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The lysosomal enzyme glucocerebrosidase, encoded by the glucocerebrosidase gene, is involved in the breakdown of glucocer-

ebroside into glucose and ceramide. Lysosomal build-up of the substrate glucocerebroside occurs in cells of the reticulo-

endothelial system in patients with Gaucher disease, a rare lysosomal storage disorder caused by the recessively inherited

deficiency of glucocerebrosidase. Gaucher disease has a broad clinical phenotypic spectrum, divided into non-neuronopathic and

neuronopathic forms. Like many monogenic diseases, the correlation between clinical manifestations and molecular genotype is

not straightforward. There is now a well-established clinical association between mutations in the glucocerebrosidase gene and

the development of more prevalent multifactorial disorders including Parkinson’s disease and other synucleinopathies. In this

review we discuss recent studies advancing our understanding of the cellular relationship between glucocerebrosidase and a-

synuclein, the potential impact of established and emerging therapeutics for Gaucher disease for the treatment of the synu-

cleinopathies, and the role of lysosomal pathways in the pathogenesis of these neurodegenerative disorders.
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Abbreviations: CBE = conduritol-B-epoxide; ERAD = endoplasmic reticulum-associated degradation; GBA1 = glucocerebrosidase;
mTOR = mammalian target of rapamycin; PERK = RNA-activated protein kinase-like endoplasmic reticulum kinase

Introduction
The enzyme glucocerebrosidase (EC 3.2.1.45) breaks down the

glycolipid glucocerebroside into glucose and ceramide inside lyso-

somes (Beutler and Grabowski, 2001). Glucocerebrosidase is

encoded by the glucocerebrosidase (GBA1) gene, which is located

on chromosome 1q21 spanning 7.6 kb and includes 11 exons.

A highly homologous pseudogene is located 16 kb downstream

and presents challenges for the molecular analysis of GBA1

(Horowitz et al., 1989; Winfield et al., 1997). Mutations in GBA1

cause glucocerebrosidase deficiency and the subsequent accumula-

tion of the undegraded substrate glucocerebroside inside the lyso-

somes of cells composing the reticulo-endothelial system. This

accumulation of glucocerebroside substrate results in Gaucher dis-

ease (OMIM #606463), a rare pan-ethnic autosomal recessive lyso-

somal storage disorder (Beutler and Grabowski, 2001). The main

cell biological function of macrophages is phagocytosis-mediated

breakdown of senescent cells such as erythrocytes, which have
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glucocerebroside-rich membranes. Gaucher disease macrophages

that have accumulated glucocerebroside appear engorged and

are often referred to as ‘Gaucher cells’. Gaucher cells primarily

populate the spleen, liver and bone marrow, resulting in inflam-

mation and organomegaly (Lachmann et al., 2004; Sidransky,

2012). Although Gaucher disease is rare, it is the most common

lysosomal storage disorder with an estimated frequency of

1:40 000–60 000 live births in the general population and an ex-

ceptionally high prevalence in the Ashkenazi Jewish population

(1:850 individuals) (Beutler et al., 1993; Beutler and Grabowski,

2001). To date, over 300 GBA1 pathogenic mutations and poly-

morphisms have been reported (Hruska et al., 2008), but correl-

ations between the clinical phenotype and molecular genotype

remain limited (Goker-Alpan et al., 2005; Hruska et al., 2008;

Sidransky, 2012). Indeed, studies have shown that patients with

identical genotypes can have vastly different clinical manifestations

and severity, even between siblings and twins (Lachmann et al.,

2004; Sidransky, 2004; Biegstraaten et al., 2011), whereas patients

with different molecular genotypes can share similar clinical

phenotypes (Hruska et al., 2008). Furthermore, there is not a

strong correlation between the amount of accumulated substrate

and/or residual glucocerebrosidase enzyme activity and clinical

manifestations in patients (Sidransky, 2012). This suggests that

Gaucher disease is not a ‘simple’ monogenic disorder, and that

additional factors such as epigenetics and/or genetic modifiers

may contribute to disease development and phenotype

(Koprivica et al., 2000; Sidransky, 2004; Goker-Alpan et al., 2005).

Gaucher disease is classified into three different types, based on

the absence (type 1) or the presence and severity of neurological

manifestations (types 2 and 3). Non-neuronopathic type 1

Gaucher disease (OMIM #230800) is the most common form

and accounts for 490% of cases in the USA and Europe

(Beutler and Grabowski, 2001; Cherin et al., 2010). Clinical mani-

festations include enlarged liver and spleen, bone complications,

anaemia and thrombocytopaenia (Pastores et al., 2000; Beutler

and Grabowski, 2001). The extent of symptoms is highly variable

and many affected individuals will never reach medical attention.

One common GBA1 mutation, N370S, seems to be exclusively

associated with type 1 Gaucher disease, although other mutations

can also be seen in patients with Gaucher disease type 1. It has

been reported that Gaucher disease type 1 is associated with an

increased risk of certain malignancies such as multiple myeloma,

hepatocellular carcinoma, non-Hodgkin’s lymphoma, malignant

melanoma and pancreatic cancer (Zimran et al., 2005; de Fost

et al., 2006; Ayto and Hughes, 2013; Mistry et al., 2013;

Weinreb and Lee, 2013). Acute neuronopathic or type 2

Gaucher disease (OMIM #230900) is the rarest and most severe

form of the disease (Beutler and Grabowski, 2001) with rapidly

progressing neurological deterioration, resulting in death within

the first years of life (Beutler and Grabowski, 2001; Sidransky,

2004). The onset and progression of neurological symptoms in

chronic neuronopathic Gaucher disease type 3 (OMIM

#2301000) is later and slower compared with Gaucher disease

type 2 (Beutler and Grabowski, 2001; Sidransky, 2012). Clinical

manifestations can include myoclonic epilepsy and ataxia, devel-

opmental delay, intellectual deterioration, and learning disabilities,

in addition to skeletal and visceral involvement (Sidransky, 2004,

2012; Gupta et al., 2011; Sidransky and Lopez, 2012). Patients

with type 3 Gaucher disease develop a specific oculomotor abnor-

mality consisting of the slowing or looping of the horizontal sac-

cades. It is often difficult to classify patients as a specific type of

Gaucher disease because of the broad range of manifestations

encountered (Sidransky, 2004). Thus it may be more appropriate

to view Gaucher disease-associated phenotypes as a continuum

because of the broad range of associated manifestations observed

(Sidransky, 2004, 2012).

The classification of type 1 as the non-neuronopathic form of

Gaucher disease has recently been questioned because of its asso-

ciation with synucleinopathies including Parkinson’s disease and

dementia with Lewy bodies (Sidransky et al., 2009; Nalls et al.,

2013). The synucleinopathies include different disorders with par-

kinsonian features characterized pathologically by the presence of

Lewy body inclusions, composed of aggregates of the small unstruc-

tured protein a-synuclein (Puschmann et al., 2012). The association

between GBA1 mutations and parkinsonism was first established

based on longitudinal clinical studies, in which it was observed

that some patients with Gaucher disease developed parkinsonism

(Tayebi et al., 2001, 2003; Bembi et al., 2003). It was then recog-

nized that Parkinson’s disease was more frequent in first-degree

relatives of patients with Gaucher disease. Studies in specific cohorts

of patients with Parkinson’s disease and associated Lewy body dis-

orders indicated these patients had an increased frequency of GBA1

mutations compared with control groups (Goker-Alpan et al., 2004;

Lwin et al., 2004; Eblan et al., 2006; Ziegler et al., 2007). In 2009,

a large international collaborative group including 16 participating

centres performed molecular analysis of GBA1 on 45000 DNA

samples from patients with Parkinson’s disease and an equal

number of controls including subjects with different ethnicities.

