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Abstract
Deep sequencing has become a popular tool for novel miRNA detection but its data must be viewed carefully as the
state of the field is still undeveloped. Using three different programs, miRDeep (v1, 2), miRanalyzer and DSAP, we
have analyzed seven data sets (six biological and one simulated) to provide a critical evaluation of the programs per-
formance. We selected these software based on their popularity and overall approach toward the detection of
novel and known miRNAs using deep-sequencing data. The program comparisons suggest that, despite differing
stringency levels they all identify a similar set of known and novel predictions. Comparisons between the first and
second version of miRDeep suggest that the stringency level of each of these programs may, in fact, be a result of
the algorithm used to map the reads to the target. Different stringency levels are likely to affect the number of pos-
sible novel candidates for functional verification, causing undue strain on resources and time. With that in mind,
we propose that an intersection across multiple programs be taken, especially if considering novel candidates that
will be targeted for additional analysis. Using this approach, we identify and performed initial validation of 12 novel
predictions in our in-house data with real-time PCR, six of which have been previously unreported.
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INTRODUCTION
Without question, the discovery of miRNA has

reshaped our appreciation of gene regulation. This

class of non-coding RNA (ncRNA) is no longer

viewed as ‘junk’, but rather as vital and active partici-

pants in human disease and physiology [1–5].

Previous approaches to identify novel miRNAs

through computational prediction and experimental

analysis have focused largely on the classic biogenesis

pathway where the precursor and the mature se-

quences play the largest role [6–12]. These methods

vary in terms of throughput, the amount of resources

needed and the false-positive rate. Computational

approaches, in particular, are characterized by a high

false-positive rate, largely due to a heavy reliance on

machine learning techniques [1, 13–16]. Deep

sequencing presents a viable alternative to previous

attempts, but it can be problematic in terms of data
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generation and specialized skills required to ad-

equately analyze and interpret data. Researchers

interested in using deep-sequencing techniques for

miRNA discovery are often confronted with a col-

lection of bioinformatic algorithms and approaches

with very little information on software comparability

and performance. Here, we review three programs,

which use three different approaches for miRNA de-

tection in deep-sequencing data. We use experimen-

tal and simulated data to highlight some of their

features and characteristics. The programs profiled,

in this article, were chosen on the basis of their popu-

larity as evidenced by number of citations and

uniqueness of approach. In addition, we also compare

two versions of miRDeep software which is the most

popular program for miRNA discovery in use today

and in fact, two other detection programs (miRTools

and miReNA) have also incorporated miRDeep as a

component of their process [33]. A list of additional

available software can be found in Table 1. The cell

lines used in this study were randomly chosen and

represent cells that might otherwise be regularly em-

ployed in any lab studying miRNA expression and

disease. All data sets were generated by the same plat-

form (Illumina), following the same sequencing

format. The only difference between the data sets

profiled in this article is their cell type and lab of

origin. These data sets were used as an illustration of

how the programs might perform given differing ex-

perimental conditions and cell types. The output of

each of these programs was compared to determine

consistency across algorithms, whereas inclusion of

the simulated data set was used to assess each pro-

gram’s overall specificity and sensitivity.

METHODS
Different types of RNAseq software
The basic steps behind the analysis of any deep-

sequencing data with regard to miRNA prediction

can be summarized in three stages: (i) initial mapping

of the read; (ii) expansion of the mapped locus to

include flanking sequences; and (iii) evaluation of the

expanded sequence on the basis of negative free

energy and structure. Each stage in the process ul-

timately affects the final result, with perhaps the first

being the most crucial of all. The programs available

today vary in terms on the amount of user control

over parameters and input and how they address

each of these three stages [17, 20–24] (Table 2).

