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Abstract

The innervation of brown adipose tissue (BAT) by the sympathetic nervous system (SNS) is

incontrovertible and, with its activation, functions as the principal, if not exclusive, stimulator of

BAT thermogenesis. The parasympathetic innervation of BAT only appears in two minor BAT

depots, but not in the major interscapular BAT (IBAT) depot. BAT thermogenesis is triggered by

the release of norepinephrine from its sympathetic nerve terminals, stimulating β3-adrenoceptors

that turns on a cascade of intracellular events ending in activation of uncoupling protein-1

(UCP-1). BAT also has sensory innervation that may function to monitor BAT lipolysis, a

response necessary for activation of UCP-1 by fatty acids, or perhaps responding in a feedback

manner to BAT temperature changes. The central sympathetic outflow circuits ultimately

terminating in BAT have been revealed by injecting the retrograde viral transneuronal tract tracer,

pseudorabies virus, into the tissue; moreover, there is a high degree of colocalization of

melanocortin 4-receptor mRNA on these neurons across the neural axis. The necessary and

sufficient central BAT SNS outflow sites that are activated by various thermogenic stimuli are not

precisely known. In a chronic decerebration procedure, IBAT UCP-1 gene expression can be

triggered by fourth ventricular injections of melanotan II, the melanocortin 3/4 receptor agonist,

suggesting that there is sufficient hindbrain neural circuitry to generate thermogenic responses

with this stimulation. The recent recognition of BAT in normal adult humans suggests a potential

target for stimulation of energy expenditure by BAT to help mitigate increased body fat storage.
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Introduction

Brown adipose tissue (BAT) was first identified by Gesner1 in 1551 in European marmots

Muris alpines, and almost 400 years later was termed the ‘hibernation gland’ by Sheldon.2

We now know that, in addition to its function in the rewarming associated with the

hypothermia of hibernation or torpor,3–5 BAT is involved in other thermoregulatory
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processes such as nonshivering thermogenesis (for review see Griggio,6 Heldmaier et al.7

and Sell et al.8), diet-induced thermogenesis9 and febrile responses.10,11 In common to all of

these thermal responses is the ability of BAT to generate heat through the uncoupling of

oxidative phosphorylation from electron transport (for review see Rousset et al.12). With the

advent of functional and fairly substantial depots of BAT in normal adult humans (for

review see Nedergaard et al.13), the significance of BAT in energy balance has taken on

greater significance than when its importance was largely thought to be confined to rodents.

The function of this review is to briefly describe some known facts about the innervation of

BAT, including its sympathetic nervous system (SNS) and sensory innervation, as well its

scant and BAT depot-specific parasympathetic innervation. Therefore, we will only review

those cellular/signaling/molecular events necessary to help understand the functions of the

sympathetic and sensory innervation of BAT for its thermogenic responses (for a

comprehensive review of most aspects of BAT, see Cannon and Nedergaard14).

Most of what we know about BAT function, both at the systems level and at the molecular

level, derives from the study of the largest BAT depot in rodents, interscapular BAT

(IBAT). Because of its size, accessibility and clear innervation, IBAT has been the primary

depot studied in these animals. Other BAT depots exist, including the cervical, mediastinal,

pericardial and perirenal depots.15 As noted above, there was confusion and denial of the

presence and function of BAT in normal adult humans, largely because humans do not

possess IBAT16–19 (for review see Nedergaard et al.13). The BAT depots present in humans

were revealed inadvertently when adults were scanned for tumor metastasis using

fluorodeoxyglucose positron emission tomography to identify this metabolically active

cancerous tissue (for review see Nedergaard et al.13). The result of these imaging studies

revealed that normal adult humans clearly have substantial amounts of BAT in several

depots located mainly in the supraclavicular and neck regions, with additional depots in

paravertebral, mediastinal, para-aortic and suprarenal areas,16–19 but importantly, not in the

interscapular area. Moreover, human BAT possesses uncoupling protein-1 (UCP-1), the

defining characteristic of BAT.16,18,20

SNS innervation of BAT

There was some initial confusion about the SNS innervation of BAT. That is, using

histofluorescence, Wirsen21 concluded in 1964 that there was no direct sympathetic

innervation of brown adipocytes as evidenced by the absence of catecholaminergic nerve

fibers in the parenchymal space; instead, this was observed only for blood vessels. One year

later, however, Wirsen22 described catecholaminergic varicosities found in the parenchymal

space and among blood vessels using the same methods. The presence of both SNS

parenchymal and vasculature innervation was soon verified by electron microscopy.23 These

and other data (for review see Himms-Hagen,24 Bartness et al.25 and Bartness and Song26)

demonstrate that the sympathetic innervation of BAT is incontrovertible.