The resulting odds ratio (OR) of 5.43 clearly demonstrated a

strong association between GBA1 mutations and Parkinson’s dis-

ease. Moreover, subjects with GBA1 mutations had an earlier

onset of Parkinson’s disease symptoms and more frequent cognitive

changes (Sidransky et al., 2009). Interestingly, genome-wide asso-

ciation studies initially failed to identify GBA1 as a genetic risk factor

for parkinsonism, but more recent genome-wide association studies

have identified specific GBA1 single nucleotide polymorphisms

(Pankratz et al., 2009; Satake et al., 2009; Simon-Sanchez et al.,

2009). Since then, this association persisted and has been repro-

duced in multiple cohorts around the world (Dos Santos et al.,

2010; Mao et al., 2010; Huang et al., 2011; Lesage et al.,

2011a, b; Moraitou et al., 2011; Noreau et al., 2011;

Anheim et al., 2012; Choi et al., 2012; Emelyanov et al., 2012;

Tsuang et al., 2012; Wang et al., 2012; Becker et al., 2013; Kumar

et al., 2013). It is now widely accepted that the frequency of GBA1

mutations in subjects with Parkinson’s disease from varied ethnicities

is greater than any other genetic risk factor for Parkinson’s disease,

once common risk variants of low effect are excluded. Recently,

this association was expanded to dementia with Lewy

bodies, with the identification of GBA1 mutations in 3.5% to

23% of subjects in genotyping studies of various independent

cohorts (Goker-Alpan et al., 2006; Mata et al., 2008). Another

large international multicentre study of GBA1 mutations in dementia

with Lewy bodies was undertaken. Eleven centres contributed a

total of 721 cases with dementia with Lewy bodies and 151 cases
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of Parkinson’s disease with dementia, which were compared with

1962 control subjects, matched for age, sex and ethnicity. A signifi-

cant association between GBA1 mutations and dementia with Lewy

bodies, as well as Parkinson’s disease with dementia, was estab-

lished, with odds ratios of 8.28 and 6.48, respectively. Similar to

Parkinson’s disease, the age of diagnosis of dementia with Lewy

bodies in patients with GBA1 mutations was younger compared

to dementia with Lewy bodies without GBA1 mutations (Nalls

et al., 2013). These GBA1 studies establish its involvement in sev-

eral synucleinopathies, although GBA1 mutations are not seen with

multiple system atrophy, an a-synucleinopathy with a-synuclein in-

clusions mainly in glial oligodendrocytes (Spillantini et al., 1998;

Beyer and Ariza, 2007; Segarane et al., 2009; Jamrozik et al.,

2010; Srulijes et al., 2013; Sun et al., 2013a).

The major pathological characteristics of Parkinson’s disease and

dementia with Lewy bodies are the presence of insoluble oligo-

meric and fibrillar a-synuclein-positive inclusions known as Lewy

bodies and Lewy neurites in neurons in the substantia nigra, cere-

bral cortex, and hippocampus and the selective loss of dopamin-

ergic neurons in the midbrain (Puschmann et al., 2012).

Aggregation of a-synuclein seems to correlate with the onset

and progression of synucleinopathies, and its direct role in disease

manifestation is clear from the association of familial Parkinson’s

disease with mutations, duplications, and triplications in the

a-synuclein gene (Fearnley and Lees, 1991; Puschmann, 2013).

Monomeric a-synuclein is a small 14 kDa protein that is highly

expressed in the brain, where it is likely involved in the regulation

of synaptic vesicle clustering and the release of neurotransmitters

through interaction with lipids and members of the soluble

NSF Attachment Protein Receptor complex assembly machinery

(Abeliovich et al., 2000; Cabin et al., 2002; Burre et al., 2010;

Garcia-Reitbock et al., 2010; Ito et al., 2012; Diao et al., 2013),

but its exact biological function remains elusive. Monomers, fibrils,

and aggregates of a-synuclein can undergo transmission between

cells, a process that may be facilitated by small 50–100 nm vesicles

called exosomes that are released into the extracellular environ-

ment upon exocytosis of multivesicular bodies (Desplats et al.,

2009; Alvarez-Erviti et al., 2011; Hansen et al., 2011; Russo

et al., 2012; Chang et al., 2013). The neuropathology in

Parkinson’s disease with GBA1 mutations is similar to other synu-

cleinopathies without GBA1 mutations; a-synuclein-positive Lewy

bodies are found in the brains of patients with Parkinson’s disease

and dementia with Lewy bodies with GBA1 mutations (Neumann

et al., 2009; Goker-Alpan et al., 2010). The exact molecular

mechanisms involved in the interaction between glucocerebrosi-

dase and a-synuclein remain unresolved, but experimental data

indicate that there is a reciprocal relationship between glucocer-

ebrosidase activity and a-synuclein. When the delicate balance of

a-synuclein homeostasis is disturbed, possibly by impairment of

essential protein turnover pathways such as the unfolded protein

response, endoplasmic reticulum-associated degradation and

autophagy, cell stress or environmental factors, an increase in

a-synuclein levels will inhibit translocation of glucocerebrosidase

from the endoplasmic reticulum to the lysosome. In turn, less

lysosomal glucocerebrosidase leads to a gradual increase in

glucocerebroside substrate and subsequent oligomerization and

accumulation of a-synuclein in the lysosomes. Eventually, the

lysosomes become dysfunctional, and autophagy-mediated

a-synuclein turnover is impaired, leading to a-synuclein aggregates

in the cytoplasm, which, in turn, inhibit trafficking from the endo-

plasmic reticulum to the lysosome. This positive feedback loop of

dysfunctional glucocerebrosidase trafficking, impaired lysosomal

function, and progressive a-synuclein accumulation will eventually

cause neurodegeneration (Mazzulli et al., 2011) (Fig. 1). A recent

in vivo observation of reduced enzyme activity and protein levels

of glucocerebrosidase in the substantia nigra of brains from pa-

tients with Parkinson’s disease without GBA1 mutations supports

this reciprocal relationship, and expands our understanding of the

key function of glucocerebrosidase in the pathology of synunclei-

nopathies (Gegg et al., 2012).

As most subjects with Gaucher disease never develop Parkinson’s

disease, GBA1 mutations and a reduction in glucocerebrosidase

enzyme activity alone cannot be the cause of Parkinson’s disease

or dementia with Lewy bodies. As Parkinson’s disease and dementia

with Lewy bodies are disorders associated with ageing, it is likely

that cellular processes impacted during the ageing process are linked

with Parkinson’s disease pathogenesis. Indeed, it has been reported

that ageing is associated with the diminished function of tightly

regulated protein and organelle homeostasis pathways such as

autophagy-lysosomal function (Cook et al., 2012), endoplasmic re-

ticulum stress (Lu et al., 2014), and mitochondrial stress (Lu et al.,

2014; Venkataraman et al., 2013). The critical balance between

a-synuclein proteostasis and optimal function of the proteasome

and/or autophagy-lysosome-mediated breakdown may become

compromised during ageing. Mutant, absent, or downregulated glu-

cocerebrosidase could contribute to this scenario by further compro-

mising these cellular pathways. In this review, we will discuss new

insights into the reciprocal relationship between glucocerebrosidase

and a-synuclein, the implications of deficient a-synuclein break-

down in key quality control and turnover pathways, modifiers of

GBA1 that might contribute to the development of Parkinson’s dis-

ease, Gaucher disease therapeutics and their implications for the

treatment of synucleinopathies, and the expansion of Parkinson’s

disease risk factors to enzymes involved in other lysosomal storage

disorders.

Cellular role of
glucocerebrosidase in the
neuropathology of
synucleinophathies

The reciprocal relationship between
glucocerebrosidase, a-synuclein and
lysosomal impairment
The involvement of glucocerebrosidase in the pathogenesis

of the synucleinopathies is still not completely understood.

Initially, arguments were made for either a gain-of-function or

loss-of-function model. The gain-of-function model implies that

the aberrant enzyme is directly involved in a-synuclein
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aggregation through a biochemical interaction with a-synuclein or

interference with a-synuclein homeostasis pathways such as the

unfolded protein response and autophagy. Evidence for gain-

of-function was provided in a comprehensive study by Cullen

et al. (2011) where it was shown that transient over-expression

of different GBA1 mutant constructs in MES23.5 and PC12 cells

expressing wild-type a-synuclein promoted accumulation of

a-synuclein in a time- and dose-dependent manner that was

independent of glucocerebrosidase enzyme activity status.

Furthermore, an in vivo mouse model with mutant Gba

(GbaD409V/D409V), demonstrated age-dependent accumulation of

a-synuclein. However, the contribution of reduced enzyme activ-

ity, which was 20% of control, to the a-synuclein accumulation

process could not be ruled out in this model (Cullen et al., 2011).

