitoneal.
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Figure 2.
Effects of HMGB1 on Cognitive Decline. Contextual fear response reveals hippocampal-dependent memory impairment at

postoperative day 3 (Arm A). Quantification of the freezing time percentage according to the five groups (n = 15-17; * p = 0.012

control versus HMGB1 Ag, and # p = 0.039 HMGB1 Ag versus clodrolip+HMGB1 Ag, with one-way ANOVA and Bonferroni

post hoc analysis). HMGB1 = high-mobility group box 1 protein; HMGB1 Ag = HMGB1 antigen.
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Figure 3.
Effects of preoperative administration of HMGB1 neutralizing monoclonal antibody on postsurgical memory impairment.

Quantification of the freezing time percentage on contextual testing according to the four groups at postoperative day 3 (Arm

B). (n = 15-16; **** p < 0.001 control versus surgery, and ** p = 0.001 surgery versus anti-HMGB1+surgery and with one-way

ANOVA and Bonferroni post hoc analysis). Anti-HMGB1 = neutralizing HMGB1 monoclonal antibody; HMGB1 = high-

mobility group box 1 protein.
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Figure 4.
Effects of preoperative administration of HMGB1 neutralizing monoclonal antibody on the HMGB1 and IL-6 serum

concentration at 1 and 24 h after tibia fracture (Arm C). The dotted lines represent the average values for respectively for

HMGB1 and IL-6 concentration of 6 control mice without any treatment or surgery (n = 6). (A) Levels of HMGB1 serum

concentration 1 h and 24 h after surgery. After log transformation of the raw data, we observed with two way ANOVA

significant time and treatment effects (p = 0.002 for the time effect; p = 0.005 for the treatment effect and p = 0.010 for

interaction between time and treatment) and a significant difference between the 2 groups at 1 h (22.00 ± 16.54 vs. 5.29 ± 4.13

surgical control vs. anti-HMGB1+surgery p = 0.040 with two way ANOVA with Bonferroni's post-hoc analysis). (B) Levels of

IL-6 serum concentration 1 h and 24 h after surgery. After log transformation of the raw data, we observed with two way

ANOVA significant time and treatment effects (p = 0.015 for the time effect; p < 0.001 for the treatment effect and p = 0.015 for

interaction between time and treatment) and a significant difference between the 2 groups at 1 h (24.24 ± 12.87 vs. 4.90± 4.47

surgical control vs. anti-HMGB1+surgery p = 0.006 with two way ANOVA with Bonferroni's post-hoc analysis). Anti-HMGB1

= neutralizing HMGB1 monoclonal antibody; HMGB1 = high-mobility group box 1 protein; IL-6 = interleukin 6.
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Figure 5.
Effects of HMGB1 neutralizing monoclonal antibody on hippocampal transcription of IL-6, TNF-α, IL-1β and MCP-1 24 h

after tibia surgery (Arm C). (A) IL-6 mRNA (B) TNF-α mRNA (C) IL-1β and (D) MCP-1 (n = 6; * p = 0.023; ** p = 0.009;

*** p < 0.001, # p = 0.003, ## p = 0.005 with one-way ANOVA and Bonferroni post hoc analysis). Anti-HMGB1 = neutralizing

HMGB1 monoclonal antibody; HMGB1 = high-mobility group box 1 protein; IL-1=interleukin 1; IL-6 = interleukin 6; TNF=

tumor necrosis factor; MCP-1 = monocyte chemotactic protein-1.
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