What are the central origins of the SNS outflow from brain to BAT?

Although there was a plethora of data showing sympathetic innervation of IBAT at the level

of the fat pad, the origins of the central SNS outflow circuits ultimately terminating in IBAT
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fell to mere speculation, with inferences generated following CNS manipulations (lesions,

stimulation) that altered BAT function (surrogates of changes in BAT thermogenesis such as

changes in UCP-1 gene and protein content, cytochrome oxidase content, guanosine–

diphosphate binding, norepinephrine turnover (NETO), a neurochemical measure of

sympathetic drive and sympathetic electrophysiological nerve activity to BAT; for review

see Trayhurn and Milner27). The central origins of the SNS outflow from brain to BAT were

first shown using a transneuronal viral retrograde tract tracer, pseudorabies virus (PRV), by

us,28 and later confirmed by others using this methodology.29,30 Our work28,31,32 was

conducted in laboratory Siberian hamsters (Phodopus sungorus) and, to a considerably

lesser extent, in laboratory rats.28 Siberian hamsters show robust cold-induced BAT

responses and use BAT for rewarming from shallow daily torpor induced in the laboratory

by cold exposure combined with short ‘winter-like’ photoperiods (for review see

Bartness33). We also previously demonstrated central origins of the SNS outflow from the

brain to white adipose tissue (WAT) in Siberian hamsters using PRV.31,34,35 Therefore, we

have conducted the vast majority of our neuroanatomical and functional work on the

sympathetic and sensory innervation (see below) of BAT (and WAT) in this species.

What is the functional evidence for the sympathetic neural control of BAT

thermogenesis?

One proven strategy to test the necessity of intact BAT SNS innervation is to denervate the

tissue. This can be carried out by surgical denervation and, moreover, can be accomplished

using the unilateral surgical denervation model. Specifically, because both the lobes of

IBAT have unilateral postganglionic innervation by the SNS in laboratory rats,36,37 mice38

and Syrian39,40 and Siberian hamsters41 (but see Seydoux et al.42 and Girardier and

Seydoux43), one side of the IBAT is surgically denervated and its contralateral side is sham-

denervated, yielding a within-animal control. Thus, the beauty of the unilateral denervation

model is that, for each animal, all circulating and central (brain) factors, as well as the

animal’s nutritional status, genetics and behavior, are identical, with the exception that one

lobe of the IBAT is denervated and the other is not (for review see Bartness and Song26). A

drawback of this model is that surgical denervation not only severs the descending SNS

innervation to the IBAT but also the ascending sensory innervation (see below) from IBAT

to the brain. This notwithstanding, our knowledge of the physiological functions of BAT

mediated by its SNS innervation has been primarily advanced by using this model (for

review see Bartness and Song26).

Using the unilateral denervation model, cold-induced increases in guanosine–diphosphate

binding (that is, the capacity of the proton conductance pathway27), UCP-1 concentration

(that is, thermogenic capacity27), total cytochrome oxidase activity (approximately

equivalent to mitochondrial mass27), blood flow, mitochondriogenesis and cristae density,

thyroxine 5′-deiodinase activity (an enzyme responsible for in situ conversion of thyroxine

to triiodothyronine, a hormone involved in thermogenesis44), glucose uptake, as well as

utilization and transporter number,45 are all blocked or greatly diminished in the denervated

compared with the innervated pad (for review see Bartness et al.25). Many or most of these

cold exposure/acclimation-induced BAT responses can be restored in animals with
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denervated BAT or can be mimicked by exogenous administration of norepinephrine (for

review see Bartness et al.25), the principal sympathetic postganglionic neurotransmitter of

the SNS. Collectively, denervation of BAT in cold-exposed animals highlights the

importance of its sympathetic innervation for thermogenic responses. An analogous

dysfunction of BAT can also be seen when it is denervated and then the animals are

subsequently challenged with overfeeding (see Rothwell and Stock46) or fever (see Benzi et

al.47 and Rothwell48), once again demonstrating the importance of its sympathetic

innervation for thermogenic responses.