In the loss-of-function model, the progressive build up of gluco-

cerebroside substrate in lysosomes may directly promote

a-synuclein aggregation, or have an indirect effect because of

altered lysosomal pH and/or diminished function of lysosomal

and autophagy-mediated breakdown pathways. Studies on cell

and mouse models, as well as patient samples, have provided

evidence for both models (Westbroek et al., 2011). In the context

of these two models, the E326K mutation deserves special

mention as it has long been the subject of controversy.

Independent studies have established that E326K is associated

with Parkinson’s disease (Horowitz et al., 2011; Pankratz et al.,

2012; Duran et al., 2013), but this mutation is believed to be non-

pathogenic (Park et al., 2002; Liou and Grabowski, 2012) with

only a significant effect on enzyme activity when found in com-

bination with other pathogenic GBA1 mutations (Montfort et al.,

2004; Horowitz et al., 2011; Liou and Grabowski, 2012; Malini

et al., 2013). This suggests that in the case of E326K, reduced

glucocerebrosidase activity might not be the principal factor con-

tributing to the development of Parkinson’s disease.

Several experimental observations have expanded on the model

of a reciprocal relationship as the basis for a mechanistic link be-

tween glucocerebrosidase and a-synuclein. The effect of manipu-

lation of glucocerebrosidase enzyme activity or expression levels

on a-synuclein accumulation was demonstrated in mice and

neuroblastoma cells treated with the glucocerebrosidase inhibitor

conduritol-B-epoxide (CBE), which showed significant accumula-

tion of a-synuclein protein, but no change in messenger RNA

levels (Manning-Bog et al., 2009; Cleeter et al., 2013).

However, a-synuclein accumulation or compromised lysosomal

function could not be observed in long-term CBE-treated

nucleus ER

Golgi
ECE

functional
lysosome

dysfunctional
lysosomeGCase

LIMP-2

GC Block SAPC

2

1

4
5 3

monomeric α-synuclein

oligomeric α-synuclein

α-synuclein fibrils

6

CM

Figure 1 The reciprocal relationship between glucocerebrosidase and a-synuclein. (1 and 2) Glucocerebrosidase (GCase) is sorted via

the endoplasmic reticulum and Golgi to the lysosomes. (3) In lysosomes, glucocerebrosidase interacts with its substrate glucocerebroside

(GC) as well as monomers of a-synuclein, facilitating the breakdown of both at acidic pH. (4) Decreased levels of glucocerebrosidase

will result in a slowdown of a-synuclein degradation and a gradual build up of glucocerebroside substrate, with the eventual formation of

a-synuclein oligomers and fibrils. (4) Impaired lysosomes, as a result of build up of substrate and/or a-synuclein oligomers and fibrils, will

show impaired chaperone-mediated autophagy and autophagosome fusion, which implies that a-synuclein cannot undergo autophagy-

mediated degradation, resulting in an increased accumulation of a-synuclein in the cytoplasm. (5) These soluble monomers will eventually

assemble in oligomers and will block trafficking of glucocerebrosidase from the endoplasmic reticulum (ER) to the Golgi.

ECE = extracellular environment; CM = Cell Membrane; SAPC = saposin C.
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SH-SY5Y neuroblastoma cells or primary rat cortical neurons, indi-

cating that deficient glucocerebrosidase activity alone does not

alter a-synuclein in these cell models (Dermentzaki et al., 2013).

Interestingly, primary mouse neurons silenced for GBA1 expression

showed enhanced a-synuclein accumulation that was not

observed in the neuroblastoma cell line (Mazzulli et al., 2011;

Cleeter et al., 2013). Cullen and co-workers showed that over-

expression of wild-type GBA1 in HEK293 cells expressing A53T

a-synuclein and PC12 cells expressing wild-type a-synuclein

induced down-regulation of a-synuclein levels. However, this ob-

servation appeared to be cell-model specific, since this was not

observed with transiently transfected wild-type GBA1 in MES23.5

cells expressing wild-type a-synuclein (Cullen et al., 2011). In vivo

studies by Sardi et al. (2011, 2013) showed that adenovirus-

mediated expression of wild-type glucocerebrosidase in the CNS

of mice with features of neuronopathic Gaucher disease corrected

substrate accumulation, cognitive impairment, and a-synuclein ag-

gregation in the brain, and in transgenic mice over-expressing

A53T a-synuclein without GBA1 mutations, adenovirus-mediated

expression of wild-type glucocerebrosidase reduced a-synuclein

levels (Sardi et al., 2011, 2013). Additionally, increasing

a-synuclein levels downregulated glucocerebrosidase activity and

protein levels in several in vitro and in vivo models of Parkinson’s

disease. Biophysical studies indicate that at acidic pH, there is

a direct interaction between wild-type a-synuclein and gluco-

cerebrosidase that is speculated to be beneficial for a-synuclein

turnover in the lysosome. Additional biophysical evaluations indi-

cate that a-synuclein inhibits glucocerebrosidase activity in a

dose-dependent manner (Yap et al., 2011, 2013). In cells,

increased levels of a-synuclein caused a reduction in wild-type

glucocerebrosidase activity, and to a lesser extent, glucocerebrosi-

dase protein levels (Mazzulli et al., 2011; Gegg et al., 2012).

Studies performed in a limited number of post-mortem brain sam-

ples from subjects with sporadic Parkinson’s disease without GBA1

mutations, show a significant decrease in glucocerebrosidase ac-

tivity and protein levels in the substantia nigra and cerebellum

(Gegg et al., 2012). The pivotal experimental evidence regarding

the reciprocal relationship between glucocerebrosidase and

a-synuclein came from an elaborate and comprehensive study

by Mazzulli and co-workers (2011), where it was shown that par-

tial loss of glucocerebrosidase activity in primary mouse neurons,

or human neuronal cultures derived from induced pluripotent stem

cells, interfered with protein degradation in the lysosome, pro-

moted accumulation of a-synuclein, and enhanced a-synuclein-

mediated neurotoxicity. In vitro, glucocerebroside substrate was

shown to promote stabilization of a-synuclein oligomers and ag-

gregation. Over-expression of a-synuclein inhibited endoplasmic

reticulum-to-Golgi trafficking of glucocerebrosidase, presumably

by inhibiting formation of soluble NSF attachment protein receptor

complexes (Cooper et al., 2006; Thayanidhi et al., 2010), which

resulted in the downregulation of lysosome-resident glucocerebro-

sidase. Analyses of brain samples indicated that soluble a-synuclein

oligomers were increased in both subjects with neuronopathic

Gaucher disease and subjects with Parkinson’s disease with

GBA1 mutations; however, brain samples from subjects with

Parkinson’s disease without GBA1 mutations were not included

in this study (Mazzulli et al., 2011). This is in contrast with a

study where a-synuclein solubility was measured in brain samples

from patients with Gaucher disease as well as patients with synu-

cleinopathies with and without GBA1 mutations, demonstrating

the presence of a-synuclein aggregates exclusively in the brains

from subjects known to have synucleinopathies (Choi et al.,

2011). It should be noted that both studies used different methods

for brain lysate preparation and analysis. An in vivo study on

induced pluripotent stem cells-derived cortical neurons from a pa-

tient with the A53T mutation in a-synuclein showed an increase in

the ratio of endoplasmic reticulum-resident to post-endoplasmic

reticulum glucocerebrosidase compared to isogenic gene-edited

wild-type cortical neurons. This was also observed in brain samples

from a subject with A53T a-synuclein and in cortex samples from

patients with sporadic Parkinson’s disease. These observations sug-

gest that glucocerebrosidase trafficking from the endoplasmic re-

ticulum to the lysosomes was significantly reduced in A53T cells as

well as Parkinson’s disease brain samples (Chung et al., 2013).

Thus, a majority of the studies described provide evidence sup-

porting a reciprocal relationship model between glucocerebrosi-

dase and a-synuclein (Fig. 1). The central player in this

reciprocal relationship model is the lysosome, which is the main

organelle responsible for the degradation of proteins, lipids and

organelles such as defective mitochondria (Dehay et al., 2013).

Lysosome-mediated degradation of a-synuclein occurs through

both macroautophagy and chaperone-mediated autophagy.

