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Objective—To investigate the relationship between plasma levels of small dense low-density

lipoprotein cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a

prospective study among Atherosclerosis Risk in Communities (ARIC) study participants.

Approach and Results—Plasma sdLDL-C was measured in 11,419 men and women of the

biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model

was used to examine the relationship between sdLDL-C, vascular risk factors, and risk for CHD

events (n=1,158) over a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated

with an atherogenic lipid profile and were higher in diabetics than nondiabetics (49.6 vs. 42.3

mg/dL, p<0.0001). In a model that included established risk factors, sdLDL-C was associated with

incident CHD with a hazard ratio (HR) of 1.51 (95%CI: 1.21–1.88) for the highest versus the

lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based

on their LDL-C levels, sdLDL-C predicted risk for incident CHD (HR 1.61; 95% CI 1.04–2.49).

Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C

levels. These loci were in or close to genes previously associated with risk for CHD. We

discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with

sdLDL-C and other lipid factors.

Conclusions—sdLDL-C was associated with incident CHD in ARIC study participants. The

novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide

new insights into the role of this gene in lipid metabolism.
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Low-density lipoprotein cholesterol (LDL-C) is considered one of the most important risk

factors for cardiovascular disease and remains the primary target for current cardiovascular

risk reduction strategies.1,2 However many individuals with LDL-C within the normal range

still develop cardiovascular disease.3,4 LDL particles are a heterogeneous population,5 and it

has long been hypothesized that a subfraction of LDL, particularly small dense LDL

(sdLDL), possesses increased atherogenic potential and thus contributes to this observation.

A number of mechanisms have been proposed to explain the enhanced atherogenicity of

sdLDL,6–10 including 1) a lower affinity for the LDL receptor, 2) facilitated entry into the

arterial wall, 3) greater arterial retention due to increased binding to proteoglycans, and 4)

greater susceptibility to oxidation. Since sdLDL particles are smaller and contain less

cholesterol, increased levels of sdLDL also represent an increased number of atherogenic

particles, which may not be reflected by the levels of LDL-C.

Two of the earliest and most widely used methods for LDL classification involved density

and size determinations based upon ultracentrifugal and/or nondenaturing gradient density

gel electrophoresis procedures. These resulted in the division of LDL particles somewhat

arbitrarily into two categories for clinical assessment: sdLDL and large buoyant LDL

(lbLDL). These also led to the development of a two phenotype classification system, with

phenotype A (or pattern A) characterized as individuals with a predominance of lbLDL

particles and phenotype B (or pattern B) as individuals with a predominance of sdLDL

particles.11 This classification schema has been widely used, and pattern B has been
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recognized as a risk marker for cardiovascular disease. More recently, the efficacy of

nuclear magnetic resonance methodology to determine both particle numbers and sizes of

various lipoprotein fractions, including LDL, has been demonstrated.12

The distribution of LDL subfractions is determined by both genetic and environmental

factors.13,14 Furthermore, the concentration of sdLDL is highly correlated with triglyceride

level and is increased in individuals with diabetes or the metabolic syndrome.15 Therefore, it

is plausible that genetic variants that affect circulating levels of sdLDL-C may also influence

other lipid traits (e.g. triglycerides and HDL-C) and may aid in the identification of genes

involved in the causal pathway linking atherogenic dyslipidemia characterized by sdLDL-C

and CHD.

sdLDL has been found to be associated with increased risk for cardiovascular disease in

cross-sectional studies16–18 as well as prospective observational studies.19–21 However, in

most of these studies, sdLDL did not remain an independent risk predictor when adjusted for

other lipid risk factor traits. Until recently, the methods available for the measurement of

sdLDL were generally limited to nonquantitative, laborious, and/or highly complex

techniques and therefore not readily adaptable to a large number of samples in a routine

clinical laboratory environment. Recently, Ito and coworkers developed a simple

homogeneous assay adaptable to autoanalyzers for the quantification of sdLDL-C.22 Thus

far, few epidemiological studies have examined whether the cholesterol content of sdLDL

can predict future cardiovascular events. In the present study, we measured sdLDL-C in

11,419 men and women of the Atherosclerosis Risk in Communities (ARIC) study. These

participants were followed over a period of 11 years during which the incidence of coronary

heart disease (CHD) was measured. The purpose of this study was to evaluate whether

sdLDL-C is a better predictor of risk for CHD than LDL-C and other traditional or

nontraditional cardiovascular risk factors. To better understand the genetic determinants of

sdLDL-C and lbLDL-C, we investigated the association of both sdLDL-C and lbLDL-C

levels with genetic markers spanning the genome.