miRDeep (v1, v2) is a program that predicts the

presence of miRNA from deep-sequencing data

using Bayesian probabilities framed on the classic

steps of miRNA biogenesis [17–19]. The pipeline

first compares the reads to a target genome, and

then evaluates the read’s suitability on a thermo-

dynamic scale. The algorithm assumes that if a read

is related to miRNA, then it must either be a portion

of a star, a loop sequence or a mature sequence. The

read must demonstrate characteristics similar to al-

ready annotated examples, e.g. definite evidence of

a present 2 nt 30 overhang. Also, miRDeep makes

the assumption that because mature sequences tend

to be more abundant in the cell than any other

miRNA-related sequence, reads which conform

structurally to ‘mature sequences’ will likewise be

the most abundant in the data file. If a read meets

structural criteria for being considered a mature se-

quence, and is found to be frequently represented in

the data file it receives a higher score than those that

are less frequently found. miRDeep employs a flex-

ible format, accommodating data generated by a 454

Life Sciences/Roche or an Illumina/Solexa sequen-

cer [17]. Version 1 of miRDeep allows the user to

control the mapping algorithm and the program

choice for evaluation of free energy. Version 2 of

miRDeep incorporates Bowtie and Randfold for

these tasks [18, 19]. A key addition to the second

version 2 of miRDeep has been the consideration of

species conservation, e.g. a second set of miRNA

Table 1: Other programs that may be used to predict miRNAs from deep-sequencing data

Software Format File format Location

Seqbuster Web based, executable fasta, tab-delimited http://davinci.crg.es/estivill_lab/seqbuster/
miRExpress Executable sequence tag count http://mirexpress.mbc.nctu.edu.tw/
miRNAKey Executable fasta, fastq http://ibis.tau.ac.il/miRNAkey/
MirTools Web based sequence tag count http://59.79.168.90/mirtools
miReNA Executable fasta http://www.ihes.fr/�carbone/data8
miRTrap Executable fasta http://davinci.crg.es
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from a closely related species is required to be

included in the prediction process [20, 21].

miRanalyzer is based on a random forest classifier

and uses support vector machine (SVM) mechanics

derived from experimental data to make its predic-

tions [22, 23]. Version one of this software func-

tioned as a web-based tool; version two now is

available in a web-based and executable form. One

benefit of using web-based applications is that they

allow the user to analyze their results without having

access to a large amount of computer resources. The

first version of the software targeted seven model

species (human, mouse, rat, fruit-fly, round worm,

zebra fish and dog); newer versions of the program

have incorporated plant genomes and predictions

based on plant models [22, 23]. Like miRDeep2,

miRanalyzer uses the program Bowtie to map

input reads to the target genome. Apart from spe-

cifying the number of allowable mismatches, and the

acceptable P level for a credible prediction, the user,

however, is restricted from any other major changes

in the algorithm.

The current version of deep-sequencing small

RNA analysis pipeline (DSAP) differs from

miRDeep or miRanalyzer in that it does not require

a target genome; reads are, instead, clustered into

unique groups and mapped onto the existing RNA

families database (e.g. RFAM) and miRNA databases

to determine status [24]. By eliminating the target

genome, the program improves processing speeds

considerably when compared with miRanalyzer

and miRDeep; it is, however, restricted in its use

by only being able to predict known miRNA signa-

tures. Also, DSAP uses a different mapping algo-

rithm, Supermatcher from the EMBOSS tool kit

to increase processing speed [25].

Data sets used
Two types of data sets (experimental and simulated)

were used in comparing the software performance of

miRDeep, miRanalyzer and DSAP. The first experi-

mental data set, derived from an in-house deep-

sequencing experiment profiled a neuroblastoma

cell line (NB; ATCC: crl-2271) The remaining ex-

perimental data sets representing a peripheral mono-

nuclear blood cell line (PMBC), a chronic

myelogenous leukemia cell line (K562), acute pro-

myelogenous leukemia cell line (HL60) and a breast

cancer cell line, respectively [26, 34], were down-

loaded from Geo Omnibus (GSM 494809, 494810,

494811, 494812, 715665) and pre-cleaned ofTa
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universal adapters and redundant sequences. The

neuroblastoma data set was prepared for analysis

with Perl scripts written in-house. The simulated

data set was created using Flux Simulator (http://

flux.sammeth.net/) [35]. The parameters used by

Flux Simulator to create the simulation can be

found in Table 3. In addition, 100 known

miRNAs (mirBase v16) were selected to ‘spike in’

the simulation at a prevalence of 0.1% in order to

provide a metric against which ROC curve could be

built [27]. Only miRNAs which did not cluster to-

gether were selected in order to minimize the stat-

istics inflation resulting from detecting miRNAs with

similar sequence characteristics, e.g. from the same

family. The ROC curve was based on the ability of

each program to correctly identify these ‘spiked in’

examples as miRNA candidates.

