
Behavioral/Systems/Cognitive

Motor Memory Is Encoded as a Gain-Field Combination of
Intrinsic and Extrinsic Action Representations
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Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how
the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We
studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different
movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This
provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate
intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A
first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic
representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic
learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and
extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Ma-
halanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic
representations in motor and parietal cortices.

Introduction
During visually guided reaching, the sensorimotor system must
estimate the spatial location of a target, the associated movement
vector, and the motor output required to achieve it. The nature of
the internal representation of this information is a key issue in
understanding the mechanisms for sensorimotor control. The
neural representation of the spatial information associated with
the location of the target and the movement vector defines a
coordinate system that determines the similarity with which the
nervous system views different movements. In line with this idea,
a series of studies have attempted to elucidate these representa-
tions by studying how learned changes in motor output general-
ize across spatial locations and motion states during reaching arm
movements (Shadmehr and Mussa-Ivaldi, 1994; Ghahramani et
al., 1996; Conditt et al., 1997; Conditt and Mussa-Ivaldi, 1999;
Krakauer et al., 2000; Shadmehr and Moussavi, 2000; Morton et
al., 2001; Baraduc and Wolpert, 2002; Malfait et al., 2002; Morton
and Bastian, 2004; Smith and Shadmehr, 2005; Bays and Wolpert,
2006; Hwang et al., 2006; Ghez et al., 2007; Mattar and Ostry,
2007; Wagner and Smith, 2008; Haswell et al., 2009; Mattar and

Ostry, 2010; Quaia et al., 2010; Gonzalez Castro et al., 2011;
Joiner et al., 2011). As illustrated in Figure 1A, a change in the
posture of the end effector allows for dissociation between intrin-
sic and extrinsic movement representations. Correspondingly,
several studies have performed postural manipulations to explore
the extent to which the neural coding of movement or the func-
tional representations of motor memories are associated with
coordinate systems intrinsic or extrinsic to the end effector. Stud-
ies in which novel physical dynamics were learned during reach-
ing arm movements have generally found a representation for
motor learning intrinsic to the end effector, in the joint coordi-
nates of the arm (Shadmehr and Mussa-Ivaldi, 1994; Shadmehr
and Moussavi, 2000; Malfait et al., 2002; Bays and Wolpert,
2006), whereas studies of visuomotor transformation learning
have often suggested that the coordinate frame is based on posi-
tion or motion extrinsic to the end effector (Vetter et al., 1999;
Ghez et al., 2000; Krakauer et al., 2000).

Much of this previous work has assumed that each type of
motor memory is encoded in a single reference frame, either
intrinsic or extrinsic (Shadmehr and Mussa-Ivaldi, 1994; Vindras
and Viviani, 1998; Ghez et al., 2000; Krakauer et al., 2000; Shad-
mehr and Moussavi, 2000; Malfait et al., 2002), and thus these
studies were not designed to carefully examine the possibility that
multiple coordinate frames might contribute to the internal rep-
resentation of motor memory. However, more recent evidence
suggests that novel dynamics are learned with a representation
that is not fully intrinsic. For example, studies of children with
autism (Haswell et al., 2009) and transcranial direct-current
stimulation of motor cortex (Orban de Xivry et al., 2011) have
found that disease or brain stimulation can lead to a significantly

Received April 20, 2012; revised July 28, 2012; accepted Aug. 24, 2012.
Author contributions: J.B.B. and M.A.S. designed research; J.B.B. performed research; J.B.B. and M.A.S. contrib-

uted unpublished reagents/analytic tools; J.B.B., D.Z.P., and M.A.S. analyzed data; J.B.B., D.Z.P., and M.A.S. wrote
the paper.

This work was supported by grants from the McKnight Endowment for Neuroscience, the Alfred P. Sloan Foun-
dation, and the Wallace H. Coulter Foundation (M.A.S.).

The authors declare no competing financial interests.
Correspondence should be addressed to Maurice A. Smith, Harvard University, 29 Oxford Street, Room 325,

Cambridge, MA 02138. E-mail: mas@seas.harvard.edu.
DOI:10.1523/JNEUROSCI.1928-12.2012

Copyright © 2012 the authors 0270-6474/12/3214951-15$15.00/0

The Journal of Neuroscience, October 24, 2012 • 32(43):14951–14965 • 14951



greater fraction of intrinsic generalization. However, this would
not be possible if generalization were normally fully intrinsic, as
previously suggested. Another recent study looked at the coordi-
nate frame used in the representation of dynamics in tasks with
visualizations of different complexity and concluded that physi-
cal dynamics are represented in a coordinate frame intermediate
between intrinsic and extrinsic (Ahmed et al., 2008).

Despite the accumulating evidence that intrinsic and ex-
trinsic coordinate frames both contribute to motor memory,
little is known about the manner in which their contributions
are combined. A key issue with previous work is that the spar-
sity with which these studies sampled the generalization of
learning throughout the workspace did not allow for this level
of investigation. Here we address this issue by measuring the
generalization of visuomotor learning across an array of different
movement directions and arm configurations, amounting to
more than 50 conditions in total compared with the one or two
untrained conditions examined in most previous studies. This
dense sampling allows us to visualize the pattern of generalization
across the combined intrinsic-extrinsic (I-E) space, revealing a
representation of motor memory that arises from a gain-field
combination of intrinsic and extrinsic coordinate frames. Impor-
tantly, our data distinguishes this multiplicative gain-field com-
bination model from a previously assumed (Hikosaka et al., 2002;
Cohen et al., 2005; Berniker and Kording, 2008; Berniker and
Kording, 2011) additive combination model that corresponds to
the idea of separate intrinsically based and extrinsically based
learning. We show that this multiplicative gain-field model is
consistent with the presence of intrinsic, extrinsic, and jointly I-E
representations within posterior parietal cortex (PPC) (Andersen
et al., 1985, 1998, 2004; Buneo and Andersen, 2006) and primary
motor cortex (M1) (Kalaska et al., 1989; Kakei et al., 1999;
Kalaska, 2009).

Materials and Methods
Participants
Thirty two right-handed subjects (13 men; mean age, 36.7 years) partic-
ipated in this study. Twelve took part in experiment 1 and 20 in experi-
ment 2. The subjects were naive to the purpose of the experiments, and all
provided informed consent consistent with the policies of Institutional
Review Board of Harvard University. Each participant took part in only
one of the two experiments we conducted.

Apparatus
The configuration of the experimental setup is shown in Figure 1 A.
Subjects sat in a chair facing a 120 Hz, 23-inch LCD monitor, mounted
horizontally in front of them at shoulder level, displaying the various
visual cues during the experiment. Underneath the monitor, 8 inches
below the face of the screen, a digitizing tablet (Wacom Intuos 3) was
used to track and record the subjects’ arm movements. Above the tablet,
subjects held a handle containing a digitizing pen in their right hand,
whose position was tracked by the tablet. The handle served two pur-
poses: (1) it acted as a shell around the digitizing pen, increasing its
diameter, making it more comfortable to grasp, and (2) it provided a
wider contact surface with the tablet, promoting a more consistent ver-
tical orientation of the pen. The handle had a flat bottom covered with
Teflon ( polytetrafluoroethylene) that lowered the contact friction, al-
lowing it to glide smoothly on the tablet. The position data were recorded
in real time (sampled at 200 Hz) using the Psychophysics Toolbox
(Brainard, 1997; Kleiner et al., 2007) in MATLAB [version 7.10.0
(R2010a); MathWorks]. The resolution of the position data in the plane
of the tablet was 0.005 mm, and the accuracy was 0.25 mm.

Experimental protocol
In this study, subjects performed 9-cm point-to-point reaching arm
movements from a single starting location to 19 different target loca-

tions, as illustrated in Figure 1 A. The starting location was a circle with
diameter of 5 mm, and each target was a circle with 10 mm diameter . The
cursor was also a circle with 2.5 mm diameter. Subjects performed this
task in two distinct workspaces, and we conducted two experiments, with
different pairs of workspaces as illustrated in Figures 1 and 4,
respectively.

Both experiments began with a block of trials in a first (training)
workspace: workspace 1 (W1) and workspace 1* (W1*) for experiments
1 and 2, respectively. This block contained 114 movements: six trials to
each of 19 target locations presented in a pseudorandom order. During
these movements, subjects were given veridical visual feedback during
both the outward movements toward each target and the inward return
movements toward the starting location. At the end of this block, subjects
were given a 1 min rest during which they were repositioned so that the
same movements on the tablet constituted a second (novel) workspace
with respect to the torso: workspace 2 (W2) and workspace 2* (W2*) for
experiments 1 and 2, respectively, in which they performed a second
block of 114 movements, all with veridical visual feedback. Note that the
repositioning of the subjects consisted of moving the chair on which they
sat rather than moving the location of their hand or of the display, similar
to Malfait et al. (2002) and Shadmehr and Moussavi (2000). These two
blocks constituted the “familiarization phase” of the experiment and
allowed the subject to become comfortable with the reaching task. By the
second half of these blocks, the movements were mostly straight to the
target with an average � SEM movement time of 267 � 13 ms for each 9
cm movement.