Materials and methods

Materials and Methods are available in the online-only Data Supplement.

Results

Baseline Characteristics

Key baseline (visit 4) demographics of the 11,419 ARIC participants are described in Table

1. The mean age of the study cohort was 62.8 years; 78% of study participants were

Caucasian, and 56% were female. Of the study participants, 58% had a history of smoking

cigarettes; 16.9% had diabetes mellitus, and 44.6% were classified with metabolic syndrome

according to Adult Treatment Panel III criteria.23 Prevalent CHD was present in 972

individuals at the baseline visit, and these individuals were excluded from analyses for

incident events. In the remaining 10,225 individuals (excluding 222 who had missing data

on incident CHD), incident CHD developed in 1158 participants over an average of 11 years

of follow-up. The mean plasma sdLDL-C level was 43.5 mg/dL, and the mean sdLDL-C/
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LDL-C ratio was 0.35. Supplemental Table I (available online at http://atvb.ahajournals.org)

shows the race- and gender-specific plasma lipid levels. Mean sdLDL-C levels were higher

in Caucasians than African Americans and in men than women, whereas LDL-C was

slightly higher in women than men but was not different between races. The proportion of

LDL-C which was sdLDL-C was higher in Caucasians than African Americans and in men

than women. Total cholesterol and high-density lipoprotein cholesterol (HDL-C) levels were

higher in women than men, while triglyceride levels were higher in Caucasians than African

Americans.

Association of sdLDL-C with Cardiovascular Risk Factors

Table 2 shows the means or proportions of baseline traditional risk factors and other

characteristics by sdLDL-C quartiles. Generally, individuals with sdLDL-C levels in the

highest quartile had proatherogenic lipid profiles, were more likely to have diabetes,

hypertension, and metabolic syndrome, and had higher body mass index (BMI) and plasma

high-sensitivity C-reactive protein (hs-CRP) levels. Statin use was higher in those

individuals with sdLDL-C levels in the 3rd and 4th quartile. sdLDL-C levels were not

associated with smoking status.

The correlation between sdLDL-C levels and various traditional and nontraditional

cardiovascular risk factors are shown in Table 3. Strong positive correlations with sdLDL-C

(|r|>0.50) were found for the lipid risk factors non-HDL-C, apolipoprotein (apo) B, LDL-C,

total cholesterol, and log triglycerides. Circulating levels of lipoprotein-associated

phospholipase A2 (Lp-PLA2) activity and lactate showed moderate positive correlations and

HDL-C showed a moderate negative correlation with sdLDL-C (0.25<|r|<0.50). Weaker

correlations with sdLDL-C were found for fasting plasma glucose, apo AI, lbLDL-C, and

log hs-CRP. High-sensitivity cardiac troponin T was not significantly correlated with

sdLDL-C.

sdLDL-C Levels and Incident CHD Events

The cumulative incidence curves for CHD risk by sdLDL-C and lbLDL-C quartiles,

adjusted by age, race, and gender, are shown in Figure 1. The incidence of CHD events

increased proportionately over the follow-up years for participants in each consecutive

quartile of sdLDL-C. In contrast, lbLDL-C did not exhibit a concentration-dependent

relationship with future incident CHD events. sdLDL-C and LDL-C levels were moderately

correlated (Supplemental Figure IA; r=0.54; available online at http://atvb.ahajournals.org)

but often discordant. Supplemental Figure IB (available online at http://atvb.ahajournals.org)

displays the prevalence and magnitude of this discordance. We examined concordant and

discordant subgroups separately using a similar analysis approach as previously described

by Otvos et al.24 We defined discordance as a difference of >24 percentile units (points

outside the dashed lines in Supplemental Figure IB; available online at http://

atvb.ahajournals.org). Supplemental Figure II (available online at http://

atvb.ahajournals.org) shows the cumulative incidence curves for CHD risk for the subgroup

with sdLDL-C>LDL-C discordance compared to the concordant and the discordant sdLDL-