In comparing the results from each prediction data

set, we chose to work with only those reads that

mapped perfectly to a specific locus (PM) and those

reads with only one base mismatch (MM), hopefully

reducing the potential noise created by sequencing

error. Known miRNAs were assessed in miRDeep

(v1, 2), miRanalyzer and DSAP only. DSAP does

not generate novel predictions and so could only be

compared with miRDeep and miRanalyzer in terms

of the known miRNA prediction [24]. Novel predic-

tions which overlapped between miRDeep v1, 2 and

miRanalyzer were experimentally validated using

real-time PCR.

RESULTS
Uniquely mapped reads used to make
predictions
When the percentage of reads used by each most

current program in all data sets was compared,

DSAP and miRanalyzer appeared to retain the highest

percentage (Figure 1). In contrast, surprisingly,

miRDeep v2 appeared on average to utilize only

�20 % of its reads. This difference in the numbers of

reads used was undoubtedly a result of the mapping

algorithms applied by the respective programs and the

lack of a target genome used by DSAP. The difference

between miRanalyzer and miRDeep v2 may have

been due to differences in parameters used to drive

Bowtie. Under certain circumstances, a higher per-

centage of mapped reads may be preferable to the

user as it indicates a larger portion of the available in-

formation utilized by the program.

Numbers of known miRNAs and novel
candidate predictions
After adjusting for the prediction size, software

comparison between miRDeep, miRDeep2,

miRanalyzer and DSAP showed a > 80% similarity

of known miRNAs in each of the six biological data

sets (Figure 2). In all cases, except the neuroblastoma

data set and the simulated data set, miRDeep 2 gen-

erated slightly higher numbers of known miRNAs

and the additional miRNAs identified were most

often a miRNA from the same family and/or precur-

sor sequence. In the case of the novel miRNA candi-

dates, however, there was a lower percent overlap in

the predictions; particularly, between miRAnalyzer

and miRDeep/miRDeep2 suggesting that perhaps

in comparison to miRDeep, miRAnalyzer is better

suited to detect low-expressed candidates (Figure 3).

As abundance is linked to detection in the miRDeep

algorithm, novel candidates represented by low abun-

dant reads may be excluded [36].

Differences in length of hairpin
Distinct differences were noted when the predicted

novel miRNAs from miRanalyzer and miRDeep

were compared in the data sets. On the whole, re-

flective of algorithm differences, the average hairpin

length predicted by miRanalyzer was 20 bases longer

than that of miRDeep. In both programs, hairpin

length is set as an arbitrary number of bases flanking

the mature sequence which may be acceptable as

hairpin length has been proven to be quite variable

in both plants and animals [20–23]. In contrast, the

length of the mature sequences varied little when

each of the three data sets was analyzed with

miRDeep, miRanalyzer and DSAP. This is unsur-

prising as the determination of the mature miRNA is

based on the detected read. Curiously enough,

though, we did observe variability in the 30 end

Table 3: Parameters used by Flux Simulator to cre-
ated simulation NGS RNAseq data set

READ_LENGTH 35
TSS_MEAN 25
READ_NUMBER 5 000 000
NB_MOLECULES 5 000 000
GC_SD 0.1
GC_MEAN 0.5
SIZE_SAMPLING AC
FRAG_SUBSTRATE RNA
FRAG_METHOD UR
FRAG_EZ_MOTIF NlaIII
PAIRED_END FALSE
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(�3 nt) of the mature sequences in the neuroblast-

oma data set when it was analyzed by miRDeep v1.

This variability has not been seen in the miRNAs

generated by miRDeepv2 and may have been

unique to the software edition.

ROC curves for simulated data set
A non-redundant data set containing 733 494 reads

was evaluated with miRDeep, miRDeep2,

miRanalyzer and DSAP on the basis of their ability

to correctly identify 100 known miRNAs that was

Figure 2: Total numbers of miRNAs detected bymiRanalyzer, DSAP, miRDeep andmiRDeep2 already identified in
MiRBase.

Figure 1: Percentage of mapped reads. A usable read was defined as one which mapped uniquely to a specific locus.
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‘spiked in’ randomly at a prevalence of 0.1%.