The second phase of the experiments, the baseline phase, consisted of
342 movements in each workspace, divided into three blocks of 114
movements. We alternated the six blocks of movements between the
training and novel workspaces, allowing the subjects to rest for �1 min
between blocks while we positioned them. In the baseline phase, veridical
visual feedback of the cursor was present on two-thirds of the move-
ments. Feedback was withheld on the remaining movements (randomly
chosen). During this block, a return movement had visual feedback if and
only if the preceding outward reaching movement had visual feedback.
On the no-visual-feedback trials, the cursor disappeared as soon as the
subject began the movement (when movement velocity increased �5
cm/s) toward the target. A movement was considered complete when the
subject came to a stop (defined by hand velocity remaining �5 cm/s for
a period of 100 ms). The return-to-center movement after a no-visual-
feedback movement was without visual feedback, and subjects had to
find the starting location without visual guidance. The cursor reappeared
only after the subject came within 7.6 mm of the starting location.

During the third phase of the experiment, the training phase, each
subject was presented with a 30° rotation of the cursor (either clockwise
or counterclockwise). As the subject reached toward a target positioned
at 90° (the training target), the cursor location was rotated about the
starting location by 30°. All return movements in the training phase were
without visual feedback. The imposed rotation was clockwise for half the
subjects and counterclockwise for the other half. For the cursor to move
directly toward the target, hand motion would need to be directed 30°
opposite to the direction of the cursor rotation as shown in the leftmost
panel of Figure 1 A. Subjects performed a single training block of 120
movements to the training target with 10% of the trials in this block
without visual feedback. At the end of the training block, movements
were generally straight, indicating that participants learned the imposed
rotation. In the last 40 trials of this block, subjects’ movements were
rotated by 27.3 � 2.7° on average, with 30° corresponding to full learning
of the imposed rotation, and the average movement time was 211 � 10
ms (213 ms in movement with visual feedback, 183 in movement without
visual feedback). There was no significant difference in the asymptotic
learning level between the subjects who learned clockwise rotation and
those who learned counterclockwise rotation ( p � 0.2).

After training, subjects were given a 1 min break before we tested the
generalization of the learned adaptation to 19 targets in both the training
and novel workspaces with three trials toward each target location in each
workspace, in random order, all without visual feedback. The return
movements in this testing phase were also without visual feedback. As
shown in Figure 1 E, we counterbalanced the order of testing the two
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workspaces: for half the subjects, generalization was tested in the
training workspace followed by the novel workspace, whereas for the
other half the order was reversed. After generalization was tested in
both workspaces, subjects performed an additional block of training
(60 trials) followed by two additional testing blocks, one in each
workspace. The order of testing in these blocks was reversed from that
of the first two testing blocks. The second set of training and testing
was performed to double the amount of data collected from each
subject. The data from both testing sets were combined and are pre-
sented together throughout.

In experiment 1 (shown in Fig. 1 A), W1 was chosen such that the
starting location was in front of the subject’s torso. Subjects were
positioned so that, at the starting location, the subject’s elbow formed
a 90° angle between the upper arm and the forearm and the shoulder
formed a 45° angle between the upper arm and the left-right horizon-
tal axis of the subject’s torso, as shown in Figure 1 A (middle). In this
workspace, the 19 target locations spanned the range of �225° to
�45° (90 � 135°) and were spaced 15° apart. In W2, the elbow angle
was maintained at 90°, but the shoulder angle was rotated such that
the upper arm was parallel to the subject’s left-right axis. As shown in
Figure 1 A (right), in this workspace, the 19 targets spanned the range
of �240° to �30° (120 � 135°). This range was chosen so as to best
capture the shape of the generalization function based on a set of pilot
data we collected. As illustrated in Figure 1 A, W2 differed from W1 by
a �45° (45° clockwise) shoulder rotation.

Experiment 2 aimed to distinguish between two multi-reference frame
models that experiment 1 could not distinguish. To accomplish this, we
used a greater separation between the training and testing workspaces
and increased the number of participants. As shown in Figure 4, the
training workspace in experiment 2 (W1*) was the same as the untrained
workspace in experiment 1 (W2), and the untrained workspace in exper-
iment 2 (W2*) was chosen such that it differed from W1* by a �90°
shoulder rotation. The testing targets in both workspaces were chosen
such that they were 15° apart spanning 270° and centered at the target
location trained in W1* or �45° away from it in W2*.

Defining the space for visualizing intrinsic and extrinsic
directional similarity
One way to define a movement is by specifying its starting point and
a movement vector. For a straight point-to-point movement, the
movement vector in Cartesian space is simply the directed line seg-
ment connecting its start and end points. In Figure 1 B, we show the
movement vectors in Cartesian space for all 38 targets in experiment
1 (19 in each workspace). The origin of this plot is located at the
subject’s right shoulder. We used the average upper arm length (31.8
cm) and forearm length (33.0 cm) from all 32 subjects and the pos-
tures diagrammed in Figure 1 A to calculate the starting locations for
W1 and W2. Given any two straight movements originating from the
same starting point and ending at two different targets, we can de-
scribe the relationship between them by the angle formed by their
movement vectors in Cartesian space. The same two movements can
also be presented in joint coordinates as a pair of joint-space move-
ment vectors with a common origin, and the difference between them
can also be characterized by the joint-space angle formed by the two
vectors. In Figure 1C, we show the joint-space representations of the
Cartesian movement vectors from Figure 1 B. We calculated these
joint-space trajectories using the inverse kinematics equations for a
two-link planar manipulator (Spong et al., 2006). Shoulder and elbow
angles were defined with respect to an axis parallel to the subject’s
torso. Note that, in joint coordinates, the movement trajectories are
no longer straight lines but rather have slight curvatures, as illustrated
in Figure 1C. In addition, these trajectories are not equally spaced.
These features stem from the combination of (1) unequal lengths of
the forearm and the upper arm and (2) nonlinearity in the inverse
kinematics equations. In contrast, the movement trajectories in ex-
trinsic coordinates (Fig. 1 B) are equally spaced straight lines, result-
ing in uniform 15° spacing between targets in extrinsic coordinates in
Figure 1 D. In intrinsic coordinates (Fig. 1C), the trajectories are

slightly curved, resulting in non-uniform intrinsic coordinate spacing
between consecutive targets. This results in the slight curvatures ob-
served in W1 and W2 in Figure 1 D.

Using this framework, we can parameterize each movement for which
we can test generalization by two parameters: how far away from the
trained movement it is in both intrinsic and extrinsic coordinates. These
two parameters can be used as cardinal axes in a two-dimensional plot,
defining a two-dimensional I-E space for illustrating the similarity be-
tween any arbitrary movement and the trained movement in terms of
their intrinsic and extrinsic representations, as shown in Figure 1 D. Note
that the trained target in the training workspace is located at the origin
(0°, 0°). Also note that all targets in the trained workspace are located near
the main diagonal (gray circles), because the angular separation between
two targets in both intrinsic (joint-space) and extrinsic (Cartesian) co-
ordinates is very similar (Fig. 1 B, C).

The change in posture introduced in experiment 1 that resulted in a
45° change in the shoulder angle between the posture in W1 and the
posture in W2 resulted in a �45° lateral shift in the locus of target loca-
tions (Fig. 1 D, red circles). This shift is such that the target in the direc-
tion corresponding to the trained movement direction in extrinsic space
(orange) is located at position (0°, 45°), whereas the target in the direc-
tion of the trained movement direction in intrinsic space (blue) is located
at position (�45°, 0°). The four models examined here are all based on
this I-E space.

Models of motor adaptation
Single reference frame models of adaptation: the fully extrinsic and fully
intrinsic models. Single reference frame models of adaptation postulate
that adaptation depends on only one coordinate system (intrinsic or
extrinsic) and not on the other. More specifically, the extrinsic adaption
model (Eq. 1) postulates that the amount of generalization (z) to a given
target direction (�) depends only on the distance between this target
direction and the trained target direction in extrinsic coordinates and
does not depend on the distance in intrinsic coordinates:

z��E, �I� � z��E� � k � e�
DE

2

2�2, (1)

where DE � � �E � �E0
�, and �E0

� 0	 is the extrinsic representation of
the trained direction because the origin of I-E space is set to the trained
target location. In this model, the generalization of adaptation falls off in
a Gaussian-like manner with extrinsic distance from a peak at the trained
direction. This model has two free parameters: a magnitude (k), which is
the amount of adaptation in the trained target direction, and a width (�).
Note that the level of generalization is invariant to changes in the intrinsic
representation of the target.

Similarly, the intrinsic adaptation model (Eq. 2) is defined analogously
to the extrinsic model, except that the overall level of adaptation depends
on the intrinsic representation of the target and is invariant to the extrin-
sic representation:

z��E, �I� � z��I� � k � e�
DI

2

2�2 (2)

where DI � � �I � �I0
� and �I0

� 0	 is the intrinsic representation of the
trained direction. This model is characterized by two parameters as well:
the magnitude (k) and the width (�) of generalization.