C<LDL-C subgroups. The sdLDL-C>LDL-C discordant subgroup showed the highest CHD

risk compared to the concordant and discordant sdLDL-C<LDL-C subgroups.
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We used proportional hazards regression analyses to investigate the association of incident

CHD with baseline levels of sdLDL-C and LDL-C modeled in quartiles, using quartile 1 as

the referent group (Table 4). In the basic model adjusted for age, race, and gender (model 1),

individuals with sdLDL-C levels in the highest quartile had a 2-fold higher risk for incident

CHD compared to those in the lowest quartile (hazard ratio [HR] 2.00; 95% confidence

interval [CI] 1.69–2.37). After additional adjustment for smoking, BMI, hypertension, HDL-

C, log triglycerides, lipid-lowering medications, diabetes, diabetes medications, and log hs-

CRP (model 2), risk for incident CHD was attenuated but remained significant (HR 1.51;

95% CI 1.21–1.88). sdLDL-C was not significantly associated with risk for incident CHD

following further adjustment for other lipid risk factors, such as LDL-C, apo B, and total

cholesterol. This may be due in part to over adjustment of the multivariable model and is not

surprising given the strong correlations of sdLDL-C with these lipid risk factors. In

comparison, individuals with LDL-C levels in the highest quartile had a 56% and 68%

higher risk for incident CHD (HR 1.56; 95% CI 1.32–1.83 and HR 1.68; 95% CI 1.42–1.99)

in the basic model (model 1) and more fully adjusted model (model 2), respectively.

We further investigated the association of sdLDL-C with risk for incident CHD in

participants stratified by LDL-C risk categories (i.e., LDL-C <100 mg/dL and LDL-C ≥100

mg/dL). In these analyses, we used a multivariable model (adjusting for age, gender, race,

ever smoking, BMI, hypertension, diabetes, diabetes medication, and log hs-CRP), with

quartile 1 for sdLDL-C in the LDL-C <100 mg/dL risk category as the referent group. Even

in individuals with LDL-C levels <100 mg/dL, sdLDL-C was predictive of CHD risk across

increasing sdLDL-C quartiles (Figure 2). Participants with LDL-C <100 mg/dL and sdLDL-

C levels in the 4th quartile had a 61% increase in risk for incident CHD (HR 1.61; 95% CI

1.04–2.49) compared with individuals with sdLDL-C levels in the 1st quartile. In

comparison, participants with LDL-C ≥100 mg/dL and sdLDL-C levels in the 4th quartile

had an 86% increase in risk for incident CHD (HR 1.86; 95% CI 1.48–2.33) compared with

the same referent group.

In additional analyses, we examined the effects on CHD risk of sdLDL-C discordance

among ARIC participants with low LDL-C (<100 mg/dL; <25th percentile) or equivalently

low sdLDL-C (<27.8 mg/dL; <25th percentile) (Figure 3). The cumulative incidence of CHD

events was higher among individuals with low LDL-C but discordantly higher sdLDL-C

(10.9%) compared to individuals with low sdLDL-C but discordantly higher LDL-C (7.9%).

Not surprisingly, the cumulative incidence of CHD events was highest among individuals

with concordantly higher levels of LDL-C and sdLDL-C (12.7%) and lowest among

individuals with concordantly lower levels of LDL-C and sdLDL-C (7.6%).