Whether a prediction could be termed true or false

was based on: (i) being predicted as miRNA and (ii)

being mapped to the correct location. The ROC

curves generated for the simulated data set showed

miRDeep/miRDeep2 to demonstrate slightly better

levels of specificity than miRanalyzer and DSAP.

Based on the simulation data, accuracy levels for

each test were calculated at 80.4 and 75.4% for

miRDeep and miRDeep2, respectively. The accur-

acy level for miRanalyzer was 68.3% and the accur-

acy level for DSAP was 67.3% 9 (Figure 4).

Experimental validation of overlapping
novel predictions
To determine how effective the programs were at

identifying novel miRNAs, we chose predictions

that overlapped in each of the four programs from

our neuroblastoma data set and validated the pres-

ence of these novel miRNAs with Taqman

RT-PCR. Of the 16 that were identified as over-

lapping, 12 novel miRNAs were validated success-

fully. Six of these 12 novel miRNAs validated by us,

however, have been since reported by other re-

searchers. In comparing the Cq values of this group

to ours, we noticed that in our sample the Cq values

were in fact much lower. The differences may be

reflective of cell line differences as these six previ-

ously reported miRNA were first identified in

fibroblasts.

We also attempted to validate the precursor seq-

uence associated with each predicted novel miRNA

to determine the accuracy with which each program

could predict precursor sequences. We tested both

the precursors generated by miRanalyzer and

miRDeep of the remaining six novel miRNAs and

only two generated by miRDeep were verified

(prd-mir-7, prd-mir-14). The hairpins predicted by

miRDeep and miRanalyzer in many cases were dis-

continuous representations of each other. The pre-

dicted hairpin size varied when compared between

miRanalyzer and miRDeep and this variability un-

doubtedly impacted our ability to verify efficiently

Figure 3: Total numbers of miRNAs detected by miRanalyzer, miRDeep and miRDeep2 not present in MiRBase.

Figure 4: ROC curve generated using simulated data.

Detecting miRNAs in deep-sequencing data 41



the novel precursor predictions using Taqman assays.

Also, curiously enough, in the six novel miRNAs

identified in our study but annotated by others, the

coordinates of the respective precursors predicted by

miRDeep/miRanalyzer and the annotated coordin-

ates differed by over 35 000 bases. This discrepancy

may have been due to cross mapping events, or more

likely, is evidence of inaccurate precursor prediction

[27, 28].

The Cq values in Table 4 suggest that the

novel miRNA identified by this study are expressed

at low levels, and therefore more difficult to detect

by more traditional methods. The low expression

level of these novel candidates is unsurprising.

Given the amount of work that has been devoted

toward the detection and identification of novel

miRNA candidates in the last few years, it is unlikely

that any new highly expressed candidates will be

found.

DISCUSSION
At first, we intended to use the additional programs

(DSAP, miRanalyzer) to validate predictions gener-

ated by miRDeep; however, in comparing the

output, we realized that the software dramatically

affects the number and quality of predictions gener-

ated. Several conceptual questions arose from our

comparison, particularly with regard to the deter-

mination of the hairpin sequence and the mapping

algorithm used by each program. It has been sug-

gested that certain programs vary in terms of their

mapping accuracy of short reads (<35 bases) [31].

The size of the target as well as its apparent degree

of complexity both are likely to impact the differ-

ences in miRNA prediction through the intermedi-

ate effect of mapped reads [31]. Mapping programs,

such as Bowtie, have been cited to randomly assign

reads to incorrect locations if there is ambiguity [31].

Each of the three programs employed a different

approach to mapping which may account for the

differences in stringency. The effect of mapping

technique can clearly be seen when miRDeep v1 is

compared with miRDeep2 (Figure 5). When broken

down into separate tasks, the amount of time spent

by miRDeepv1 to map the reads to the target

genome was �20% longer than that of miRDeep2.

Further, phenomena such as cross mapping can serve

to confuse the mapping of the read to the precursor

[29, 30].