Proteins destined for chaperone-mediated autophagy, such as

a-synuclein, form a complex with heat shock cognate 70, which

is targeted to the lysosomal membrane where it interacts with

lysosomal associated membrane protein 2A, and undergoes trans-

location to the lysosome, followed by degradation (Arias and

Cuervo, 2011); impaired chaperone-mediated autophagy has

been reported in Parkinson’s disease brain samples (Alvarez-Erviti

et al., 2010). In macroautophagy, double-membraned autophago-

somes carry engulfed proteins, lipids and organelles destined for

breakdown to lysosomes. This occurs via the formation of the

autophagolysosome, resulting from the fusion of autophagosomes

with lysosomes (Yang and Klionsky, 2010). Accumulating evidence

indicates that lysosomal impairment contributes to the neuropath-

ology of Parkinson’s disease (Tofaris, 2012) and in turn, a-synu-

clein aggregation can impair autophagy and lysosomal function

(Winslow et al., 2010). A well-illustrated example of the implica-

tions of lysosomal dysfunction in Parkinson’s disease is the PARK9

gene, which encodes the ATP13A2 protein, a lysosomal P-type

ATPase. Mutations in PARK9 have been shown to cause severe

lysosomal impairment and accumulation of a-synuclein, and are

associated with Kufor-Rakeb syndrome, a rare genetic form of

parkinsonism (Schultheis et al., 2013). Autophagy and lysosomal

dysfunction have been reported in models and in tissue samples

from subjects with GBA1-associated Parkinson’s disease. In pri-

mary cortical wild-type mouse neurons infected with lentiviral

a-synuclein and GBA1 short hairpin RNA, resulting in 50% reduc-

tion in glucocerebrosidase protein levels, lysosomal protein turn-

over capacity was impaired, and enlarged lysosomal-associated

membrane protein 1-positive structures accumulated. These results

were validated in dopaminergic neurons generated from induced

pluripotent stem cells derived from Gaucher disease fibroblasts

(Mazzulli et al., 2011). Inhibiting glucocerebrosidase with CBE or
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partial GBA1 silencing in SHSY-5Y neuroblastoma cells did not

change the lysosomal content or the levels of LC3-II, which cor-

responds to the number of accumulated autophagosomes (Cleeter

et al., 2013). Dermentzaki et al. (2013) saw a slight but significant

increase in LC3-II levels in SHSY-5Y cells treated with CBE for 100

days. Similar observations were made in brain samples from sub-

jects with both sporadic Parkinson’s disease and GBA1-associated

Parkinson’s disease (Gegg et al., 2012). In a Gba-/- mouse model

representative of neuronopathic type 2 Gaucher disease, impair-

ment of autophagy, mitophagy and also the proteasome-mediated

degradation pathway were observed in midbrain neurons and

astrocytes. This resulted in the accumulation of fragmented mito-

chondria and a-synuclein. Although this model does not represent

Parkinson’s disease, it should be noted that a-synuclein pathology

was present. This finding clearly illustrates that dysfunction in the

reciprocal balance between glucocerebrosidase and a-synuclein

can lead to neurodegeneration (Osellame et al., 2013).

The unfolded protein response
Chaperones, lectins and foldases all assist with the protein folding

process, but it is believed that about one-third of all newly synthe-

sized proteins are still damaged or misfolded (Schubert et al.,

2000). To maintain balanced cell proteostasis, aberrant proteins

are turned over via endoplasmic reticulum-associated degradation

(ERAD) through ubiquitination by ubiquitin ligases and subsequent

26S proteasome-mediated degradation (Kaufman, 2002;

Goldberg, 2003). In the case of persistent accumulation, the un-

folded protein response is activated through three endoplasmic

reticulum transmembrane sensor proteins: activating transcription

factor 6 (ATF6), type I transmembrane protein kinase and endor-

ibonuclease (IRE1), and RNA-activated protein kinase-like endo-

plasmic reticulum kinase (PERK), which are negatively regulated by

binding of BiP, a member of the heat shock protein 70 protein

family. In the presence of excessive unfolded proteins, BiP is re-

cruited to the endoplasmic reticulum lumen, where it activates

IRE1, ATF6 and PERK by its dissociation. The three sensors initiate

various signalling pathways, which include restoration of endoplas-

mic reticulum homeostasis by the regulation of the endoplasmic

reticulum folding load recovery process through induction of ERAD

and protein folding chaperones, attenuation of protein translation,

and, if the restoration of endoplasmic reticulum homeostasis

fails, cell death (Germain, 2008; Chakrabarti et al., 2011;

Brodsky, 2012; Sano and Reed, 2013).

Several recent studies indicate that both ERAD and the unfolded

protein response play crucial roles in the cellular pathology of

Parkinson’s disease. Experimental cell and mouse models and stu-

dies in post-mortem Parkinson’s disease brain samples indicate

that the first stages of a-synuclein accumulation and aggregation

lead to induction of the unfolded protein response, with upregula-

tion of unfolded protein response markers in dopaminergic neu-

rons and eventual neurodegeneration (Bellucci et al., 2011; Colla

et al., 2012a, b; Gorbatyuk et al., 2012; Hoozemans et al., 2012).

The role of glucocerebrosidase in endoplasmic reticulum stress

and neurodegeneration has only recently begun to emerge. Under

normal conditions, newly synthesized glucocerebrosidase is cor-

rectly folded in the endoplasmic reticulum and is then translocated

to the lysosomes. Aberrant glucocerebrosidase fails to fold

correctly, is arrested in the endoplasmic reticulum and is redirected

to undergo polyubiquitination, followed by degradation.

Studies on fibroblasts derived from patients with Gaucher disease

have established that glucocerebrosidase mutants undergo

polyubiquitination and proteasomal degradation via ERAD (Ron

and Horowitz, 2005; Bendikov-Bar et al., 2011; Bendikov-Bar

and Horowitz, 2012). Heat shock protein 90b was identified as

the key chaperone for the redirection of aberrant glucocerebrosi-

dase for breakdown via ERAD (Lu et al., 2010, 2011; Yang et al.,

2013). Several E3-ubiquitin ligases such as ITCH, c-Cbl, and parkin

recognize mutant glucocerebrosidase as their substrate for polyu-

biquitination (Lu et al., 2010; Ron et al., 2010; Maor et al., 2013).

As a result of ERAD, lysosomal levels of glucocerebrosidase are

significantly decreased, resulting in the accumulation of glucocer-

ebroside substrate. It was suggested that the severity of Gaucher

disease symptoms might correlate with the degree of endoplasmic

reticulum retention of mutant glucocerebrosidase (Ron and

Horowitz, 2005; Bendikov-Bar et al., 2011; Bendikov-Bar and

Horowitz, 2012). Persistent accumulation of aberrant proteins

can activate the unfolded protein response, which has been re-

ported in human fibroblasts derived from patients with Gaucher

disease and carriers of GBA1 mutations (Brady et al., 1974; Mu

et al., 2008; Wei et al., 2008; Lee et al., 2011; Maor et al., 2013).

Fly models corresponding to GBA1 carriers and transgenic flies

expressing human N370S or L444P glucocerebrosidase mutants

both showed unfolded protein response activation and both the

development of a locomotion impairment reminiscent of parkinso-

nian features and an early death (Maor et al., 2013). Activation of

the unfolded protein response in Gaucher disease and carriers of

GBA1 mutations support a previous report demonstrating that the

interaction of mutant glucocerebrosidase with the E3-ubiquitin

ligase parkin leads to K48-mediated polyubiquitination of gluco-

cerebrosidase, before breakdown in the proteasome. It was pro-

posed that this interaction might impair interactions with other,

potentially neurotoxic, parkin substrates, and that interference

with their breakdown would result in endoplasmic reticulum

stress, followed by unfolded protein response activation and the

subsequent elevation of ERAD. This, in turn, would lead to further

accumulation of neurotoxic substrates, resulting in cell death (Ron

et al., 2010). However, a study performed on parkin-deficient

fibroblasts provided evidence that parkin is not a crucial E3-

ubiquitin ligase for glucocerebrosidase (McNeill et al., 2013).