Genome-Wide Association Study of sdLDL-C

We performed genome-wide association study (GWAS) analyses of sdLDL-C and Table 5

summarizes our primary findings. In total, 127 single-nucleotide polymorphisms (SNPs)

were significantly associated with sdLDL-C (p<5×10−8). These SNPs clustered at 8 different

loci on chromosomes 1, 2, 7, 8, 11, and 19 and were located within 14 different genes (or

gene clusters). With the exception of PCSK7, genetic variants within all of these genes have
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previously been found to be related to pathways involved in lipid metabolism and vascular

inflammation (www.genome.gov).

Association of PCSK7 SNP rs508487 Genotype with Circulating Lipids and CHD

A novel finding from the current GWAS analysis was the significant association of sdLDL-

C with SNP rs508487 (at locus 11q23-q24) located in the PCSK7 gene. We investigated the

effect of rs508487 genotype on circulating lipid levels (Table 6). Each copy of the minor

allele at this SNP raised sdLDL-C by ~4 mg/dL and triglycerides by ~20 mg/dL. In contrast,

each copy of the minor allele lowered lbLDL-C by ~3 mg/dL; rs508487 genotype had no

significant effect on circulating LDL-C levels. Interestingly, 2 copies of the minor allele

increased HDL-C by ~5 mg/dL and total cholesterol by ~14 mg/dL.

Given that the PCSK7 variant (rs508487) is located in the chromosome 11 region harboring

the APOA5-APOA4-APOC3-APOA1 gene cluster, we investigated whether the novel

association result with PCSK7 is due to linkage disequilibrium with previously reported

variants in this cluster, especially previously reported functional variants in APOA5. One

variant, rs662799 (APOA5 T-1131C) was in significant linkage disequilibrium with

rs508487 (R2=0.53). We repeated the association analysis between PCSK7 rs508487 and

sdLDL-C in 6,069 individuals homozygous for the wild type allele at APOA5 rs662799, and

the results were attenuated a bit but still nominally statistically significant (p=0.0027).

We investigated the relationship between PCSK7 SNP rs508487 genotype and CHD in the

ARIC study and did not observe a significant association. However, the power for this

particular analysis was limited due to the fact that the number of ARIC CHD cases with one

or two minor alleles at this SNP was low. Therefore, we examined the association of

rs508487 with 40,260 CHD cases from the CARDIoGRAM study and found that rs508487

was significantly associated with CHD (Odds Ratio=1.13; 95% confidence interval, 1.06–

1.21, P=0.00017).

We next analyzed rare variants on the Illumina exome chip designated as nonsynonymous,

splicing, or stop gain in the PCSK7 gene for association with sdLDL-C. We found a total of

7 nonsynonymous PCSK7 variants among Caucasian ARIC participants, resulting in amino

acid substitutions in the wild type PCSK7 protein. Since these variants had minor allele

frequencies below 1%, we analyzed them collectively for their effect on sdLDL-C.

Individuals who were carriers of any of the rare PCSK7 variants had a significant increase in

circulating levels of sdLDL-C (~ 7.5 mg/dL; P=0.012) and triglycerides (ln(TG) ~0.145;

P=0.043) compared to non-carriers (Table 7).

Discussion

In the current study, we investigated the relationship between plasma levels of sdLDL-C and

risk of incident CHD in the predominantly biracial ARIC study cohort using a newly

developed automated homogeneous sdLDL-C assay. Elevated plasma sdLDL-C levels were

associated with increased risk of incident CHD in a multivariable model (hazard ratio (HR)

1.51; 95%CI: 1.21–1.88) and even in individuals considered to be at low cardiovascular risk

based on their LDL-C levels, sd-LDL-C predicted risk for incident CHD (HR 1.61; 95% CI
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1.04–2.49). Using genome-wide association (GWA) analyses, we discovered one novel

locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C levels

and other lipid traits. Subsequent examination in the CARDIoGRAM Study showed a

significant association of the PCSK7 SNP rs508487 with CHD.

sdLDL-C and Risk for Incident CHD

Among ARIC participants, the mean baseline plasma sdLDL-C level was 43.5 mg/dL,

which represented on average 35% of the total LDL-C concentration. sdLDL-C and sdLDL-

C/LDL-C ratio were higher in Caucasians than African -Americans and higher in men than

women. Our findings related to circulating sdLDL-C levels seem in general agreement with

a report from the Framingham Offspring Study, which showed that men had higher sdLDL-

C levels and a higher percentage of LDL-C as sdLDL-C compared to women.25 Although

we found higher mean sdLDL-C and sdLDL-C/LDL-C ratio overall than those reported in

the Framingham Offspring Study, these differences may be in part due to differences in

study populations (e.g., the ARIC cohort has a higher prevalence of obesity and metabolic

syndrome than the Framingham Offspring Study) and sdLDL-C assay methodologies.