Does IBAT have parasympathetic nervous system innervation?

The presence of parasympathetic nervous system (PSNS) has, until recently, been merely

inferred on the basis of nonselective PSNS treatments that inhibit IBAT thermogenesis, such

as systemic injection of atropine,49 the cholinergic receptor postganglionic blocker, or by

subdiaphragmatic vagotomy.50,51 Both procedures, however, produce widespread peripheral

effects, making it difficult to interpret the meaning of these data. Moreover, IBAT has no

acetylcholine,49 as determined by bioassay, or acetyl-cholinesterase activity,49 the enzyme

responsible for acetylcholine degradation, as determined histochemically. Relatively

recently, using an immunocytochemical approach, laboratory rat BAT was tested for the

presence of vesicular acetylcholine transporter and vasoactive intestinal peptide

immunoreactivity.15,52 There was an absence of vesicular acetylcholine transporter and

vasoactive intestinal peptide immunoreactivity in IBAT, as well as in the cervical and

perirenal depots.15 Mediastinal BAT15 and pericardial BAT52 were the only depots provided

with putative parasympathetic perivascular and parenchymal cholinergic nerves, as indicated

by vesicular acetylcholine transporter immunoreactivity. The absence of vasoactive

intestinal peptide-positive nerves suggests that these putative parasympathetic nerves are

unlikely to be purely cholinergic.15 Thus, at most, it appears that there is PSNS innervation

of two minor BAT depots, but not of IBAT and the remaining BAT depots.

What neurochemicals are involved in the central BAT sympathetic

circuitry?

Because PRV is not very cytopathic, PRV-infected neurons continue to generate enzymes,

neurotransmitters and receptors.53 Therefore, the SNS outflow to BAT from the brain can be

labeled by PRV injection into IBAT and combined with in situ hybridization or

immunocytochemistry for the receptor of interest, thereby yielding a map of central BAT

SNS outflow neurons that possess the receptors. Such maps can serve as guides for

subsequent studies in which receptor agonists or antagonists can be site-specifically injected

to modulate BAT thermogenesis. For example, because central melanocortin receptor

agonism (primarily the melanocortin 4-receptor (MC4-R)) decreases body weight that

cannot be accounted for by the concurrent decreases in food intake,54 increases in energy

expenditure must be occurring. This could involve increases in BAT thermogenesis through

its sympathetic innervation, but such an interpretation rests on the demonstration of the

neuroanatomical reality of MC4-Rs colocalized on the BAT SNS outflow neurons.

Therefore, we combined PRV labeling of the SNS outflow to IBAT with in situ

hybridization for MC4-R mRNA in Siberian hamsters.31 We found a remarkable degree of
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colocalization of PRV-immunoreactive neurons with MC4-R mRNA, such that, across the

neuroaxis, ~40 to >70% of all PRV-immunoreactive neurons for each brain structure

demonstrated this level of colocalization.31 These data suggest a profound role of

melanocortins in BAT thermogenesis. Indeed, a single microinjection of melanotan II

(MTII; the MC3/4-R agonist) into the third ventricle increases IBAT NETO in Siberian

hamsters and IBAT temperature.55 Moreover, a single microinjection of MTII into the

paraventricular nucleus of the hypothalamus (PVH) increases IBAT temperature in awake,

freely moving Siberian hamsters implanted with telemetric temperature transponders under

their IBAT.31

Collectively, these data add significant support to the view that central melanocortins are

important in controlling IBAT thermogenesis through the SNS innervation of this tissue,

likely through MC4-Rs, and demonstrate the power of this combined tract tracing/receptor

approach to the study of BAT function. We have applied a similar approach to test the role

of melanocortins in lipolysis of WAT with somewhat analogous results. Specifically, we

demonstrated the neuroanatomical reality of MC4-R mRNA colocalized on WAT SNS

outflow neurons56 and showed that central MC4-R agonism increases the sympathetic drive

to WAT (NETO55), resulting in an induction of intracellular markers of lipolysis in only the