Not every Gaucher disease model demonstrates unfolded protein

response activation. CBE-treated cultured primary mouse neurons

and astrocytes show no changes in expression of common un-

folded protein response makers (Farfel-Becker et al., 2009). The

same was observed for select brain regions of the two mouse

models representative of neuronopathic Gaucher disease; the

Gba-/- knock-out (Tybulewicz et al., 1992) and the conditional

Gba-/- knock-out, which is restricted to neural and glial progenitor

cells (Enquist et al., 2007) as well as the GbaL444P/L444Pmouse, a

model with partial enzyme deficiency and no neurological involve-

ment (Mizukami et al., 2002; Farfel-Becker et al., 2009). Cullen

et al. (2011) failed to detect activation of the unfolded protein

response in MES23.5 cells expressing wild-type a-synuclein that

were transiently transfected with mutant GBA1 constructs.
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Finally, an increase in unfolded protein response markers was seen

in post-mortem brain samples from subjects with sporadic

Parkinson’s disease with and without GBA1 mutations (Gegg

et al., 2012). ERAD of aberrant glucocerebrosidase protein, or

endoplasmic reticulum retention of wild-type glucocerebrosidase

as a result of a-synuclein mediated blocking of trafficking, might

contribute to the increased unfolded protein response. This re-

mains speculative because increased unfolded protein response

could also be induced by other pathways associated with

Parkinson’s disease, such as a malfunction in Ca2 + release, meta-

bolic stress, inflammation, and mitochondrial oxidative stress

(Doyle et al., 2011; Wang and Kaufman, 2012). The exact rela-

tionship between glucocerebrosidase, a-synuclein accumulation,

and the role of the unfolded protein response remains to be

fully determined.

Mitochondrial dysfunction
Growing evidence indicates that mitochondrial turnover, dysfunc-

tion, and oxidative stress play key roles in the development and

progression of Parkinson’s disease. Indeed, mutations in three

genes (PINK1, PARK2 and PARK7) involved in these pathways

cause familial Parkinson’s disease (Puschmann, 2013). The expres-

sion, activity and mitochondrial localization of the DJ-1 protein,

which is encoded by the PARK7 gene, are regulated by oxidative

stress. DJ-1 is a neuroprotective protein that protects cells from

oxidative stress-induced death by positively regulating pathways

such as mitophagy. High levels of oxidation or genetic mutations

can inactivate DJ-1, which induces impairments in complex I ac-

tivity and subsequent reactive oxygen species production, reduced

membrane potential and fragmented mitochondrial morphology

(Ariga et al., 2013). In healthy cells, mitochondrial turnover is

regulated by PTEN-induced putative kinase 1 (PINK1) and the

E3-ubiquitin ligase parkin in a process called mitophagy, which is

the autophagy of damaged mitochondria. In functional mitochon-

dria, PINK1 is translocated from the outer membrane to the inner

membrane for degradation, while in dysfunctional mitochondria

with a reduced membrane potential, PINK1 will accumulate on

the outer mitochondrial membrane and serve as a receptor for

recruitment of parkin (Jin et al., 2010; Lazarou et al., 2012).

Parkin-mediated polyubiquitination of mitochondrial proteins

recruits p62, which induces the aggregation of damaged mito-

chondria (Narendra et al., 2010). Failure of the turnover of accu-

mulated damaged mitochondria by mitophagy leads to cell death.

Evidence for mitochondrial involvement in GBA1-associated

Parkinson’s disease has now emerged (Gegg et al., 2012;

Cleeter et al., 2013; Osellame et al., 2013). To mimic glucocer-

ebrosidase deficiency, Cleeter and co-workers (2013) treated the

human neuroblastoma SHSY-5Y cell line with the glucocerebrosi-

dase suicide inhibitor CBE. Long-term treatment with CBE resulted

in fragmentation of mitochondria, significant progressive decline in

mitochondrial membrane potential, reduction of ATP synthesis

and an increase in reactive oxygen species production. Although

a-synuclein levels increased by �50%, surprisingly, the major

routes for protein degradation and turnover such as the ERAD

and the autophagy-lysosomal pathways were not affected.

Although a stable partial GBA1 knockdown of 62% of enzyme

activity confirmed the decline in mitochondrial membrane poten-

tial and increase in oxidative stress, it failed to show significant

accumulation of a-synuclein (Cleeter et al., 2013). Another study

performed on cultured primary midbrain neurons and astrocytes

derived from a mouse model representative of acute neurono-

pathic Gaucher disease, revealed severe impairments in autophagy

and ubiquitin-proteasome-mediated protein breakdown pathways,

resulting in the accumulation of insoluble a-synuclein and ubiqui-

tinated proteins. Mitochondrial dysfunction, due to defective mito-

chondrial complex I, led to increased reactive oxygen species

production. Fragmented and dysfunctional mitochondria were

not turned over by mitophagy because of a failure of recruitment

of parkin to the mitochondrial membrane (Osellame et al., 2013).

Both studies provide evidence for a link between mitochondrial

function and the turnover and inhibition or absence of glucocer-

ebrosidase. These studies indicate that there are similarities in cel-

lular pathophysiological mechanisms in both type 2 Gaucher

disease and Parkinson’s disease with regard to protein and organ-

elle turnover pathways and energy homeostasis. To date, no

studies using relevant neuronal cell and animal models or brain

samples representing Parkinson’s disease with GBA1 mutations

have addressed mitophagy and energy homeostasis. However,

a study on SHSY-5Y cells silenced for PINK1, a cell model for

familial Parkinson’s disease, showed significant reduction of gluco-

cerebrosidase protein levels and activity that could be rescued by

exogenous expression of wild-type PINK1 (Gegg et al., 2012).

Regulators of GBA1 and/or
glucocerebrosidase expression
and their implications in the
synucleinopathies
It is now clear that Gaucher disease encompasses a broad spec-

trum of clinical phenotypes, with limited correlation between

genotype and phenotype (Sidransky, 2004, 2012). This suggests

the involvement of modifier genes that can interact with the dis-

ease-causing allele and influence its phenotypic expression (Goker-

Alpan et al., 2005). Several potential modifiers for Gaucher disease

have been proposed (Latham et al., 1990; Winfield et al., 1997;

Montfort et al., 2004). Although mutations in GBA1 are a

common risk factor for the development of Parkinson’s disease,

only a fraction of patients with Gaucher disease and carriers for

GBA1 mutations develop Parkinson’s disease (Sidransky et al.,

2009). This leads us to speculate that potential disease modifiers

in this process might serve as additional risk factors that, in com-

bination with GBA1 mutations, might favour the development and

progression of synucleinopathies.

SCARB2/LIMP2: a genetic modifier
of GBA1
Although the majority of lysosomal enzymes reach their destin-

ation via the mannose-6-phosphate receptor pathway, a subset
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gets sorted through mannose-6-phosphate receptor-independent

pathways (Coutinho et al., 2012). One of these enzymes is glu-

cocerebrosidase, which reaches the lysosome via lysosomal integral

membrane protein type 2 (LIMP-2) mediated trafficking (Reczek

et al., 2007) (Fig. 2). LIMP-2, encoded by the scavenger receptor

class B member 2 (SCARB2) gene located on chromosome 4q13-

21, belongs to the CD36 family of scavenger receptor proteins

(Fujita et al., 1991; Febbraio et al., 2001; Berkovic et al., 2008).

LIMP-2, which is ubiquitously expressed, is one of the most abun-

dant transmembrane proteins in the lysosomal membrane

(Eskelinen et al., 2003); mutation and over-expression studies sug-

gest that it plays a role in the biogenesis and maintenance of late

endosomes and lysosomes (Kuronita et al., 2002; Eskelinen et al.,

2003), as well as in the fusion between lysosomes and autopha-

gosomes (Gleich et al., 2013).

It was not until 2007 that LIMP-2 was identified as the receptor

required for the trafficking of glucocerebrosidase to the lysosomes

(Reczek et al., 2007). Protein interaction studies showed a pH-

dependent interaction between LIMP-2 and glucocerebrosidase,

which was regulated by the pH-sensor amino acid histidine 171

(Zachos et al., 2012). This direct interaction between glucocereb-

rosidase and LIMP-2 is initiated at neutral pH within the endo-

plasmic reticulum, and is disrupted upon reaching the acidic

lysosome (Reczek et al., 2007; Blanz et al., 2010; Zachos et al.,

2012). Studies of SCARB2 knock-out mice showed GBA1 messen-

ger RNA levels were not affected, but there was a decrease in

glucocerebrosidase activity and protein levels along with lysosomal

accumulation of glucocerebroside (Reczek et al., 2007).