Plasma levels of sdLDL-C were adversely associated with cardiovascular lipid risk factors, a

finding consistent with previous reports showing a correlation of sdLDL with an atherogenic

lipid profile. We also found significant correlations between sdLDL-C and nonlipid risk

factors, such as fasting glucose and lactate levels. Even though sdLDL-C was associated

with diabetes and metabolic syndrome in previous studies, we report a remarkable increase

in prevalence of metabolic syndrome among individuals with sdLDL-C levels in the highest

quartile (73%) compared with those in the lowest quartile (23%). sdLDL-C was also

correlated with inflammatory markers such as Lp-PLA2 activity and hs-CRP.

Over the 11-year follow-up period of this study, 1158 (11.3%) participants developed CHD.

The cumulative incidence curves clearly illustrate the direct relation between sdLDL-C

levels and CHD risk, whereas we did not find a similar relation between lbLDL-C and CHD.

These results suggest that the sdLDL subfraction is a major contributor to the risk for

incident CHD that is associated with LDL-C. Circulating levels of sdLDL-C were

significantly associated with increased risk for CHD in a model adjusted for age, sex, and

race and in a more fully adjusted model that also included smoking, BMI, hypertension,

HDL-C, triglycerides, lipid-lowering medications, diabetes, diabetes medications, and hs-

CRP. However, sdLDL-C was not an independent predictor of incident CHD when we

further adjusted for other lipid risk factors, such as LDL-C, apo B, and total cholesterol,

which is not surprising given the strong correlations of sdLDL-C with these other lipid risk

factors, and our results are in agreement with previous studies reporting that sdLDL was not

an independent predictor of cardiovascular disease.19–21 Interestingly, sdLDL-C showed

predictive power for CHD risk even in individuals with optimal LDL-C levels as defined in

the current guidelines (<100 mg/dL).23 Several investigators have emphasized that the

number of particles as measured by nuclear magnetic resonance is more important for

assessment of cardiovascular risk than LDL subclass, LDL particle size, or LDL-C

concentration.26,27 Since sdLDL particles contain less cholesterol than lbLDL particles,

there are more sdLDL particles than lbLDL particles at a given LDL-C concentration.
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Whether the total number of particles or the cholesterol payload per particle is more

important to cardiovascular risk remains a topic of discussion. However, it is important to

note that the particle number theory does not take into account the accumulating evidence

pointing to different atherogenic properties of LDL subclasses. A limitation of this study is

the fact that we did not have particle number information available and thus, we were not

able to address this question specifically.

Genetics of sdLDL-C

GWAS analysis identified a large number of SNPs, clustered at 8 different loci on

chromosomes 1, 2, 7, 8, 11 and 19 that were significantly associated with sdLDL-C. With

the exception of PCSK7, genetic variants located in all the genes associated with sdLDL-C

levels have been reported previously in GWAS studies of blood lipid levels.28 Our GWAS

findings are in general agreement with an earlier report by Chasman and coworkers who

employed a comprehensive GWAS analysis to identify largely similar loci that affect the

nuclear magnetic resonance–based measures of concentration and size of LDL, HDL and

VLDL in women.29 Although the study by Chasman et al did not find a significant

association with LDL particle size or concentration at the PCSK7 locus, this apparent

discrepancy may be due to notable differences between the two studies, such as differences

in methodologies to measure lipoprotein fractions, genotyping methods and study

populations. Indeed, a recent report from the Multi-Ethnic Study of Atherosclerosis (MESA)

compared the identical automated assay of sdLDL-C as was used in our study to nuclear

magnetic resonance-derived small LDL concentrations with regards to risk prediction for

incident CHD.30 The authors showed that the new automated assay of sdLDL-C identified

risk of CHD whereas the nuclear magnetic resonance-derived small LDL concentrations did

not convey a significant risk of CHD in the MESA cohort. Therefore, if these two different

methodologies show different associations with cardiovascular risk it is plausible that they

may also lead to different GWAS findings.