WAT pads showing increased NETO.57

Functional approaches testing for central sites controlling BAT function

Another approach to test for the role of central sites controlling BAT thermogenesis that

often precedes the neuroanatomical approach outlined above is the injection of the

neurotransmitter in question into the brain ventricular system to stimulate a wide range of

circumventricular brain sites and measure IBAT responses suggestive of changes in

thermogenesis. For example, before our neuroanatomical tests for colocalization of MC4-R

gene expression by central BAT SNS outflow neurons, we tested whether melanocortin

receptor agonism of caudal hindbrain circuits would increase IBAT thermogenesis through

its SNS innervation.58 In this research we used the chronic decerebration model developed

and championed by Harvey Grill and associates (for review see Grill59), in which a cut is

made to completely separate the brain coronally at the level of the mesodiencephalic

junction in laboratory rats.60,61 With this single, albeit drastic, lesion, the sufficiency of

caudal hindbrain structures for a given function can be readily tested. For example, we

exposed chronic decerebrate (CD) rats or their sham controls to a series of declining ambient

temperatures and measured heart rate, locomotor activity, BAT and heart NETO and body

temperature.62 CD rats responded to the cold in a manner quite similar to that of their

neurologically intact controls, at least during the first 2h of cold exposure, with both groups

increasing sympathetic drive (NETO) to IBAT and heart, locomotor activity and heart rate,

as well as defending their body temperature.62 Some of these responses were not fully

maintained by CD rats with longer cold durations compared with their sham CD

counterparts.62 Such findings suggest that current models of body temperature control, and

specifically BAT thermogenesis centered on the forebrain,63 need further refinement to

include peripheral temperature afferent information reaching the brainstem, as has been

suggested to occur previously.64,65 Relative to the sites of central melanocortin receptor

agonism stimulating BAT thermogenesis, we first found that intraventricular injections of
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MTII into the third or fourth ventricles equally increased our surrogate measure of IBAT

thermogenesis, UCP-1 gene expression.58 Furthermore, if IBAT is first denervated

bilaterally, then fourth ventricular injections of MTII increase IBAT UCP-1 mRNA only in

the sympathetically intact controls, and not in rats with surgically denervated IBAT.58

Finally, CD rats given fourth ventricular injections of MTII increase IBAT UCP-1 mRNA

statistically similarly to their neurologically intact controls, although some diminution of the

response seems to be present.58 Therefore, these data indicate a role for caudal brainstem

melanocortin receptors in the control of energy expenditure, but do not discount potentially

important hypothalamic and other forebrain contributions. Thus, the control of

thermogenesis, as with other responses critical for survival, such as food intake,59,66 seems

to be a distributed system with multiple levels of control across the neuroaxis.58

Does BAT have sensory innervation?

BAT has marked sensory innervation at the level of the BAT depot as seen by

immunohistochemical markers of sensory nerve-associated peptides that have been proven

in other tissues (that is, substance P and calcitonin gene-related peptide). Specifically, there

are substance P- and calcitonin gene-related peptide-immunoreactive nerve fibers within the

parenchyma, as well as surrounding the vasculature of this BAT.67–69 Attempts to

understand the function of this sensory innervation has largely rested on the effects of global

sensory denervation produced by systemic injections of capsaicin, the pungent part of red

chili peppers that is a specific toxin for unmyelinated sensory nerves as well.70 This

manipulation results in general decreases in BAT growth (mass, protein content),

mitochondrial content (cytochrome oxidase activity) and thermogenic capacity (UCP-1

content71,72), but because this sensory denervation is not BAT specific, these data are

difficult, if not impossible to interpret. Studies in which BAT is specifically sensory

denervated by direct injections of capsaicin, as we have carried out directly into WAT

pads,73,74 are ongoing for IBAT.

What are the central sensory circuits originating in BAT and projecting to

the brain?

To define the central sensory circuits from IBAT to the brain, a different transneuronal virus

was needed to travel anterogradely (following the flow of sensory nerve impulses in contrast

to PRV, which travels opposite to the flow of the sympathetic nerve impulses). The H129

strain of herpes simplex virus-I fulfills this criterion.75,76 This virus has been successfully

used previously to label central gastric sensory circuits77 and we recently used it to label

WAT central sensory circuits.78 In an ongoing study, we have seen extensive BAT sensory-

labeled neurons in the brainstem, including the rostroventrolateral medulla, raphe magnus,

raphe obscurus, nucleus of the solitary tract and, particularly noteworthy, the raphe pallidus,

an area claimed to have preferential SNS efferents to BAT79 (Vaughan, Song and Bartness,

unpublished observations), although SNS outflow neurons are also labeled in the raphe

pallidus after PRV injections into WAT.78 The midbrain has considerably fewer infected

cells, and those that occur primarily are in the ventral portions of the periaqueductal gray.