Conditioned media taken from SCARB2 knock-out cells in culture

demonstrate that glucocerebrosidase is secreted into the extracel-

lular environment as a result of impaired trafficking of glucocer-

ebrosidase (Reczek et al., 2007; Velayati et al., 2011). Mutations

in SCARB2 are associated with action myoclonus-renal failure

syndrome (OMIM #254900), an autosomal recessive disorder

characterized by renal pathology, progressive myoclonus epilepsy

and ataxia (Berkovic et al., 2008; Blanz et al., 2010). Studies

on four different mutant SCARB2 lines showed that the mutant

proteins are retained in the endoplasmic reticulum and affect glu-

cocerebrosidase activity in the lysosomes by binding to glucocer-

ebrosidase in the endoplasmic reticulum and preventing its

translocation to the lysosomes (Balreira et al., 2008; Blanz et al.,

2010). SCARB2 was recently identified as a genetic modifier for

GBA1 in a study of a unique pair of siblings who had discordant

Gaucher disease phenotypes but identical genotypes. One sib suf-

fered myoclonic seizures and sequencing of his SCARB2 gene re-

vealed a novel heterozygous c.1412A4G (p.Glu471Gly) mutation

in one allele, which was absent from the brother. Expression stu-

dies in fibroblasts from this patient revealed significant downregu-

lation of LIMP-2 and glucocerebrosidase protein levels, as well as

glucocerebrosidase enzyme activity. Secretion of mature glucocer-

ebrosidase into the extracellular environment was observed

(Velayati et al., 2011). As LIMP-2 is crucial for the correct traffick-

ing of glucocerebrosidase, and LIMP-2 malfunction can lead to a

reduction in glucocerebrosidase levels and activity, it is tempting to

speculate a role for LIMP-2 in the development of Parkinson’s

disease. SCARB2 mutations and Parkinson’s disease could be

related through the modulation of glucocerebrosidase protein

levels and activity in the cell. LIMP-2 deficiency could lead to

glucocerebrosidase secretion instead of proper delivery to the

lysosome, which could result in accumulation of glucocerebroside

substrate, alterations in lysosomal function, and aggregation of

proteins such as a-synuclein inside the lysosomes. It was demon-

strated in a cell model over-expressing a-synuclein that less glu-

cocerebrosidase was bound to LIMP-2, which indicates less

translocation of glucocerebrosidase to the lysosome (Gegg et al.,

2012).

It still remains unclear how a variation near or inside SCARB2

could be associated with Parkinson’s disease (Hopfner et al.,

2013). Recent genetic-based evidence has suggested an associ-

ation between SCARB2 and Parkinson’s disease. Genome-wide

association studies identified an association between rs6812193,

a single nucleotide polymorphism located upstream of the

SCARB2 gene, and Parkinson’s disease (OR = 0.84) in a popula-

tion of European ancestry (Do et al., 2011). The single nucleotide

polymorphism is located in an intron of FAM47E, a gene encoding

a protein of unknown function (Do et al., 2011). This association

was confirmed by the International Parkinson’s Disease Genomics

Consortium (2011) in a two-stage meta-analysis, and further sup-

ported by an independent genotyping study of 984 patients with

Parkinson’s disease and 1014 controls of German/Austrian descent

(Hopfner et al., 2013). However, the association was not seen in a

Chinese study of 449 patients with Parkinson’s disease and 452

controls (Chen et al., 2012; Hopfner et al., 2013). A candidate

gene screen, performed on 347 subjects with sporadic Parkinson’s

disease and 329 controls from Greece, revealed an additional

single nucleotide polymorphism, rs6825004, located within intron

2 of SCARB2, that appeared to be associated with Parkinson’s

disease (OR = 0.68). However, the authors recognized the limita-

tions in their study because of the small sample size (Michelakakis

et al., 2012). In another small study, the presence of rs6812193

and/or rs6825004 single nucleotide polymorphisms and corres-

ponding SCARB2 and LIMP-2 expression levels were assessed in

15 lymphocyte and leucocyte samples derived from individuals

without Parkinson’s disease. There was no indication that the

SCARB2 single nucleotide polymorphism genotypes described

were associated with the modulation of SCARB2 messenger

RNA and LIMP-2 protein expression levels (Maniwang et al.,

2013).

Saposin C: an activator of
glucocerebrosidase
Mature saposin C (SAPC) is a glucocerebrosidase enzyme activator

in lysosomes and is essential in the hydrolysis of glucocerebroside

(Beutler and Grabowski, 2001; Sidransky, 2004; Vaccaro et al.,

2010), but the mechanism for this activation is not fully under-

stood. Saposin A, B, C, and D are small homologous glycoproteins

with six cysteine residues forming disulphide bridges. The bridges

are crucial for saposin C function (Tamargo et al., 2012). Saposin

proteins are generated through proteolytic cathepsin D-mediated

cleavage of its precursor prosaposin (Hiraiwa et al., 1997; Yuan

and Morales, 2011). Biophysical experimental evidence indicates

that saposin C-mediated extraction and solubilization of
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glucocerebroside exposes the lipid substrate to glucocerebrosidase

for subsequent hydrolysis (Alattia et al., 2006, 2007) (Fig. 2). An

additional role for saposin C is the protection of glucocerebrosi-

dase against proteolytic breakdown, which is demonstrated by a

significant reduction in levels of glucocerebrosidase protein and

enzyme activity in saposin C-deficient cells (Sun et al., 2003,

2010). Because of its essential role as a glucocerebrosidase activa-

tor, saposin C could be a modifier gene for Gaucher disease and

potentially Parkinson’s disease. Indeed, crossbreeding studies with

a mouse model of saposin C, created by a knock-in mutation in

exon 11 of the prosaposin gene, and the V394L homozygous

Gaucher mouse (Xu et al., 2003; Hruska et al., 2008; Sun

et al., 2010), revealed that the combined deficiencies exacerbate

the Gaucher disease phenotype, with progressive neurological

complications resulting in early death, greater glucocerebrosidase

activity reduction, significant defects in glucocerebroside 18:0

species breakdown in the brain, and increased storage of the sub-

strates glucocerebroside and glucosylsphingosine (Sun et al.,

2013b). This model confirmed that saposin C could act as a dis-

ease modifier for Gaucher disease. Only six patients with saposin

C deficiency have been described in the literature and a correlation

was observed between the type of mutation and the nature of

their Gaucher-like phenotype. Patients with mutations in the cru-

cial cysteine residues in the saposin C domain of prosaposin had a

clinical phenotype similar to Gaucher disease type 3, whereas

those with other mutations resembled non-neuronopathic type 1

Gaucher disease (Christomanou et al., 1986, 1989; Schnabel

et al., 1991; Rafi et al., 1993; Diaz-Font et al., 2005; Tylki-

Szymanska et al., 2007, 2011; Vaccaro et al., 2010). Complete

deficiency of prosaposin and consequently all saposins, resulted in

a severe fatal neurological infantile sphingolipidosis (Hulkova

et al., 2001). As patients with both saposin C and glucocerebro-

sidase deficiencies have never been identified, it is difficult to

assess the role of saposin C as a modifier gene in human samples.

Interestingly, patient fibroblasts with cysteine saposin C mutations

showed an accumulation of autophagosomes, which was believed

to be caused by reduced protein levels and enzymatic activity of

both cathepsin B and D (Tatti et al., 2011, 2012, 2013).

Exogenous over-expression of both cathepsins restored autolyso-

somal degradation (Tatti et al., 2013). This secondary effect of
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involved in the CLEAR network, including GBA1. (2) GBA1 messenger RNA is translated into glucocerebrosidase. The interaction with its
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saposin C deficiency is of great interest as malfunctions in the

autophagy clearance pathway and their role in the development

of Parkinson’s disease are well documented (Lim and Zhang,

2013), as is the role of cathepsin D in proteolytic breakdown of

a-synuclein (Cullen et al., 2009). Although saposin C can act as a

modifier gene for Gaucher disease in a mouse model (Sun et al.,

2010), appropriate saposin C expression studies on samples from

patients with Gaucher disease with discordant phenotypes are

currently lacking. Also, considering the recent observations of

reduced wild-type glucocerebrosidase activity in Parkinson’s dis-

ease models and patient samples, it is possible that altered saposin

C levels in patients with Parkinson’s disease (with or without

GBA1 mutations) could be a crucial determinant in the develop-

ment of synucleinopathies.