Independent adaptation model. The independent adaptation model
(Eq. 3) postulates that there are two distinct components of adaptation,
one extrinsic and one intrinsic:

z��E, �I� � kE � e�
DE

2

2�E
2 � kI � e�

DI
2

2�I
2 (3)

where DE � � �E � �E0
� and DI � � �I � �I0

�. The two components
independently contribute to the learned adaptation. Because the compo-
nents correspond to the two single reference frame models described
above, the independent adaptation model acts as a linear combination of
them with two gain parameters (kE and kI) and two width parameters (�E

and �I). Note that, because we put the trained target location at the
origin, �I0

� �E0
� 0.
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To evaluate this model along a diagonal slice of the I-E space, which corre-
spondstogeneralizationwithinasingleworkspaceasillustratedinFigure1D,we
can make the substitution �I 
 �E � �, where � is the offset between any given
workspace and the training workspace, to yield the following:

z��E� � kE � e�
�E

2

2�E
2 � kI � e�

��E���2

2�I
2 (4)

Inspection of Equation 4 reveals that along any diagonal slice the gener-
alization pattern predicted by the independent adaptation model is the
sum of two Gaussians: one centered at the trained target direction (0°),
corresponding to the extrinsic component, and one centered at a direc-
tion � away (� 
 �45° for experiment 1 and � 
 �90° for experiment
2), corresponding to the intrinsic component, when generalization (z) is
viewed in terms of the extrinsic movement direction (�E). In the primary
analysis, we assume that the widths of the two components are the same
(�I 
 �E 
 �) because the shape of the generalization function in the
trained workspace is extremely well approximated (R 2 
 94 –98%) by a
single Gaussian and therefore is unlikely to result from the sum of two
Gaussians with very different widths. Note that we used the data from the
training workspaces in each experiment (W1 and W1*) to determine � so
that there were only two free parameters (kE and kI) when fitting the data
from the novel workspaces (W2 and W2*) in the primary analysis.

Composite adaptation model. The composite adaptation model (Eq. 5)
postulates that generalization depends on the combined distance across
I-E space from the trained direction ��E0

, �I0
�:

z��E, �I� � k � e�
D2

2�2, (5)

where: D � �sE � ��E � �E0
�2 � sI � ��I � �I0

�2.

In this model, the generalization (z) is a bivariate Gaussian function that
depends on the combined distance ( D) across I-E space from the trained
direction. Note that this dimension-weighted distance corresponds to
the Mahalanobis distance across I-E space. This expression is mathemat-
ically equivalent to a generalization function that effectively combines
the single reference frame models in a multiplicative gain field:

z��E, �I� � k � e�
sE��E��E0�2�sI��I��I0�2

2�2 � k � e�
��E��E0�2

2�E
2 � e�

��I��I0�2

2�I
2 ,

(6)

where �E � �/�sE and �I � �/�sI. Note that the coefficients, sE and sI,
are included to allow for differential weighting of the extrinsic and in-
trinsic components of the distance.

Evaluating the composite adaptation model along a diagonal slice of
the I-E space, as illustrated in Figure 1 D, with an offset between the
training and testing workspace of � allows us to substitute �I 
 �E 
 �
into Equation 6. If we combine this with the fact that we put the trained
target location at the origin (�I0

� �E0
� 0), we obtain the following:

z��E� � A � e�
��E��0

��2

2����2 , (7)

where �� �
�

�sE � s1

, �0
� �

s1 � �

sE � s1
and A � k � e�

�se/sI����0
��2

2��*� . Thus, the

composite adaptation model predicts a single Gaussian generalization
function in any given workspace that can be characterized by three pa-
rameters: a gain A, a center �0

*, and a width �*. None of these parameters
depends on �I or �E, effectively making them constants within any par-
ticular workspace. Also note that �* does not change from one workspace
to another because it does not depend on �. This corresponds to the fact
that any two parallel slices through a two-dimensional Gaussian are one-
dimensional Gaussians with the same width. In contrast, A and �0

* (the
height and center position) do change from one workspace to another.
Just as with the independent model, we used the data from the training
workspace in each experiment (W1 and W1*) to constrain the width of
generalization (�*). Thus, there were only two free parameters when
fitting the data from the novel workspaces (W2 and W2*) for this model.

Data analyses
All of the generalization function data presented here were collected
during no-visual-feedback outward movements during the testing phase.
Return movements (toward the center location) were not analyzed. For
each movement, we calculated its heading direction, defined as the direc-
tion of the vector connecting the start and end points of the movement.
The start point was operationally defined as the location of the hand on
the tablet when the speed of the movement first exceeded 5 cm/s, and the
end point was the location of the hand 100 ms after the velocity dropped
below 5 cm/s. Note that movements typically had peak velocities between
40 and 60 cm/s.

For each of the 19 directions in each of the two workspaces, we esti-
mated the average heading direction per subject separately for the base-
line and the testing phase (by averaging the six no-visual-feedback trials
toward each target). As expected, the individual subject’s heading direc-
tions to all targets were close to the ideal heading directions during base-
line movements (none of the average deviations exceeded 3°). We
subtracted these small baseline biases from the learning curve and the
post-adaptation generalization data to compute the learning-related
changes. Note that, because the baseline movements were almost straight
to the targets in most cases, very similar results would be obtained if
baseline subtraction was not used. For each subject, we estimated gener-
alization functions in W1 and W2 (or W1* and W2* for the participants
in experiment 2). Individual subject data were then averaged across sub-
jects, and both generalization functions were normalized in amplitude by
the average deviation across subjects toward the trained target in W1 (or
W1*). Note that, to estimate the confidence intervals in the parameters of
the fits to the average generalization functions, we performed a bootstrap
analysis with 1000 iterations, allowing us to estimate the variability of the
parameter values associated with the mean data. On each iteration, we
selected n subjects (n 
 12 for experiment 1 and n 
 20 for experiment 2)
with replacement from the respective subject pool and computed the
generalization function and corresponding fits based to this selection.
The confidence intervals were then estimated from the distribution of
these fit parameters.

Because local generalization of learning can be well described by
Gaussian tuning functions (Poggio and Bizzi, 2004; Fine and Thorough-
man, 2006; Tanaka et al., 2009), our models use this form as a working
approximation of the generalization function:

z�� � � k � e�
����0�2

2�2 . (8)

Here the generalization of learning, z(�), is centered around the move-
ment direction eliciting maximal adaptation, �0, has an amplitude of k 

z(�0), and is local with an effective width characterized by �. This type of
generalization function can only account for local adaptation; therefore,
all models we present here have one extra constant parameter (not
shown) that accounts for the global (uniform) portion of motor adapta-
tion. For the analyses in Figures 2 F and 5C, we estimated the centers of
the generalization functions individually for each subject before averag-
ing across subjects. We fitted a Gaussian function (Eq. 8) to each indi-
vidual subject’s generalization data (19 data points per subject) to
estimate the center of the generalization function (�0). We fixed the
width (�) for these individual fits based on the group average data (30.7°
in experiment 1 and 32.3° in experiment 2). One subject in each experi-
ment had a generalization pattern in the novel workspace that yielded a
nonsignificant fit characterized by R 2 � 31.3%, F(2,16) � 3.63, p � 0.05,
and the results from these fits were not included in our analysis of indi-
vidual subject data because the parameters estimated from nonsignifi-
cant fits are not reliable.

To statistically compare the goodness of fit between models to the
individual subject data, we computed the Akaike information crite-
rion corrected for finite sample size (AICc) for each model (Akaike,
1974; Anderson et al., 1998; Burnham and Anderson, 2004). For the
individual subject analysis in experiment 2, this generated 20 �AICc
comparisons between models, each corresponding to the difference in
goodness of fit between the two models being compared for each
subject. We then performed a two-tailed t test to test whether the
�AICc values were significantly different from zero. Note that mea-
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sures based on �AICc allow for comparison between models with
either the same or different number of parameters as well as nested
and non-nested models. Also note that, when comparing two models
with the same number of parameters, a t test on the �AICc values
amounts to a t test based on the R 2 values of the individual model fits,
in particular, a paired t test on log(1�R 2).

When comparing the goodness of fit of two particular models to the
averaged data, we used the Vuong closeness test (Vuong, 1989) in addi-
tion to the AICc. Just like AICc, the Vuong test can be used to compare
two non-nested models, but unlike �AICc, the Vuong test provides a p
value. Thus, whereas �AICc estimates whether one model is better than
the other based on the goodness of fit, the number of parameters, and the
degrees of freedom in the data, the Vuong test calculates the probability
that the observed improvement occurs randomly.