Finally, considerable numbers of forebrain neurons are labeled with especially dense

labeling in the PVH, subzona incerta and lateral and dorsomedial hypothalamus (Vaughan,
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Song and Bartness, unpublished observations). Most of the infected structures listed above,

and others not listed, have been implicated in the control of thermogenesis and energy

balance. Moreover, there is considerable overlap in the structures that comprise the sensory

inputs from IBAT to the brain and those that are part of the SNS outflow from brain to

IBAT.28,31 This begs the question as to whether there are SNS-sensory feedback loops

innervating BAT, that is, single neurons that are a part of the sympathetic outflow to BAT

and that receive sensory input from BAT.79

BAT SNS-sensory feedback loops

We previously demonstrated WAT SNS-sensory feedback loops by injecting PRV into

WAT to label the SNS outflow from brain to WAT and, in the same fat pad (inguinal WAT),

injected the H129 strain of herpes simplex virus-I.80 Using that same strategy, we found

single neurons in several brain areas that were dually infected in an ongoing study80 (Song

and Bartness, unpublished observations). That is, these neurons were infected with PRV and

with H129, showing that they are part of the SNS outflow to IBAT and that they receive

sensory inflow from IBAT (Song and Bartness, unpublished observations). This finding,

albeit preliminary, begs another question: What is the function of the BAT SNS-sensory

feedback loops? We do not know the answer to this question at this time; however, we

speculate that these BAT SNS-sensory feedback loops could function to monitor one or both

of two BAT events. First, these feedback loops could be involved in sensing the thermal

status of IBAT analogously to heat-sensitive afferents that exist in other peripheral

tissues.81,82 Therefore, they could relay this thermal information to brain SNS outflow

neurons involved in modulating the sympathetic drive to BAT and thus BAT thermogenesis.

We have no data, however, to support this notion. The other possibility is that these

feedback loops monitor BAT lipolysis. BAT contains multiple lipid droplets (thus its

‘multilocular’ lipid droplet phenotype83). It has been postulated that norepinephrine-induced

lipolysis of BAT triacylglycerol, which composes the droplets, results in the release of fatty

acids that activate UCP-1 to initiate heat production and that can also be oxidized by BAT to

fuel this thermogenesis.84 Key to the hydrolysis of triacylglycerol is the phosphorylation by

protein kinase A, a cyclic AMP-activated protein kinase, of two proteins critical for

lipolysis. Specifically, protein kinase A phosphorylates perilipin A and hormone-sensitive

lipase. Perilipin A is thought to protect lipid droplets from lipolysis by coating them, but

when phosphorylated, moves aside and/or functions as a scaffold for phosporylation of

hormone-sensitive lipase that begins cleaving fatty acids from glycerol (for review see

Brasaemle85). In the absence of protein kinase A phosphorylation of perilipin A,

norepinephrine-induced activation of UCP-1, and thus thermogenesis, is blocked.86 We have

shown previously that sensory nerves innervating WAT increase their electrophysiological

activity when the sympathetic drive to WAT is increased because of glucoprivation,78

implying that they are sensitive to a lipolysis-associated event. Thus, the SNS-sensory

feedback loops found in several brain areas for WAT and BAT could both serve to help

control lipolysis of these tissues.

In summary, it is clear the BAT is innervated by SNS and sensory nerves, but only two

minor BAT pads have PSNS innervation. BAT sympathetic denervation blocks thermogenic

responses. Central BAT SNS outflow neurons possess high colocalization MC4-Rs and
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MC4-R agonists injected to increase IBAT temperature. The caudal brainstem seems to be

sufficient to trigger MC4-R agonism increases in IBAT thermogenesis, as well as being

sufficient for acute BAT and other thermal responses to cold exposure. BAT SNS-sensory

feedback loops seem to be a neuroanatomical reality, the function of which is unknown

presently, but may serve to monitor the thermal activity of BAT and/or BAT lipolysis.

Clearly the presence of substantial BAT in humans16–19 highlights the potential importance

of this tissue for nonshivering thermogenesis, diet-induced thermogenesis and febrile

responses and makes its selective activation a potential target for pharmacological

treatments designed to increase energy expenditure with the hope of curbing lipid

accumulation by WAT and/or effectively reversing unwanted weight gain and obesity.
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