Genetic variants within a number of the genes associated with sdLDL-C in our study have

previously been found to be associated with increased risk for cardiovascular disease in

meta-analyses of GWA studies.31,32 SNP rs4420638, which is located in the APOE-APOC1-

APOC4-APOC2 gene cluster, was also associated with Lp-PLA2 activity and CHD in a

meta-analysis of GWA studies from 5 community-based studies.33 In addition, we have

previously shown an association of the SNP rs780094 in GCKR with metabolic syndrome

prevalence and incident diabetes in the ARIC study.34 rs780094 was also significantly

associated with sdLDL-C (p=4.08×10−12) in our current study.

Our findings have important implications in light of recent observations from mendelian

randomization studies investigating genetic determinants of HDL-C levels and risk for

incident CHD. Unlike data from human mendelian diseases, which support a causal role for

LDL-C in risk for CHD,35,36, evidence for a causal role of HDL-C from mendelian

randomization studies is inconsistent and complicated by the fact that most SNPs associated

with HDL-C levels affect multiple lipid traits. Voight and coworkers recently showed that a

genetic risk score consisting of 14 SNPs exclusively associated with HDL-C was not

associated with risk for myocardial infarction, in contrast to a genetic risk score for LDL-
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C.37 These investigators had previously shown that a number of SNPs associated with HDL-

C were also associated with other lipid traits such as triglycerides and LDL-C.38 The SNPs

associated with HDL-C that were most strongly associated with increased risk for

myocardial infarction and that influenced other lipid traits were located in or near the

APOA5-APOA4-APOC3-APOA1, TRIB1, and LPL genes or gene clusters. In the current

study, we showed that these genes are also associated with sdLDL-C or sdLDL-C/LDL-C

ratio (see Supplemental Table II [available online at http://atvb.ahajournals.org]).

Association of PCSK7 SNP-rs508487 Genotype with Circulating Lipids

A novel finding from the current GWAS analysis is the significant association of sdLDL-C

with SNP rs508487 (at locus 11q23-q24), located in the PCSK7 gene. Investigation of the

effect of rs508487 genotype on circulating lipid levels showed that each copy of the minor

allele at this SNP raised sdLDL-C by ~4 mg/dL. It is important to note that genetic variation

at the PCSK7 locus was not associated with LDL-C levels in our study. Since LDL-C is a

more commonly used lipid measurement, it is plausible that genetic variations in the PCSK7

gene have not been associated with circulating lipids in previous GWAS studies.

PCSK7 encodes subtilisin-like/kexin proprotein convertase type 7 (PCSK7), a calcium-

dependent serine endoprotease. PCSK7 has previously been implicated as a mediator of

adipogenesis39 and in the processing of VEGF-D, a critical step for binding of the

angiogenic receptor VEGFR-2.40 Furthermore, recent data show that internalization of

PCSK7 from the plasma membrane is mediated by clathrin-coated vesicles,41 which are also

implicated in the internalization of other cellular receptors such as the LDL receptor and

various scavenger receptors. Although the physiologic role of PCSK7 is not clearly

understood, it is plausible that PCSK7 could be involved in the processing of LDL and/or

scavenger receptors, thereby modulating circulating lipid levels. Alternatively, recent studies

suggest a potential role of protein convertases, including PCSK7, in lipid metabolism

through proteolytic activation of angiopoietins and proteolytic inactivation of lipases.42,43 In

contrast to PCSK9, another member of the proprotein convertase family, to our knowledge

PCSK7 has not been previously associated with cardiovascular lipid risk factors in other

GWA studies. However, we should be cautious in the interpretation of our findings

regarding the association of PCSK7 genotype with circulating lipids. A limitation of our

study is that we did not measure protein or mRNA levels of PCSK7. Furthermore, the

PCSK7 SNP rs508487 is in close proximity to the APOA5-APOA4-APOC3-APOA1 gene

cluster, which has also been shown to affect circulating triglyceride levels. However, our

exome chip data show that rare variants in the PCSK7 gene, which lead to amino acid

substitutions in the PCSK7 protein, are associated with sdLDL-C and other lipid traits.