Results
Computational framework for action generalization:
visualizing the I-E space
We began by examining the natural interrelationships between
intrinsic and extrinsic coordinate systems for representations of
motor learning to build a computational framework for under-
standing how these coordinate frames might contribute to motor
learning. Several different types of motor adaptation, including
saccade adaptation (Noto et al., 1999), force-field learning (Gan-
dolfo et al., 1996; Thoroughman and Shadmehr, 2000; Mattar
and Ostry, 2007), and visuomotor rotation (VMR) learning (Pine
et al., 1996; Ghez et al., 2000; Krakauer et al., 2000), generalize
locally around the trained movement direction, meaning that
movements in directions far from an adapted movement show
little effect of the adaptation. This indicates that movement di-
rection similarity effectively determines the degree to which the
adaptation associated with one movement will be expressed in
another (Wang and Sainburg, 2005). We thus focused on how an
adaptation is associated with movement directions across the
combined space of intrinsic and extrinsic coordinates. Critically,
we note that a movement direction � could be represented in
either intrinsic or extrinsic coordinates. We define the extrinsic
movement direction �E in terms of x-y coordinates, and the in-
trinsic movement direction �I, analogously, in terms of shoulder-
elbow coordinates:

�E � arctan��y

�x�
�I � arctan�shoulder angle excursion

elbow angle excursion �. (9)

Inspection of Figure 1D reveals that, although the relationship
between �E and �I is not perfectly linear (because of differences in
the lengths of limb segments), these two variables vary in a highly
correlated, nearly one-to-one manner within any single work-
space, i.e., any particular starting posture. Thus, movements in
different target directions in the same workspace can be viewed as
constituting a single diagonal slice through I-E space, as illus-
trated in Figure 1D (the gray and red lines show two different
workspaces). Intrinsic and extrinsic representations are highly
correlated within a workspace because the manner in which un-
trained movement directions (�) differ from the trained move-
ment direction �0 is similar in intrinsic and extrinsic coordinates.
For example, within W1, movement directions slightly clockwise
of the trained direction (black arrow) contain more x and less y
excursion in extrinsic space (Fig. 1B, gray traces) and more elbow
and less shoulder excursion in intrinsic (joint) space (Fig. 1C,
gray traces). However, the high correlation between �E and �I

within the training workspace observed in Figure 1D indicates
that, within W1, there is essentially no ability to distinguish
whether the observed pattern of generalization is based on intrin-
sic versus extrinsic representations. This is the case because ex-
trinsic generalization around the training location (Fig. 2A)
would have essentially the same projection onto the training
workspace (W1) as intrinsic generalization around the training
location (Fig. 2B).

Examining generalization in another workspace (W2) with a
different starting arm posture after training in W1 allows for the
dissociation between intrinsic and extrinsic representations for
motor learning. Comparing Figure 1, B and C, shows that
the movement in W2 that matches the direction of the training
movement in extrinsic space (orange vector) is distinct from
the movement in W2 that matches the direction of the training
movement in intrinsic space (blue vector). Correspondingly, the
orange (but not the blue) direction matches the black direction in
Figure 1B, whereas the blue (but not the orange) direction
matches the black direction in Figure 1C. Note that the intrinsic
and extrinsic representations of these movement vectors can be
simultaneously visualized in the I-E direction space shown in
Figure 1D. Here, intrinsically matched movements (black and
blue circles) correspond to points with the same vertical posi-
tion, whereas extrinsically matched movements (black and
orange circles) correspond to points with the same horizontal
position. In summary, W2 provides an additional diagonal
slice through I-E space (Fig. 1 D, red line) in which movements
that are extrinsically versus intrinsically matched to the train-
ing location are distinct.

This conception of I-E space provides a unified way of looking
at a number of previous studies examining the coordinate system
for motor memory formation. These studies have, in general,
sampled a subset of the I-E space after adaptation to physical
dynamics (Shadmehr and Mussa-Ivaldi, 1994; Shadmehr and
Moussavi, 2000; Malfait et al., 2002) and visuomotor transforma-
tions (Ghez et al., 2000; Krakauer et al., 2000; Baraduc and Wol-
pert, 2002; Ahmed et al., 2008) and can be classified into two
groups. In one group of studies (Ghez et al., 2000; Krakauer et al.,
2000; Baraduc and Wolpert, 2002; Ahmed et al., 2008), a single
action (i.e., a single point in I-E space) was trained before the
generalization of the trained action was probed in a second work-
space at one or two untrained locations. This amounts to a sparse
sampling of the I-E space. For example, in the context of our
framework, Krakauer et al. (2000) trained VMR at the center
of the workspace (Fig. 1 D, black circle) and tested the transfer
to a single extrinsically matched movement: a point with the
same extrinsic coordinate as the trained movement but 45°
away in intrinsic space [Fig. 1 D, orange circle at (0°, 45°)].
Similarly, Malfait et al. (2002) trained a force field at the center
and tested the generalization of adaptation to two points: the
same joint coordinate but 90° away in extrinsic coordinates
(0°, 90°) and the same extrinsic coordinate but 90° away in
joint coordinates (90°, 0°).

In a second group of studies (Shadmehr and Mussa-Ivaldi,
1994; Shadmehr and Moussavi, 2000), adaptation was trained
in multiple movement directions in one workspace before
generalization was tested in the same movement directions in
a second workspace. Although these studies provide denser
sampling of generalization in I-E space, the fact that training
occurs at multiple points in this space makes it difficult to
unravel the relationship between the observed generalization
data and the nature of the internal representation that gives
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rise to it, as has been pointed out previously (Malfait et al.,
2002). In fact, some force fields will yield identical generaliza-
tion data in this paradigm, regardless of whether the internal
representation of dynamics is fully intrinsic or fully extrinsic
(Shadmehr and Moussavi, 2000).

Pure intrinsic and pure extrinsic generalization patterns in
I-E space
Figure 2A illustrates the pattern of generalization that would
arise from the extrinsic representation of VMR learning. The
generalization pattern predicted by the extrinsic representation
model (Eq. 1) is plotted as a color map over the space of intrinsic
and extrinsic coordinates for representing target direction. This
generalization pattern has a maximum value at the trained target

location (white dot) and gradually decreases away from it along
the extrinsic coordinate axis (the x-axis). Note that, in this model,
generalization is invariant along the intrinsic coordinate axis (the
y-axis) because the intrinsic direction is irrelevant for a purely
extrinsic model. This invariance results in a vertical stripe appear-
ance in the color map. In this illustration, the training workspace
(W1, white solid line) is located along the main diagonal because,
for every target direction in that workspace, the distance away
from the trained direction in both intrinsic and extrinsic coordi-
nates is approximately matched (as emphasized in Fig. 1D). In
contrast, W2 (white dashed line) is located along a diagonal
above and parallel to W1. This corresponds to the locus of points
in I-E space for which there is a �45° offset between intrinsic and
extrinsic target directions. Note that the width of the extrinsic
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Figure 1. Experiment 1 diagram and theoretical framework. A, Task illustration. Left, Subjects adapt to a 30° VMR while reaching to a single target positioned in the 90° direction (trained
direction), 9 cm away from the starting point. To move the cursor straight to the trained target (Trained cursor movement, solid black line), subjects need to perform a movement in the 120° direction
(Trained hand motion, dashed green line). Middle, After learning the rotation, subjects performed reaching arm movements to an array of 19 probe targets (open gray circles), spaced 15° apart,
spanning a range of �135° to �135° with respect to the trained direction in W1. Note that, in W1, the target at the 90° direction is the trained target, and therefore it corresponds to the trained
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B, C, Ideal cursor movements to all targets in both workspaces. In B, movements are shown in extrinsic (Cartesian) coordinates, and in C, they are shown in intrinsic (joint) coordinates. In W1 (gray),
the black arrow shows the trained cursor movement. In W2 (red), the yellow arrow shows the trained cursor movement in extrinsic space, whereas the blue arrow shows the trained cursor movement
in joint space. Note that the black and yellow arrows are parallel in B, indicating that in Cartesian coordinates these two movements require the same position changes, whereas the black and blue
arrows are parallel in C, showing that in joint coordinates those two movements require the same joint excursions. D, Target representations in I-E direction space. The x value for each movement
is calculated as the distance between that movement and the trained movement in extrinsic coordinates. Similarly, the y value for each movement is calculated as the distance between that
movement and the trained one in intrinsic coordinates. The intrinsic and extrinsic displacements from one target to the next are highly correlated within any particular workspace, yielding the nearly
linear patterns for W1 and W2 shown in this panel (gray and red traces). E, Experimental protocol. The order of testing in W1 and W2 is randomized such that half the subjects were tested in W1 first
(top path) and half were tested in W2 first (bottom path).
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model was chosen to match the width of the local generalization
observed in W1, which is depicted in Figure 2C.

According to the extrinsic representation model, maximal
generalization in W2 would be at the coordinate (0°, 45°) in
Figure 2A (Fig. 1D, orange dot), which corresponds to the same
extrinsic direction as the trained target but a 45° difference in
intrinsic direction compared with the trained target. This makes
sense because, if adaptation was represented in a purely extrinsic
manner, the intrinsic target direction would have no bearing on
the amount of generalization.