TFEB: a regulator of GBA1/
glucocerebrosidase expression
A majority of the genes involved in both lysosomal function and

biogenesis are part of the coordinated lysosomal expression and

regulation network. Expression of gene members of this network is

positively regulated by the basic helix-loop-helix leucine zipper

transcription factor EB (TFEB), which binds to the GTCACGTGAC

motif element within their promoter region (Sardiello et al., 2009).

Work by Ballabio and colleagues established that TFEB is part of a

signalling pathway by which lysosomes self-regulate. Indeed,

experimental data in Drosophila S2, human HEK293T cells, and

a cell-free system support an ‘inside-out’ model in which accumu-

lated amino acids inside the lysosome initiate signalling through

the v-ATPase-Ragulator protein complex to Rag-GTPases, which,

in turn, recruit mammalian target of rapamycin (mTOR) to the

surface of the lysosomes (Sancak et al., 2008, 2010; Zoncu

et al., 2011). TFEB interacts with mTOR on the lysosomal surface,

where phosphorylation of multiple serine residues by mTOR pre-

vents TFEB translocation to the nucleus (Settembre and Ballabio,

2011; Settembre et al., 2012; Martina and Puertollano, 2013). Cell

starvation, which includes amino acid depletion within the lyso-

some, results in inhibition of the ‘inside-out’ signalling pathway,

and eventual mTOR release from the lysosome surface. TFEB is no

longer phosphorylated, and translocates to the nucleus, where it

activates transcription of the coordinated lysosomal expression and

regulation network genes and autoregulates its own expression

through a feedback loop (Settembre et al., 2012, 2013). In add-

ition to its role in lysosomal function and biogenesis, TFEB is also

a key player in lipid metabolism (Settembre et al., 2013), auto-

phagosome formation and autophagosome-lysosome fusion

(Settembre and Ballabio, 2011), and Ca2 +-mediated lysosomal

exocytosis, which can positively affect cellular substrate clearance

in select lysosomal storage disorders, including Batten disease,

Pompe disease, neuronal ceroid lipofuscinoses, multiple sulphatase

deficiency, and mucopolysaccharidosis type IIIA (Medina et al.,

2011).

TFEB over-expression and silencing studies in HeLa cells showed

that TFEB positively regulated GBA1 messenger RNA expression

(Fig. 2). Additionally, chromatin immunoprecipitation analysis con-

firmed that GBA1 is a direct target of TFEB (Sardiello et al., 2009).

The TFEB field is still in its infancy and very few studies on its role

in neurodegeneration are available. One study showed that

adenovirus-mediated over-expression of human a-synuclein in

the midbrain of rats induced TFEB retention in the cytoplasm,

blockage of lysosomal function, accumulation of a-synuclein in

autophagosomes, and progressive build-up of a-synuclein oligo-

mers. Co-immunoprecipitation experiments showed an interaction

between a-synuclein and TFEB, suggestive of a role for

a-synuclein in cytoplasmic sequestration of TFEB. These observa-

tions were confirmed in nigral dopaminergic neurons of post-

mortem Parkinson’s disease midbrains. In the a-synuclein rat

model, both over-expression of TFEB or activation through

pharmacological inhibition of mTOR resulted in a block in the

progression of a-synuclein-mediated neurodegeneration. This

study puts TFEB on the map as a key player in Parkinson’s disease

(Decressac et al., 2013). Recently, reduced wild-type glucocereb-

rosidase protein levels were observed in samples from patients

with synucleinopathies (Balducci et al., 2007; Parnetti et al.,

2009; Gegg et al., 2012). It is possible that this could be because

of a-synuclein-induced TFEB retention in the cytoplasm with con-

sequently lower transcription of GBA1 messenger RNA. Currently,

TFEB is the only known transcription factor for GBA1, but a study

of the promoter and regulatory regions of GBA1 revealed several

conserved transcription factor-binding sites resulting in altered

GBA1 expression levels when mutated. This suggests that these

regions might be involved in transcriptional regulation of GBA1

and potentially contribute to the complex phenotypic diversity

observed in Gaucher disease including the development of

Parkinson’s disease (Blech-Hermoni et al., 2010).

Therapeutics for Gaucher
disease may have promise for
the treatment of the
synucleinopathies
As previously mentioned in this review, studies performed on cell

free systems, cell and animal models, and patient samples have

demonstrated that knockdown of GBA1 expression, the introduc-

tion of GBA1 mutations, inhibition by CBE, or treatment with

glucocerebroside substrate all enhance accumulation and/or oligo-

merization of a-synuclein (Manning-Bog et al., 2009; Cullen et al.,

2011; Mazzulli et al., 2011; Sardi et al., 2011, 2013; Gegg et al.,

2012; Cleeter et al., 2013; Osellame et al., 2013). On the other

hand, upregulation of a-synuclein levels decrease glucocerebrosi-

dase protein and activity levels in cell-free systems, cell and mouse

models, and post-mortem brains of Parkinson’s disease patients

with and without GBA1 mutations (Mazzulli et al., 2011; Sardi

et al., 2011, 2013; Yap et al., 2011, 2013; Gegg et al., 2012).

This reciprocal relationship between glucocerebrosidase activity

and a-synuclein levels has generated great interest in the potential

role of Gaucher disease therapeutics for the treatment of the

synucleinopathies (Sardi et al., 2013; Schapira and Gegg, 2013).

Therapies for Gaucher disease, which are targeted towards aug-

menting glucocerebrosidase activity or decreasing glucocerebroside
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storage, could prove to be promising strategies for modulating

a-synuclein proteostasis and its subsequent aggregation and oligo-

merization. This rational was supported by experimental evidence

showing that viral-mediated infection into the central nervous

system of a mouse model with GBA1 mutations representing neu-

ronopathic Gaucher disease and a transgenic mouse model over-

expressing A53T a-synuclein without GBA1 mutations significantly

reduced a-synuclein levels (Sardi et al., 2013). This set a paradigm

for augmentation of glucocerebrosidase activity as a beneficial

therapeutic strategy for halting disease progression in patients

with Parkinson’s disease, both with and without GBA1 mutations,

and even preventing the onset of Parkinson’s disease in healthy

individuals. In this review, we address FDA-approved and ‘under

development’ therapeutics for Gaucher disease and their potential

implications for treatment of the synucleinopathies.

The first available FDA-approved therapy for Gaucher disease

was enzyme replacement therapy, which was developed at the

National Institutes of Health. Patients with Gaucher disease type

1 received intravenous infusion of exogenous enzyme, which

improved haematologic and visceral manifestations and reduced

glucocerebroside levels (Brady et al., 1974; Barton et al., 1991).

Currently, three different recombinant enzymes are commercially

available, imiglucerase, taliglucerase alfa, and velaglucerase alfa.

Although each of the enzymes differ in their cell system produc-

tion and glycosylation pattern, the function and biodistribution of

all three enzymes are comparable (Tekoah et al., 2013) (Fig. 3).

As intravenous enzyme replacement therapy does not cross the

blood–brain barrier it does not ameliorate neurological manifest-

ations and would not be suitable for treatment of Parkinson’s

disease neuropathology (Erikson, 2001; Beck, 2007). In fact,

patients with Gaucher disease undergoing enzyme replacement

therapy have still gone on to develop Parkinson’s disease.

The accumulation of glucocerebroside in the lysosome can

impact a-synuclein breakdown and oligomerization (Mazzulli

et al., 2011), which suggests that therapeutic reduction of exces-

sive glucocerebroside substrate could potentially be beneficial for

Parkinson’s disease. Therapeutic inhibition of the enzyme gluco-

sylceramide synthase, which catalyzes the synthesis of glucocereb-

roside, attenuates glucocerebroside production and has been

used as a form of substrate reduction therapy. Treatment of pa-

tients with Gaucher disease with two glucosylceramide synthase

inhibitors, miglustat (N-butyldeoxynojirimycin) and eliglustat tar-

trate, resulted in visceral and hematopoietic improvement but

failed to impact neurological manifestations (Lukina et al.,

2010). Recently, a screening effort of novel compounds identified

the compound GZ 161, which successfully reduced both glucocer-

ebroside and glucosylsphingosine accumulation in the brain of the

K14 acute neuronopathic Gaucher disease mouse model and sig-

nificantly increased their lifespan (Cabrera-Salazar et al., 2012).