Additional in vitro or animal studies using transgenic or PCSK7-knockout mouse models are

needed to investigate the potential role of PCSK7 in lipid metabolism. Our findings also

highlight the important issue of pleiotropy as PCSK7 was associated with circulating levels

of sdLDL-C, triglycerides and HDL-C.
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Conclusions

In summary, our results showed that sdLDL-C was highly correlated with an atherogenic

lipid profile and, in contrast to lbLDL-C, predicted future CHD events in ARIC participants.

Furthermore, sdLDL-C predicted risk for incident CHD even in individuals who would be

considered at low cardiovascular risk based on their LDL-C level. This new homogenous

sdLDL-C assay could be readily implemented in most routine clinical chemistry

laboratories, provided that its clinical value can be confirmed in future studies. GWAS

analysis identified significant associations of sdLDL-C with genetic variants in 14 different

genes, all but 1 of which have been previously linked to cardiovascular disease risk. Our

GWAS findings, together with findings from previous studies showing genetic variants in

the same genes associated with other lipid traits, highlight the importance of pleiotropy in

the development of cardiovascular disease. The novel finding of a significant association of

sdLDL-C with genetic variants in PCSK7, a member of the subtilisin-like/kexin proprotein

convertase family, provide new insights into the role of this gene in lipid metabolism.
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Significance

Low-density lipoprotein cholesterol (LDL-C) is considered one of the most important

risk factors for cardiovascular disease and remains the primary target for current

cardiovascular risk reduction strategies. LDL particles are a heterogeneous population,

and it has long been hypothesized that a subfraction of LDL, small dense LDL (sdLDL),

possesses atherogenic potential. In the current study, we investigated the relationship

between plasma levels of sdLDL-C and risk of incident CHD in the biracial ARIC study

cohort. Elevated plasma sdLDL-C levels were associated with increased risk of incident

CHD, even in individuals considered to be at low cardiovascular risk based on their

LDL-C levels. Using genome-wide association (GWA) analyses, we discovered one

novel locus, PCSK7, for which genetic variation was significantly associated with

sdLDL-C levels and other lipid traits. Together these findings provide new insights into

the role of the PCSK7 gene in lipid metabolism and risk of cardiovascular disease.
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Figure 1.
Cumulative incidence curves for risk of CHD by sdLDL-C and lbLDL-C quartiles, adjusted for age, race, and gender.
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Figure 2.
Adjusted hazard ratios for incident CHD by sdLDL-C quartiles stratified by LDL-C risk categories, adjusted for age, sex, and

race, smoking, BMI, hypertension, diabetes, diabetes medications, and log hs-CRP.
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Figure 3.
Cumulative incidence of cardiovascular events in sub-groups with LDL-C <100 mg/dL (<25th percentile) and/or sdLDL-C

<27.8 mg/dL (<25th percentile), from proportional hazards models adjusted for age, gender, and race.
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Table 1

Description of 11,419 ARIC participants at baseline (ARIC visit 4)

Characteristic N=11,419

Age, years 62.83±5.67

Race

  African American 2,515 (22)

  Caucasian 8,904 (78)

Sex

  Female 6,385 (56)

  Male 5,034 (44)

Ever smoked cigarettes 6,635 (58)

Ever drank alcohol 8,989 (79)

Statin use 1,308 (11.5)

Prevalent CHD 972 (8.7)

Diabetes mellitus 1943 (16.9)