Figure 2B illustrates the pattern of generalization that would
arise from an intrinsic representation of VMR learning, as de-
scribed in Equation 2. This illustration is similar to Figure 2A
except that the color map has a horizontal, rather than vertical,
stripe appearance, reflecting a dependence on intrinsic rather
than extrinsic coordinates Here, the maximal generalization in
W2 is at the coordinate (�45°, 0°) that corresponds to the same
intrinsic direction as the trained target but a �45° difference in
extrinsic direction compared with the trained target. Again, this
makes sense because, if adaptation was represented in a purely
intrinsic manner, the extrinsic target direction would have no
bearing on the amount of generalization.

Measuring generalization across an array of arm postures and
movement directions
To understand the internal model that the motor system builds
during visuomotor transformation learning, we studied how a

motor adaptation learned in one arm configuration generalizes
to different arm configurations. As discussed above, a number of
previous studies have taken this basic approach. However, in the
current study, we train adaptation in a single movement direction
in one workspace and measure the generalization of this learning
across a range of untrained conditions in both the initial and
novel workspaces rather than one or two untrained conditions.
This allows us to visualize the pattern of generalization across I-E
space.

We recruited 12 subjects for the first experiment diagramed in
Figure 1E. After a baseline period with no rotation in which
subjects made 24 9-cm movements each to 19 target locations in
two different workspaces, subjects were trained for 120 trials with
a 30° VMR from a fixed starting point to a single target location in
W1 (Fig. 1A, left). After this training period, we tested the gen-
eralization of VMR adaptation by probing all 19 target directions
in both workspaces in an interleaved manner with half the sub-
jects tested first in W1 (Fig. 1A, middle) and the other half tested
first in W2 (Fig. 1A, right). The interleaved generalization testing
was designed to prevent any decay from the first to second testing
blocks from systematically affecting the comparison between
workspaces. However, examination of the generalization data re-
vealed that there was no significant effect of whether generaliza-
tion was tested on the first or second block: mean � SEM
generalization across all 19 directions of 9.5 � 0.65° versus 9.6 �
0.9° for W1 when tested first versus second (p � 0.5, unpaired t
test) and 8.4 � 0.5° versus 7.0 � 0.8° for W2 when tested first
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Figure 2. Single reference frame models. A, B, Pure extrinsic and pure intrinsic adaptation models. The framework used here is the same as the one used in Figure 1 D. The trained target is
represented as a white dot at the origin (0°, 0°), and the corresponding motor adaptation is scaled to 100% (dark red). W1 and W2 are represented as solid and dashed lines, respectively, and their
locations are consistent with Figure 1 D. In the extrinsic model, generalization falls off along the extrinsic (x) axis but remains invariant along the intrinsic (y) axis. The intrinsic model (B) makes
orthogonal predictions: the generalization is invariant along the extrinsic axis but variable along the intrinsic axis. C–E, Generalization data from W1 and W2. The data from W1 (C) is well
approximated by a Gaussian centered at 4.7° with a width (�) of 30.7° (R 2 
 96.3%). The data from W2 is poorly approximated by the extrinsic model prediction (D; R 2 
 67.2%) or the intrinsic
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47.4%). F, Generalization function (GF) centers. In this plot, all values are calculated by fitting Gaussians to individual subject data and averaging the center locations across
subjects. In W1, the center is at 6.4°, not significantly different from zero ( p � 0.1), whereas the center in W2 is at �19.8°. The shift of the generalization function from W1 to W2 is �28.2° on
average, significantly different from �45° and 0° (**p � 0.01; ***p � 0.001).
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versus second (p � 0.1, unpaired t test). Importantly, visual feed-
back of the cursor motion was withheld on all trials in these
post-adaptation testing blocks to prevent relearning during the
testing period.

We found that, by the end of the training block, subjects had
learned 27.3 � 2.7° (mean � SD) of the 30° VMR—a 91% com-
pensation of the imposed rotation when moving in the trained
direction. In fact, during the first 10 training trials, subjects rap-
idly adapted to 24.5° (82% compensation), and, during the fol-
lowing 110 trials, their adaptation gradually increased. In the
training workspace, we found local generalization around the
trained target direction as shown in Figure 2C. A single Gaussian
centered at the target direction with a width (�) of 31.2° closely
matched the shape of the subject-averaged generalization pattern
we observed in W1 (R 2 
 94.6%). If we allow the center of this
Gaussian to vary, the fit is only marginally improved (R 2 

96.3%), with � 
 30.7° and a center at 4.7°. The 4.7 � 3.5° center
(mean � SEM, based on bootstrap analysis of these data) is not
significantly different from 0°, the trained direction (p � 0.1).
These findings indicate local generalization of adaptation around
the trained target direction in W1, which is well characterized by
a simple Gaussian fit with a width of �31° and is in line with
previous results (Pine et al., 1996; Ghez et al., 2000; Krakauer et
al., 2000).

Single reference frame models cannot account for the internal
representation of motor memory
We also found local generalization in W2. However, this gener-
alization pattern did not resemble what would be predicted by
projecting the generalization patterns associated with purely ex-
trinsic (Fig. 2A) or intrinsic (Fig. 2B) representations of motor
memory onto W2 in I-E space, as shown Figure 2, D and E. Figure
2D shows a comparison between the generalization pattern in
W2 predicted by the extrinsic adaptation model and the one that
we observed experimentally. The extrinsic prediction (yellow
dashed line) does not match the data (red) terribly well (R 2 

67.2%) because the observed pattern of generalization appears to
be shifted away from the trained target direction. Analogously,
Figure 2E shows a comparison between the generalization pat-
tern in W2 predicted by the intrinsic adaptation model and the
one that we observed experimentally. Like the extrinsic predic-
tion, the intrinsic model prediction (blue dashed line) does not
match the data (red) well (R 2 
 47.4%). Inspection of Figure 2E
reveals that this mismatch occurs because the observed pattern of
generalization is not fully shifted toward the intrinsic representa-
tion of the trained target direction, which is centered at �45°
from the trained target direction. Note that the x-axis of Figure
2C-E represent extrinsic target direction (as do the x-axes of all
panels of Figs. 3 and 5 on which we present generalization data).
The poor correspondence between the generalization data in W2
and the predictions of either the extrinsic adaptation or intrinsic
adaptation models suggests that the adaptation we elicited is nei-
ther purely extrinsic nor purely intrinsic in nature.

Comparison of the generalization data in W1 and W2 (Fig. 2,
C vs D) reveals that the W2 generalization function is similar in
shape to that observed in W1 but shifted to the left. The model
comparisons above reveal that the shift is large enough to create a
mismatch between the data and the no-shift prediction of the
extrinsic representation model. However, although in the appro-
priate direction, this shift is not sufficiently large to create a good
match between the data and the �45° shift prediction of the
intrinsic representation model. Figure 2F shows an analysis of the
amount of shift we observed. We estimated the center of gener-

alization in each workspace by fitting a Gaussian function with
three free parameters (center location, amplitude, and vertical
offset) to each individual subject’s generalization data and then
averaging across subjects. As expected, the center locations in W1
were near zero (6.4 � 4.4°, mean � SEM). However, the gener-
alization functions in W2 were centered at �19.8 � 4.8°, corre-
sponding to a �28.2 � 5.6° shift. Note that our estimate of the
mean shift is slightly different than the shift between the mean
center locations because the fit to 1 of the 12 subjects in W2 was
not significant (R 2 
 29.9%, F(2,16) 
 3.41, p � 0.05), and these
data were thus excluded from the estimate of the W2 center loca-
tion and the mean shift (but not the W1 center location). Inter-
estingly, the mean shift is approximately halfway between the
�45° shift predicted by the intrinsic representation model and
the zero shift predicted by the extrinsic representation model and
is significantly different from both model predictions (p � 0.01
and p � 0.001, respectively). This suggests that VMR learning
may be represented in a way that depends approximately equally
on both intrinsic and extrinsic coordinates rather than on either
one alone.

Multi-reference frame models can account for the
generalization data from experiment 1
The partial generalization function shift observed in experiment
1 suggests that the VMR adaptation is generalized in a way that
depends on both intrinsic and extrinsic coordinates rather than
on extrinsic coordinates alone, as suggested previously (Ghez et
al., 2000; Krakauer et al., 2000). We examined two distinct ways
in which intrinsic and extrinsic representations might be com-
bined during VMR learning. One possibility, defined in Equation
3 and diagramed as the “independent intrinsic and extrinsic ad-
aptation model” in Figure 3A, is that adaptation occurs in parallel
in both coordinate frames (Hikosaka et al., 2002; Cohen et al.,
2005; Berniker and Kording, 2008; Berniker and Kording, 2011).
Here, intrinsic and extrinsic representations of the task indepen-
dently lead to motor adaptation in each of their respective coor-
dinate systems, and both types of adaptation would contribute in
an additive manner to the overall adaptation. This independent
adaptation scheme would predict some amount of intrinsic gen-
eralization and some amount of extrinsic generalization corre-
sponding to the “plus sign” appearance of the generalization
color map illustrated in Figure 3B. Note that this plus sign shape
corresponds to the locus of points that are near the trained target
location in either extrinsic or intrinsic coordinates.