Until now, it has been difficult to compare the

performance of these programs because of the lack

of available data sets. We have not had the oppor-

tunity to observe the effect that mapping algorithm

might have on miRNA prediction. Now, there are

enough data sets available for software testing, the

tools with which we analyze these data sets can be

refined even further and perfected. The choice of

Bowtie was undoubtedly due to practical consider-

ations; use of Bowtie does, in fact, speed up the

process of analysis. On average, miRDeepv1 took

three times as long to complete its analysis (10.5 h)

compared with that of miRDeep2 (2.87 h) on a

T5500 Dell workstation running Ubuntu 12.04

(Table 5; Figure 5). Also, web-based applications,

such as DSAP and miRanalyzer, are difficult to

benchmark as one’s data is usually placed in a com-

pute queue. The ability to facilitate increased speed

may not always be advantageous as incorrect map-

ping may lead to increased false-positives findings.

Given the time and cost involved in validating

predicted miRNA, however, it is prudent to use a

consensus approach to miRNA prediction with an

intersection of the mapping results from a number of

different programs rather than results from one single

program. An iterative-mapping profile could be gen-

erated from multiple programs that would enable the

user to identify the reads that map to multiple loca-

tions and also those regions of the target genome that

might be pre-disposed toward such activity. Reads

with high-quality base scores throughout that map to

the same single location regardless of program could

then be carried forward to predict miRNAs. An add-

itional step that might be useful to consider is the

Table 4: Average CQ values

Sample average_CQ average_
CQ_precursor

annotated as
(MirBase)

prd_mat-1 28.93 no amplification
prd_mat-2 35.00 no amplification Hsa-mir-3660
prd_mat-3 36.03 no amplification Hsa-mir-4428
prd_mat-5 29.89 no amplification
prd_mat-6 19.10 no amplification
prd_mat-7 26.91 31.53
prd_mat-8 34.10 no amplification
prd_mat-11 32.25 no amplification Hsa-mir-3131
prd_mat-13 35.45 no amplification Hsa-mir-4421
prd_mat-14 32.52 34.11
prd_mat-16 31.65 no amplification Hsa-mir-2110
prd_mat-17 36.10 no amplification Hsa-mir-4222

Twelve of the 17 overlapping novel candidates were validated with
Taqman RT-PCR.
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accuracy of the reference genome itself in relation to

the reads which are being mapped. Reference gen-

omes, by virtue of their composition, vary consider-

ably both in terms of quality and base accuracy [28].

Both miRDeep and miRanalyzer rely on a reference

genome and generally exclude reads that do not map

cleanly to the reference genome (less than two base

mismatches). Base inaccuracies in the reference

genome might inadvertently cause reads to be

excluded by the software or worse yet, to be incor-

rectly mapped altogether. We suggest that algorithms

such as employed by the program iCorn could ef-

fectively be implemented in the mapping process to

increase the amount of potential information gar-

nered in the analysis process. iCorn iteratively maps

reads to the target genome, adjusting the sequence of

the target genome if the mismatch is caused by a base

with a good quality score and that the adjustment/

read mapping would increase overall coverage [32].

To the best of our knowledge, none of the programs

discussed in this article address the overall accuracy of

the reference sequence used, and indeed, we our-

selves did not take this into account when doing

our analysis. Here, we only suggest this additional

step as a way to further improve the accuracy of

the mapping process.

One area in which miRDeep and miRanalyzer

both demonstrate apparent weakness is lack of

specificity to detect the precursor sequence. When

examining the novel miRNAs predicted by

Figure 5: Average compute time spent by miRDeep and miRDeep2 on analyzing data sets.

Table 5: Calculation time in hours taken to complete
analysis

Data set miRAnalyzer miRDeepv1 miRDeepv2 DSAP

PMBC1 12 13 3 7
PMBC2 7 8 2.5 5
NB 7 9 4 5
K562 5 13 3 7
HL60 8 10 2.5 7
Breast Cancer 5 8 2 8
Simulated 13 12 3 9
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miRDeep and miRanalyzer, we detected two in-

stances where precursors were predicted poorly in

relation to the mature sequence. In the first, novel

predictions that overlapped between miRanalyzer

and miRDeep demonstrated discontinuous precur-

sors. Each predicted precursor shared the mapped

read but the boundaries of the predicted precursor

varied. In the second instance, six novel miRNA

candidates which had already been detected by

other authors were predicted to map to loci entirely

different from previously reported. It is apparent that

additional information is needed with respect to the

precursor sequence itself before acceptable prediction

parameters can be employed in detection software.