Metabolic syndrome 5127 (44.6)

sdLDL-C, mg/dL 43.48±20.76

lbLDL-C, mg/dL 79.22±28.52

sdLDL-C/LDL-C 0.35±0.1496

Data are presented as mean±SD or n (%). CHD: coronary heart disease; lbLDL-C: large buoyant low-density lipoprotein cholesterol; sdLDL-C:
small dense low-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol.
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Table 3

Correlation of sdLDL-C with traditional and novel cardiovascular risk factors

Risk Factor n Pearson R P-value

Non-HDL-C 11,419 0.721 <.0001

ApoB 10,720 0.706 <.0001

Log triglycerides 11,419 0.641 <.0001

Total cholesterol 11,419 0.608 <.0001

LDL-C 11,234 0.543 <.0001

Lp-PLA2 activity 11,108 0.319 <.0001

HDL-C 11,419 −0.291 <.0001

Lactate 11,417 0.253 <.0001

Fasting plasma glucose 10,902 0.169 <.0001

ApoAI 10,720 −0.086 <.0001

lbLDL-C 11,234 −0.076 <.0001

Log hs-CRP 11,202 0.072 <.0001

hs-cTroponin T 11,130 −0.013 0.1549

apo: apolipoprotein; HDL-C: high-density lipoprotein cholesterol; hs-CRP: high-sensitivity C-reactive protein; hs-cTroponin T: high-sensitivity
cardiac troponin T; lbLDL-C: large buoyant low-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; Lp-PLA2
lipoprotein-associated phospholipase A2.
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Table 4

Hazard ratio (95% confidence interval) for incident CHD by sdLDL-C and LDL-C quartiles

Quartile of sdLDL-C*

2 3 4 P†

Model 1‡ 1.19 (0.99–1.43) 1.44 (1.21–1.72) 2.00 (1.69–2.37) <0.0001

Model 2§ 1.10 (0.90–1.33) 1.21 (0.99–1.48) 1.51 (1.21–1.88) 0.0008

Quartile of LDL-C*

2 3 4 P†

Model 1‡ 1.01 (0.85–1.21) 1.15 (0.97–1.37) 1.56 (1.32–1.83) <0.0001

Model 2§ 1.08 (0.90–1.30) 1.23 (1.03–1.47) 1.68 (1.42–1.99) <0.0001

sdLDL-C: small dense low-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol.

*
Lowest quartile (1) is reference.

†
P-values (Pr > chiSq) for linear hypothesis testing results of sdLDL-C quartiles.

‡
Adjusted for age, sex, and race.

§
Adjusted for model 1 variables + smoking, body mass index, hypertension, high-density lipoprotein cholesterol, log(triglycerides), lipid-lowering

medications, diabetes, diabetes medications, and log(hs-CRP).
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Table 6

Association of PCSK7 SNP rs508487 genotype with circulating lipids

Genotype

Lipid, mg/dL (mean±SE) CC CT TT P

sdLDL-C 44.3±20.6 48.5±21.4 51.5±23.4 <0.0001

lbLDL-C 78.7±27.5 75.5±29.7 72.7±23.6 0.02

sdLDL-C/LDL-C 0.36±0.15 0.40±0.16 0.41±0.13 <0.0001

LDL-C 123.0±32.8 124.0±32.6 124.2±33.8 0.75

HDL-C 50.2±16.4 48.6±16.1 54.9±13.4 0.03

Total cholesterol 201.5±35.6 205.0±35.0 215.3±40.4 0.02

Triglycerides 141.5±67.5 162.1±77.5 181.4±88.5 <0.0001

HDL-C: high-density lipoprotein cholesterol; lbLDL-C: large buoyant low-density lipoprotein cholesterol; sdLDL-C: small dense low-density
lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol.
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Table 7

Change in circulating lipids among Caucasian carriers of rare nonsynonymous PCSK7 variants

Lipid Change (β) SE P

sdLDL-C (mg/dL) 7.53 3.00 0.012

Ln (triglycerides) 0.144 0.071 0.043

HDL-C (mg/dL) −3.58 2.12 0.091

sdLDL-C: small dense low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.
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