We found that the independent adaptation model (Eq. 4) is
able to fit the generalization data from W2 remarkably well (R 2 

91.2%) with only three free parameters: the amplitudes of the
intrinsic and extrinsic contributions (kI and kE) and a vertical
offset. Note that the widths of the Gaussian functions for each
independent contribution were predetermined based on the gen-
eralization data from W1 (�E 
 �I 
 30.7°), and the center loca-
tions were set to 0° and �45° for the extrinsic and intrinsic
contributions, respectively, according to Equation 4.

We next compared the independent adaptation model to the
“composite I-E adaptation model,” defined in Equation 5 and
diagramed in Figure 3D, in which extrinsic and intrinsic repre-
sentations of the task combined into a single composite represen-
tation. Here, the generalization is a multidimensional Gaussian
function that is simultaneously local with respect to both intrinsic
and extrinsic coordinates, resulting in a hump-shaped general-
ization pattern (see Materials and Methods). We refer to this
model as high-dimensional because its generalization depends on
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a two-dimensional distance across I-E space, as shown in
Equation 5.

Figure 3E illustrates this model for equal values of sE and sI,
parameters that specify the widths of the extrinsic and intrinsic
generalization, respectively (see Materials and Methods). This
results in circular isogeneralization contours in the I-E direction
space. Unequal values of sE and sI would result in elliptical con-

tours for the local hump-shaped general-
ization pattern. This high-dimensional
combined-distance model corresponds
to a multidimensional Gaussian that is
mathematically equivalent to a represen-
tation in which extrinsic and intrinsic
generalization patterns are multiplica-
tively combined (Eq. 6). The multiplica-
tive combination dictated by this model is
a gain-field combination of intrinsic and
extrinsic coordinate representations (“gain”
referring to multiplication and “field” to
the space over which each representation
is defined). This is similar to the encoding
observed in parietal cortex in the com-
bined coding of eye position and retinal
location (Andersen and Mountcastle,
1983; Andersen et al., 1985; Buneo and
Andersen, 2006), in which the receptive
fields of neurons are multiplied together
to produce a planar gain field. Our model,
however, does not represent a planar
gain field because both the extrinsic and
intrinsic generalization functions are
nonlinear. The prevalence of gain-field
encoding in neural representations that
combine different sources of spatial in-
formation would be compatible with the
idea that motor memories that depend
on multiple spatial contexts are encoded
in the same way.

We found that the composite adapta-
tion model (Eq. 7) is, like the independent
adaptation model, able to fit the subject-
averaged generalization data from W2 re-
markably well (R 2 
 94.3 vs 91.2%) with
just three free parameters: the amplitude
(A) and center (�0

*) of the local adaptation
and a vertical offset. As with the indepen-
dent adaptation model, the width of the
Gaussian function for the diagonal slice
corresponding to W2 (� 
 30.7°) was pre-
determined based on the generalization
data from W1.

Because both multi-reference frame
models can explain the generalization pat-
tern we observed in W2 well, we cannot
distinguish between them using the ex-
periment 1 dataset. In fact, a paired t test
on the R 2 values from individual subject’s
data fits to both models yields p � 0.6.
Note, however, that both multi-reference
frame models fit the W2 data significantly
better than either of the single reference
frame models (p � 0.001 in all cases).
Thus, we cannot determine whether the

CNS adapts motor output based on an independent or a compos-
ite representation based on the data from experiment 1 alone.
However, a closer look at the generalization color maps in Figure
3, B and E, reveals that, although the predictions from both mod-
els are similar for workspaces near the main diagonal, moving
farther away would yield radically different predictions. The in-
dependent adaptation model predicts a unimodal generalization
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Figure 3. Comparison of two models for motor memory that combine intrinsic and extrinsic representations. A, Diagram of the
independent adaptation model. Two representations of the trained movement (intrinsic and extrinsic) adapt independently of
each other, and the overall adaptation is simply the sum of the two. B, Predictions from the independent adaptation model in the
same format as Figure 2, A and B. As depicted by the plus sign generalization pattern, the trained adaptation retains a non-zero
value along both the intrinsic and extrinsic axes. This is a result of the summation of the intrinsic and extrinsic generalization
patterns shown in Figure 2, A and B. C, According to the independent adaptation model, the generalization pattern in W2 (black)
should be equal to a weighted sum of intrinsic (blue) and extrinsic (orange) components each with a width identical to that
observed in W1. This model explains 91.2% of the variance in the W2 data. D, Diagram of the composite gain-field I-E adaptation
model. E, Predictions from the composite adaptation model in the same format as B. The generalization pattern has an “island”
shape, indicative of a decrease in adaptation away from the trained movement. This arises from a bivariate Gaussian function
centered at the origin. F, According to the composite model, the total adaptation (green) should be a single Gaussian with a width
equal to that observed in W1 but shifted and scaled. This model explains 94.3% of the variance in the W2 data.
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function when the peaks of the extrinsic and intrinsic represen-
tations are separated by less than �2�. However, in a workspace
in which the distance between the intrinsic and extrinsic repre-
sentations is increased, the independent adaptation model would
predict a bimodally shaped generalization function. In contrast,
the composite adaptation model predicts that the shape of the
generalization function would remain unimodal and maintain
the same width regardless of the distance between the intrinsic
and extrinsic reference frames. Thus, an experiment in which the
two workspaces are separated by substantially more than �2�
should allow us to distinguish between the independent adapta-
tion and joint adaptation models.

Generalization data from experiment 2 reveal a motor
memory representation that is a gain-field combination of
intrinsic and extrinsic coordinates
Because the data from experiment 1 can be explained by both the
independent adaptation and the composite adaptation models,
we conducted a second experiment to distinguish between them.
In this second experiment, we also trained adaptation in one
workspace and compared the pattern of generalization observed
there with the pattern observed in a second workspace. However,
we designed the experiment with a greater distance between the
two workspaces. As illustrated in the left and middle of Figure 4,
the training workspace (W1*) was positioned to the right of body
midline, corresponding to shoulder extension, whereas the test-
ing workspace (W2*; Fig. 4, right) was left of W1*, corresponding
to 90° of shoulder flexion with respect to W1*. Aside from the
workspace locations and the locations of the testing targets in
W2*, the protocol for experiment 2 was identical to that for
experiment 1.

Similarly to experiment 1, subjects learned the trained adap-
tation very well, displaying 28.3 � 0.7° (mean � SEM) of rotation
at asymptote during the training block (94% adaptation). The
generalization function we observed in W1* (Fig. 5A) was very
similar to what we found in the training workspace in experiment
1 (Fig. 2C), despite the difference in arm configurations (central
in experiment 1 vs right in experiment 2 with respect to the center
of the body). We found local generalization in W1* with a width
(�) of 32.3° and a center location of �0.3 � 2.7° relative to the
direction of the trained target based on fitting Gaussian functions
to the individual subject data. The mean data were fit extremely

well by a single Gaussian function and a vertical offset (R 2 

98.0%).

The 90° rotation of arm configurations in experiment 2 cre-
ates a �90° separation between the representation of the trained
target in extrinsic and intrinsic coordinates in W2* as illustrated
in the right of Figure 4. The center of generalization shifted from
W1* to W2* by 61.2 � 4.2° (mean � SEM). This corresponds to
a 68% shift toward a pure intrinsic representation, similar to the
63% shift observed in experiment 1. As in experiment 1, this shift
is intermediate between the pure extrinsic (0° or 0%) and pure
intrinsic (90° or 100%) model predictions but significantly dif-
ferent from both (p � 0.001 in both cases as shown in Fig. 4F).
Furthermore, 14 subjects (74%) of the 19 for whom we were able
to estimate the centers in both workspaces displayed generaliza-
tion pattern shifts that were within 15° of the mean shift (61.2°).
In contrast, only one subject (5%) displayed a shift within 15° of
0° (the extrinsically matched movement direction), and only
three subjects (16%) were within 15° of 90° (the intrinsically
matched movement direction). Thus, the shifts we observe from
individual subjects (Fig. 5C) are consistent with the idea that
individual subjects within the population display intermediate
I-E representations. These shifts are not consistent with the idea
that the intermediate representation we observe for the group-
averaged W2* data might arise from two separate populations of
subjects, one displaying extrinsic representations and one dis-
playing intrinsic representations.

Based on the value of � estimated from the W1* data, the
large 90° workspace separation we used in experiment 2 is 1.97
times greater than �2�, which should be large enough to
disambiguate between the independent and composite mod-
els. Correspondingly, the independent adaptation model pre-
dicts a bimodal generalization function in W2* with distinct
peaks centered near 0° (the trained target direction in extrinsic
coordinates) and �90° (the trained target direction in intrin-
sic coordinates), as illustrated in Figure 5, D and E. In contrast,
the composite adaptation model predicts a unimodal general-
ization function centered somewhere between 0° and �90°, as
illustrated in Figure 5, F and G.