Actual hairpin length varies from 60 to 120 nt in

annotated examples. The current miRNA-based

deep-sequencing methodology focuses solely on

the mature sequence and the precursor prediction

is generally a theoretical extraction based on the

information provided by the mapped read. We rec-

ommend that more methods both experimental

(deep-sequencing data generation) and computa-

tional (addressing precursor sequence motifs and

folding) need be devised to resolve the apparent dis-

crepancy in detection of miRNA precursors [31].

CONCLUSION
Deep sequencing does pose considerable computa-

tional and analytical challenges that must be over-

come before it can become a fully realized form of

analysis in miRNA research. Apart from the tech-

nical issues raised by different platforms, researchers

also must be aware of the impact that their choice of

the program might have on their analysis. We be-

lieve that, for the moment, miRDeep represents the

best solution for researchers looking for novel can-

didates to pursue as its stringency level reduces the

number of false-positive generated. Therefore, care-

ful consideration of deep sequencing results is vital

both with respect to the mature as well as the hairpin

sequences. A large research effort, until now, has

been predominantly devoted to detection of

miRNA mature sequences, but not enough effort

has been devoted to detection of their intermediate

precursor forms. Added experimental information

regarding the intermediate precursor can serve to

help refine the detection process. The amount of

information generated through these initial studies

is now of sufficient size that a correct assessment

can be made of the techniques used to generate it.

A limitation of our study is indeed the number of

data sets studied and the number of programs com-

pared, but, nevertheless, it does suggest that caution

is necessary when using this type of sequencing for

miRNA prediction.

Key Points

� Anumber ofprograms arenow available thatcanbeused to pre-
dictmiRNAs from RNAseq data sets.

� These programs vary in terms of the resources/skill needed to
implement successfully.

� A comparison of three programs suggests that although similar
groups are predicted, the programs varied in terms of predicted
candidates.

� Despite an apparenthigh stringency,miRDeep appears to be the
best algorithm for those researchers wishing to pursue novel
miRNA for further experimentation as its design allows the re-
searcher to address concerns such asmapping efficiency.

FUNDING
Stanley Medical Research Institute (#08R-1959,

2008) and the Jeffers Foundation (#J-1015, 2011)

grants to V.V.

References
1. Krol J, Krzyzosiak WJ. Structural aspects of microRNA

biogenesis. IUBMB Life 2004;56:95–100.

2. Li Y, Lin L, Jin P. The microRNA pathway and fragile X
mental retardation protein. Biochim Biophys Acta 2008;1779:
702–5.

3. Mencia A, Modamio-Hoybjor S, Redshaw N, et al.
Mutations in the seed region of human miR-96 are respon-
sible for nonsyndromic progressive hearing loss. Nat Genet
2009;41:609–13.

4. Scalbert E, Bril A. Implication of microRNAs in the car-
diovascular system. Curr Opin Pharmacol 2008;8:181–8.

5. Oulas A, Boutla A, Gkirtzou K, et al. Prediction of novel
microRNA genes in cancer-associated genomic regions—a
combined computational and experimental approach.
Nucleic Acids Res 2009;37:3276–87.

6. Saetrom P, Snove O, Nedland M, et al. Conserved
MicroRNA characteristics in mammals. Oligonucleotides
2006;16:115–44.

7. Kim VN. MicroRNA biogenesis: coordinated cropping and
dicing. Nat RevMol Cell Biol 2005;6:376–85.

8. Kim YK, Kim VN. Processing of intronic microRNAs.
EMBOJ 2007;26:775–83.

9. Rodriguez A, Griffiths-Jones S, Ashurst JL, et al.
Identification of mammalian microRNA host genes and
transcription units. Genome Res 2004;14:1902–10.

10. Erdmann VA, Szymanski M, Hochberg A, Groot N,
Barciszewski J. Non-coding, mRNA-like RNAs database
Y2K. Nucleic Acids Res 2000;28:197–200.

44 Williamson et al.



11. Sinha S, Vasulu TS, De RK. Performance and evaluation of
MicroRNA gene identification tools. J Proteom Bioinform
2009;2:336–43.

12. Borchert GM, Lanier W, Davidson BL. RNA polymerase
III transcribes human microRNAs. Nat StructMol Biol 2006;
13:1097–101.