The subject-averaged generalization data from W2* is shown
in Figure 5B. Here the shape of the generalization function is
unimodal with a peak approximately �60° away from the train-
ing direction. These data cannot be well explained by the inde-

Trained
cursor 

movement

Trained 
hand 

motion

30°

90°

Trained cursor 
movement in 

extrinsic space

Trained cursor 
movement in 

intrinsic space

90°
Trained cursor movement in both 

extrinsic and intrinsic space

Generalization of adaptation to untrained 
movement directions in W1*

Generalization of adaptation 
in workspace 2* (W2*)

Visuomotor rotation training 
in workspace 1* (W1*)

Figure 4. Experiment 2 diagram. Subjects adapted to a 30° rotation (left) before generalization was tested in 19 different movement directions in two distinct workspaces (middle and right) as
in experiment 1. Note that here the trained workspace (W1*) is the same as the novel workspace (W2) in experiment 1, and the novel workspace in experiment 2 (W2*) is separated from W1* by
�90° compared with the �45° separation in experiment 1.
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pendent adaptation model predicting bimodal generalization, as
shown in Figure 5E (R 2 
 68.3%). However, the generalization
data from W2* can be explained by the composite adaptation
model remarkably well as shown in Figure 5G (R 2 
 94.7%). This
indicates that the mean squared error for the gain-field model
(5.3% of the variance) is approximately sixfold smaller than for
the independent adaptation model (31.7% of the variance). Be-
cause the two models have the same number of parameters, we
compared them using Vuong’s closeness test (Vuong, 1989),
which reveals that the gain-field model explains the subject-

averaged data significantly better than the
independent model (p � 0.001). Further-
more, the R 2 value here for the indepen-
dent adaptation model is substantially
smaller than what we found for the same
model in experiment 1 (68.3 vs 91.2%;
note that this decrement in the R 2 value
corresponds to a threefold increment in
the mean squared error of the fit). In con-
trast, the R 2 value for the gain-field model
is remarkably similar to what we found in
experiment 1 (94.3 vs 94.7%). Moreover,
fitting the independent and the gain-field
adaptation models to individual subject
generalization function data yielded a bet-
ter fit for the gain-field model for 16 of the
20 subjects (p � 0.001, paired t test on the
AICc values for the model fits across
subjects).

It is important to note that, for both
the subject-averaged and individual sub-
ject model analyses discussed above, we
constrained the widths of the Gaussians to
be equal to the best-fit � from the W1*
fits. However, if we ignore the W1* data in
fitting the W2* with the independent ad-
aptation model, allowing �I and �E to vary
independently of the W1* � and each
other, effectively adding two additional
parameters to the independent adaptation
model, the ability of this model to explain
the W2 data improves, but only to R 2 

81.6%. If we compare this expanded inde-
pendent model (with five parameters and
R 2 
 81.7%) to the gain-field one (with
three parameters and R 2 
 94.7%), we
get �AICc � 0, an indication that the
gain-field model is still superior. Fur-
thermore, comparing the two model fits
using the Vuong test for non-nested mod-
els (Vuong, 1989) demonstrates that the
gain-field model is significantly better
(p � 10�6) than the independent model
with �I and �E free. This result makes
sense intuitively, because the mean squared
error for the gain-field model with three
parameters (5.3% of the variance) is al-
most 3.5 times smaller than the mean
squared error for the expanded indepen-
dent model with five parameters (18.3%
of the variance). Note that, although there
appears to be a small “bump” at �30° and
�15°, this feature is not predicted by ei-

ther model, and the difference between these data points and the
tail of the generalization (the average of the data from �90° to
�45°) is not statistically significant for either one of the points or
for the average of the two (paired t test, p � 0.05 in all cases),
indicating that it is most likely attributable to noise. These
findings demonstrate that the CNS effectively maintains a repre-
sentation of motor memory that is based on a gain-field combi-
nation of local intrinsic and extrinsic representations. This
gain-field combination produces a hump-shaped generalization
pattern across the two-dimensional I-E space that results in
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Figure 5. Results from the second experiment. A, B, Raw generalization data from experiment 2 in the same format as Figure
2C–E. The generalization data in W1* is well approximated (R 2 
 98.0%) by a Gaussian function centered at 2° with a width (�)
of 32.3°, similar to the W1 data from experiment 1. C, Generalization function (GF) centers in the same format as Figure 2 E. In W1*,
the center is at �0.3°, not significantly different from zero ( p � 0.2), whereas in W2*, the center is at 59.9°. The shift of the
generalization function from W1* to W2* is 61.2° on average (***p � 0.001). D, E, Predictions from the independent adaptation
model. Because the separation between W1* and W2* is greater that between W1 and W2, the model predicts a bimodal
generalization function with two distinct peaks at 0° and 90° (white dashed line in D). The sum of intrinsic (blue) and extrinsic
(yellow) components (black dashed line in E) is unable to capture the shape of the observed generalization pattern (R 2 
 68.3%).
Note the substantial contrast between the model fits to the data here and in the first experiment (Fig. 3C), despite an equal number
(2) of free parameters. F, G, Predictions from the composite gain-field adaptation model. Regardless of the separation between
W1* and W2*, the model predicts a unimodal generalization function (white dashed line in F ). The prediction (green dashed line
in G) from the composite model explains 94.7% of the variance in the data, very similar to the prediction of this model for the W2
data in experiment 1 (94.3% as shown in Fig. 3F ) with the same number of parameters (2) as before.
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shifted generalization functions in different workspaces, as illus-
trated in Figure 5, F and G.

Discussion
We studied the internal representation of VMR learning in an
attempt to better understand the coordinate system used by the
CNS for the planning of visually guided movement. We dissoci-
ated intrinsic and extrinsic movement representations by com-
paring the directional generalization of a learned motor
adaptation over an array of 19 movement directions and three
workspaces, amounting to 56 workspace locations in addition to
the training workspace. This allowed us new insight into how
intrinsic and extrinsic reference frames contribute to the internal
representation for motor memory. The first experiment, in which
the workspaces were separated by 45°, provided generalization
function data that clearly showed that the trained adaptation
did not transfer in either purely intrinsic or purely extrinsic co-
ordinates as illustrated in Figure 2. Instead, the data were inter-
mediate between intrinsic and extrinsic generalization patterns,
suggesting a hybrid internal representation. However, based on
these data, we could not distinguish between (1) a hybrid repre-
sentation composed of separate local intrinsic and extrinsic adap-
tive components that could learn and transfer independently as
has been assumed by several models of multi-reference frame
learning (Hikosaka et al., 2002; Cohen et al., 2005; Berniker and
Kording, 2008; Berniker and Kording, 2011) and (2) a hybrid
representation based on multiplicative gain-field combination of
local intrinsic and extrinsic coordinate representations that
would transfer depending on the combined distance across I-E
space as illustrated in Figures 3 and 5. The generalization data
from the second experiment, in which the workspace separation
was increased to 90°, provided convincing evidence for a com-
posite adaptation model based on multiplicative gain-field com-
bination of local intrinsic and extrinsic representations, ruling
out separate intrinsic and extrinsic representations for motor
adaptation. Although gain-field coding has been studied exten-
sively in the context of neural representations (Andersen et al.,
1985, 2004; Snyder et al., 1998b; Pouget and Snyder, 2000; Buneo
and Andersen, 2006; Pesaran et al., 2006; Chang et al., 2009), it
has generally been associated with an intermediate step in the
transformation between different coordinate frames for sensori-
motor integration (Andersen et al., 1985; Pouget and Snyder,
2000). Our results suggest that gain-field combinations of intrin-
sic and extrinsic coordinate representations may also act as basic
elements for storing motor memories. These memories are the
substrate for adaptive changes in motor output and are locally
tuned to the trained movement in both intrinsic and extrinsic
coordinates. Our findings suggest a connection between the for-
mation of motor memory and neural representations in PPC
(Andersen et al., 1985, 2004; Snyder et al., 1998b; Buneo and
Andersen, 2006; Chang et al., 2009) and M1 (Kalaska et al., 1989;
Kakei et al., 1999; Sergio et al., 2005; Pesaran et al., 2006; Kalaska,
2009).

Locally tuned gain fields for motor memory and their
computational implications
Recently, Yokoi et al. (2011) demonstrated a different way in
which a multiplicative gain field accounts for internal represen-
tations underlying motor memory. They did not dissociate in-
trinsic and extrinsic reference frames but were able to uncover a
different type of gain-field representation. In a force-field learn-
ing task with bimanual reaching arm movements, they found that
a learned action generalized to untrained actions based on the

movement directions of both arms. However, the memory for the
learned bimanual action did not comprise one component asso-
ciated with the motion of the right arm and another component
associated with the left. Instead, the amount of generalization was
well characterized by a gain-field combination of local tuning to
the movement directions of both arms. In other words, they dem-
onstrate that the motor memory associated with a complex
movement can be formed as a gain-field combination of its
individual parts. This complements our finding that the motor
memory associated with a movement is formed as gain-field
combination of different reference frames in which it can be
represented.

Importantly, this study used a dense sampling of the domi-
nant–nondominant arm space to visualize the gain-field encod-
ing across that space. Together, these findings suggest that the
representation of motor memories formed during adaptation can
be elucidated by dense sampling of generalization and is based on
a gain-field combination of local tuning to the relevant features of
the learned action. These “features” can reflect either different
reference frames for representing the learned action or different
physical subcomponents of that action or perhaps other task-
relevant variables.

If this is the case, we can, in a computational sense, represent
the memory associated with a learned action by a function in a
multidimensional feature space that defines how it generalizes
across arbitrary combinations of an arbitrary number of features.
If each of the individual locally generalizing features can be rep-
resented by a Gaussian function, the gain-field combination de-
scribing the overall generalization function will simply be a
multidimensional Gaussian over the feature space (Eq. 6). In two
dimensions, this corresponds to a generalization pattern resem-
bling the bivariate Gaussian local generalization function plotted
in Figures 3E and 5F. For a multidimensional Gaussian centered
at the trained action, the amount of generalization to any point in
this space corresponds to a dimension-weighted distance be-
tween the trained action and that point. The specific weighting is
given by the Mahalanobis distance, a measure that effectively
adds the normalized distances across different features, each nor-
malized based on the width of its generalization. This conception
provides a compact computational way to view how a memory
formed from multiplicative combination of local tuning to dif-
ferent features would generalize to untrained conditions: the
memory will simply generalize based on the similarity between
the trained and untrained conditions, when this similarity is
characterized by the Mahalanobis distance between these condi-
tions across feature space.

Neural substrates responsible for coordinate frame encoding
Although the neural substrate for the visuomotor adaptation that
we studied is unclear, there is evidence suggesting that cerebellum
(Morton and Bastian, 2004; Rabe et al., 2009; Galea et al., 2011;
Donchin et al., 2012), PPC (Buneo and Andersen, 2006; Tanaka
et al., 2009), and M1 (Galea et al., 2011) are involved. Gain-field
encoding has been studied extensively in PPC as a way to com-
bine coordinate representations. In area 7a of PPC, the spatial
location of an object is represented with respect to the eyes and
the external world in an extrinsic coordinate system, independent
of limb posture and joint configurations (Andersen et al., 1985).
However, other parts of PPC, for example area 5a, maintain ob-
ject representation in body-referenced (intrinsic) coordinates
(Snyder et al., 1998a,b) as well. Recently, a mixed I-E object rep-
resentation was found in the superficial layers of area 5 of PPC
(Buneo and Andersen, 2006), indicating that, within a single neu-
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ron, multiple reference frames may be used to simultaneously
represent a single object or action. However, it should be noted
that, whereas eye-centered and hand-centered representations
have clearly been dissociated, the limited workspaces used in
these studies make it difficult to distinguish a Cartesian reference
frame centered at the hand from a fully intrinsic coordinate sys-
tem based on joint angles or muscle actions.

In contrast, several studies in M1 have rigorously dissociated
Cartesian and fully intrinsic coordinates. Although there is still a
debate about whether M1 neurons encode movement direction
primarily in intrinsic or extrinsic coordinates (Hatsopoulos,
2005; Kalaska, 2009), studies have generally found that most cells
display activity that is intermediate between fully intrinsic and
fully extrinsic representations of movement direction (Scott and
Kalaska, 1997; Kakei et al., 1999; Wu and Hatsopoulos, 2006;
Kalaska, 2009). However, to date, studies of neural encoding in
M1 have not investigated a gain-field combination of intrinsic
and extrinsic coordinates. A key feature of our current work and
the Yokoi et al. (2011) study was the dense sampling of the gen-
eralization function across combinations of two different fea-
tures. Intriguingly, several studies of neural activity in M1 that
have used analogously dense sampling across combinations of
different features appear to provide evidence for gain-field en-
coding across those features. One study (Kalaska et al., 1989)
looked at tuning in M1 as a function of both movement direction
and external load direction. The two-dimensional tuning curves
were local, like the generalization functions we observe (Kalaska
et al., 1989, their Fig. 8). Although the tuning was modeled as
resulting from additive independent contributions of movement
and load direction, inspection of parallel slices through their data
(Kalaska et al., 1989, their Fig. 13) reveal that load direction
clearly modulates the depth of movement direction tuning,
which can be explained by a multiplicative, but not additive,
combination of features. A second study (Sergio and Kalaska,
2003, their Fig. 7) reveals that the depth of the tuning to external
force direction is systematically modulated by arm posture, and
other studies (Kakei et al., 1999, their Fig. 3; Wu and Hatsopou-
los, 2006, their Fig. 4) have shown that posture can strongly mod-
ulate the depth of tuning to movement direction, consistent with
the prediction of gain-field tuning across these features.

Previous work examining the coordinate system for
motor adaptation
The idea of using different arm postures to investigate the
coordinate system used for the adaptive control of movement
is not new (Shadmehr and Mussa-Ivaldi, 1994; Kakei et al.,
1999; Ghez et al., 2000; Krakauer et al., 2000; Shadmehr and
Moussavi, 2000; Baraduc and Wolpert, 2002; Malfait et al.,
2002; Ghez et al., 2007). Krakauer et al. (2000) investigated
this issue for VMR learning, as in this study, by training a
rotation in a single movement direction in one arm configu-
ration and testing the transfer of adaptation to a single extrin-
sically matched movement in a different arm configuration
(45° away). They found almost complete transfer of the
learned rotation to the extrinsically matched movement in the
novel workspace and concluded that VMRs are learned in
extrinsic coordinates. However, their experiment is equivalent
to sampling only the 0° movement direction from the W2
generalization function shown in Figure 2 D, and as our data
from experiment 1 show (Fig. 2), generalization intermediate
between fully intrinsic and fully extrinsic coordinates can lead
to the near complete (86%) extrinsically matched transfer that
they observed alongside near complete (91%) intrinsically

matched transfer. Thus, our findings are consistent with their
experimental results, although we demonstrate that the fully
extrinsic transfer they suggested is not present. This under-
scores the importance of measuring the entire generalization
pattern in a second workspace if the coordinate system for the
internal representation of motor memory is to be determined.

In view of our findings, similar questions arise about the
force-field adaptation literature. The consensus is that movement
dynamics are learned in purely intrinsic coordinates (Shadmehr
and Mussa-Ivaldi, 1994; Shadmehr and Moussavi, 2000; Malfait
et al., 2002). However, a closer look reveals that the evidence may
not be definitive. In an elegant study, Malfait et al. (2002) looked
at the transfer of force-field learning from one direction in one
workspace to two directions in a second workspace. The two
directions in the second workspace were aligned with the intrin-
sic and extrinsic representations of the trained movement in the
first workspace, equivalent to sampling the 0° and 90° directions
from the W2* generalization function shown in Figure 5B. They
found nearly complete transfer to the intrinsically aligned move-
ment direction and minimal transfer to the extrinsically aligned
movement direction and concluded that internal representations
of physical dynamics were coded in intrinsic coordinates. How-
ever, the authors did not consider the possibility of an interme-
diate reference frame for which the maximum transfer might be
to an intermediate movement direction.

A pair of previous studies also looked at the transfer of force-
field adaptation across workspaces to determine the coordinate
system for motor memory of physical dynamics (Shadmehr and
Mussa-Ivaldi, 1994; Shadmehr and Moussavi, 2000). However,
unlike Krakauer et al. (2000) and Malfait et al. (2002), multiple
movement directions were examined in the second workspace,
like in the current study. However, adaptation was also trained in
multiple directions in the first workspace, preventing a straight-
forward analysis of the specific effect of training any particular
movement direction in W1 across movement directions in W2.
In other words, the generalization in W2 associated with each
trained movement in W1 could not be directly determined. In-
stead, the authors studied the differential effects of force fields
that would be specifically compatible with either intrinsic or ex-
trinsic transfer. The results showed large, but incomplete, trans-
fer of adaptation to an intrinsically matched environment, with
intrinsic transfer clearly stronger than extrinsically matched
transfer. Although the authors concluded that the adaptation was
represented in intrinsic coordinates, their results are again con-
sistent with a gain-field combination of intrinsic and extrinsic
frames, in line with our findings for VMR. Moreover, inspection
of our results (Figs. 2F and 5C) reveals somewhat greater intrinsic
than extrinsic contributions to the motor memory, in line with
the finding of predominantly intrinsic transfer for learning phys-
ical dynamics. Together with the neurophysiologic evidence of
mixed coordinate representations for reaching arm movements
(Scott and Kalaska, 1997; Kakei et al., 1999, 2001; Buneo and
Andersen, 2006; Kalaska, 2009), our findings suggest that a com-
posite I-E coordinate system, resulting from a gain-field combi-
nation of intrinsic and extrinsic reference frames, may underlie
the motor memories for both internal models of dynamics and
internal representations for trajectory planning.
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