13. Jiang P, Wu H, Wang W, etal. MiPred: classification of real
and pseudo microRNA precursors using random forest pre-
diction model with combined features. Nucleic Acids Res
2007;35:W339–44.

14. Eaves HL, Gao Y. MOM: maximum oligonucleotide map-
ping. Bioinformatics 2009;25:969–70.

15. Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic
shadowing and computational identification of human
microRNA genes. Cell 2005;120:21–4.

16. Mendes ND, Freitas AT, Sagot MF. Current tools for the
identification of miRNA genes and their targets. Nucleic
Acids Res 2009;37:2419–33.

17. Friedlander MR, Chen W, Adamidi C, et al. Discovering
microRNAs from deep sequencing data using miRDeep.
Nat Biotechnol 2008;26:407–15.

18. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol 2009;10(3):R25.

19. Bonnet E, Wuyts J, Rouze P, Van de Peer Y. Evidence that
microRNA precursors, unlike other non-coding RNAs,
have lower folding free energies than random sequences.
Bioinformatics 2004;20(17):2911–7.

20. Friedlander MR, Mackowiak SD, Li N, et al. miRDeep2
accurately identifies known and hundreds of novel
microRNA genes in seven animal clades. Nucleic Acids Res
2012;40(1):37–52.

21. Mackowiak SD. Identification of novel and known
miRNAs in deep-sequencing data with miRDeep2. In:
Baxevanis AD, et al, (ed). Current Protocols in Bioinformatics.
Chapter 12, Unit 12.10. John E Wiley and Sons, 2011.

22. Hackenberg M, Sturm M, Langenberger D, et al.
miRanalyzer: a microRNA detection and analysis tool for
next-generation sequencing experiments. Nucleic Acids Res
2009;37:W68–76.

23. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM.
miRanalyzer: an update on the detection and analysis of
microRNAs in high-throughput sequencing experiments.
Nucleic Acids Res 2011;39(Web Server issue):W132–8.

24. Huang P, Liu Y, Lee C, et al. DSAP: deep-sequencing small
RNA analysis pipeline. NucleicAcidsRes 2010;38:W385–91.

25. Rice P, Longden I, Bleasby A. EMBOSS: the European
molecular biology open software suite. Trends Genet 2000;
16(6):276–7.

26. Vaz C, Ahmad HM, Sharma P, etal. Analysis of microRNA
transcriptome by deep sequencing of small RNA libraries of
peripheral blood. BMCGenom 2010;11:288–306.

27. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase:
tools for microRNA genomics. Nucleic Acids Res 2008;36:
D154–8.

28. Thakur V, Wanchana S, Xu M, et al. Characterization of
statistical features for plant microRNA prediction. BMC
Genom 2011;12:108–20.

29. de Hoon MJ, Taft RJ, Hashimoto T, et al. Cross-mapping
and the identification of editing sites in mature microRNAs
in high-throughput sequencing libraries. Genome Res 2010;
20:257–64.

30. Guo L, Liang T, Gu W, et al. Cross-mapping events in
miRNAs reveal potential miRNA-mimics and evolutionary
implications. PloSOne 2011;6:e20517–24.

31. Palmieri N, Schlotterer C. Mapping accuracy of short reads
from massively parallel sequencing and the implications for
quantitative expression profiling. PloS One 2009;4:
e6323–33.

32. Otto TD, Sanders M, Berriman M, Newbold C. Iterative
correction of reference nucleotides (iCORN) using second
generation sequencing technology. Bioinformatics 2010;26:
1704–7.

33. Zhu E, Zhao F, Xu G, Hou H, Zhou L, Li X, et al.
mirTools: microRNA profiling and discovery based on
high-throughput sequencing. Nucleic Acids Res 2010;
38(Web Server issue):W392–7.

34. Farazi TA, Horlings HM, Ten Hoeve JJ, et al. MicroRNA
sequence and expression analysis in breast tumors by deep
sequencing. Cancer Res 2011;71(13):4443–53.

35. Creighton CJ, Reid JG, Gunaratne PH. Expression profil-
ing of microRNAs by deep sequencing. Brief Bioinform
2009;10(5):490–7.

36. Howard BE, Heber S. Towards reliable isoform quanti-
fication using RNA-SEQ data. BMC Bioinform 2010;
11(Suppl 3):S6.

Detecting miRNAs in deep-sequencing data 45