Another approach gaining much momentum in the field of lyso-

somal storage disorders is pharmacological chaperone therapy. The

proper folding process of glucocerebrosidase takes place in the

endoplasmic reticulum by direct interaction with endogenous

cellular chaperones such as heat shock protein 90 and heat

shock protein 70 (Lu et al., 2011). Studies have demonstrated

that several disease-causing glucocerebrosidase mutants are mis-

folded and do not pass the ERAD quality control system, which

leads to early proteasome-mediated degradation (Ron and

Horowitz, 2005; Ron et al., 2010; Bendikov-Bar et al., 2011;

Bendikov-Bar and Horowitz, 2012; Maor et al., 2013a, b).

Therapy with pharmacological chaperones, which specifically

bind to the newly synthesized mutant enzyme, can prevent pre-

mature ERAD and promote trafficking to the lysosome, where

most mutant glucocerebrosidase proteins can exert sufficient re-

sidual enzyme activity for the breakdown of accumulated lyso-

somal glucocerebroside (Lieberman et al., 2009; Bendikov-Bar

et al., 2013) (Fig. 3). The drawback of such a therapeutic

approach is that translation of mutated glucocerebrosidase and

an intact chaperone-binding site are required. Treatment will not

be effective in the case of null alleles, large deletions, or mutations

affecting the chaperone-binding site. Many of the pharmacological

chaperones are inhibitors of glucocerebrosidase that bind to its ac-

tive site. Ambroxol is a pH-dependent mixed inhibitor of glucocer-

ebrosidase that was identified by screening of an FDA-approved

drug library (Maegawa et al., 2009); it is a potent chaperone for

the translocation of mutant glucocerebrosidase to lysosomes

(Bendikov-Bar et al., 2011, 2013; Babajani et al., 2012; Luan

et al., 2013). One limited pilot study conducted in a small

group of patients with Gaucher disease indicated amelioration of

clinical symptoms after ambroxol treatment (Zimran et al., 2013),

but its efficacy in relevant Parkinson’s disease models has not

yet been evaluated. Another glucocerebrosidase inhibitor,

Isofagomine, showed great efficacy in cell and mouse models of

Gaucher disease, resulting in increased glucocerebrosidase protein

levels and enzyme activity, reduction in levels of glucocerebroside

and glucosylsphingosine, delayed neurological manifestations, and

increased life span (Khanna et al., 2010; Sun et al., 2011, 2012),

but improvement in clinical symptoms were not observed in a

phase 2 clinical trial (Zimran, 2011). In a cell model for

Parkinson’s disease consisting of PC12 cells over-expressing

a-synuclein and transfected with wild-type or mutant glucocereb-

rosidase, the efficacy of isofagomine treatment on a-synuclein

levels was non-significant (Cullen et al., 2011); its efficacy in rele-

vant in vivo models of Parkinson’s disease remains to be investi-

gated. Clinical development of these inhibitory chaperones has

major obstacles as both drug dosage and the length of treatment

have to be carefully optimized for high endoplasmic reticulum to

lysosome chaperone activity, yet minimal lysosomal enzyme inhib-

ition. This can be circumvented by using pharmacological chaper-

ones that both facilitate the lysosomal translocation and residual

activity of mutant glucocerebrosidase without enzyme inhibition.

Recent efforts have identified promising activators that increase

translocation and enzyme activity of mutant glucocerebrosidase

in fibroblasts (Goldin et al., 2012; Patnaik et al., 2012).

As ERAD is a major player in the premature degradation of

many glucocerebrosidase mutants, targeting proteins that regulate

the proteostasis of mutated glucocerebrosidase could serve as an

alternative therapy. Recently, histone deacetylase inhibitors were

identified as modulators of heat shock protein 90-dependent deg-

radation of mutated glucocerebrosidase by inhibiting the

deacetylation of heat shock protein 90. Treatment resulted in

increased glucocerebrosidase protein levels and enzyme activity

in Gaucher disease fibroblasts (Lu et al., 2011; Yang et al.,

2013). Future development of histone deacetylase inhibitors
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for therapeutics might prove challenging, as the target of this

therapy remains broad rather than glucocerebrosidase-specific.

Additionally, the exact molecular mechanism of regulation of pro-

teostasis by histone deacetylase inhibitors remains unclear.

Other lysosomal storage
disorders and the development
of the synucleinopathies
There are 450 different lysosomal storage disorders. There have

been several individual case reports of patients and carriers with

specific lysosomal storage disorders that suggest that there may

be neuropathological findings suggestive of Parkinson’s disease,

with reports of a-synuclein accumulation and inclusions, and the

loss of neurons in the substantia nigra. This indicates that it

might be worthwhile to expand research into defects in the cellu-

lar pathways that link synucleinopathies with changes in

glucocerebrosidase protein amount and activity to a variety of

enzymes involved in lysosomal storage disorders (reviewed by

Shachar et al., 2011). Recently, molecular studies screening for

mutations for genes involved in specific lysosomal storage dis-

orders shed new light on the association with synucleinopathies.

Niemann-Pick disease is a lysosomal storage disorder with

heterogeneous clinical features and severity. Types A (OMIM

#257200) and B (OMIM #607616) are both associated with a

deficiency of the acid sphingomyelinase enzyme, which is encoded

by the sphingomyelin phosphodiesterase gene, and catalyzes the

breakdown of sphingomyelin into ceramide and phosphorylcholine

in lysosomes. Acid sphingomyelinase deficiency results in sphingo-

myelin accumulation in phagocytic cells and neurons resulting in

clinical symptoms such as failure to thrive, hepatosplenomegaly

and progressive neurodegeneration (Vanier, 2013). Two recent

independent reports identified variations in the sphingomyelin

phosphodiesterase gene as risk factors for Parkinson’s disease.

Gan-Or and colleagues (2013) identified the founder mutation

to be associated with Parkinson’s disease with an odds ratio of
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chemical chaperone

mutant GCase

breakdown product

WT GCase

recombinant GCase

2

1

4

5

3

lysosome

M6PR

proteasome

ub
ubub

ER

LE

Golgi ECE

CM

Figure 3 Therapeutic strategies to enhance glucocerebrosidase. (1 and 2) In healthy cells, wild-type glucocerebrosidase (WT GCase) is

sorted to the lysosome via the endoplasmic reticulum, Golgi, and late endosomes (LE) where it will degrade its substrate glucocerebroside.

(3) Mutant glucocerebrosidase is misfolded in the endoplasmic reticulum, becomes polyubiquitinated (ub) and undergoes proteasome-

mediated degradation. (4) Pharmacological chaperones can stabilize mutant glucocerebrosidase and facilitate translocation to lysosomes.

(5) In enzyme replacement therapy, recombinant glucocerebrosidase enzyme is delivered into the cells via the mannose-6-phosphate

receptor and trafficked through the late endosomes to the lysosomes where it is able to degrade substrate. CM = Cell Membrane.
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9.4 in two Ashkenazi Jewish Parkinson’s disease patient cohorts

consisting of 938 patients (Gan-Or et al., 2013). Another variant

(p.R591C) increasing the risk for Parkinson’s disease was identified

from a cohort of 1004 patients of Chinese ancestry (Foo et al.,

2013).

Sanfilippo syndrome B or Mucopolysaccharidosis type III B

(OMIM #252920) is an autosomal recessive lysosomal storage dis-

order caused by mutations in the a-N-acetylglucosaminidase gene

leading to the accumulation of heparan sulphate in lysosomes.

Clinical symptoms range from mild to severe and include progres-

sive neurodegeneration, skeletal changes, and behavioural prob-

lems (Chinen et al., 2005). Allelic analysis of two single nucleotide

polymorphisms in a-N-acetylglucosaminidase on DNA samples of

926 patients with Parkinson’s disease and 2308 control subjects

showed an association between rs2071046 and an increased risk

for developing Parkinson’s disease (Winder-Rhodes et al., 2012).

Wu et al. (2008) measured enzyme activity of 11 lysosomal

hydrolases in peripheral blood leucocytes of 38 patients with spor-

adic Parkinson’s disease and 258 controls. Only the activity of

alpha-galactosidase A was significantly reduced. Deficiency in

alpha-galactosidase A causes the X-linked lysosomal storage dis-

order Fabry disease (OMIM#301500), which is characterized by

lysosomal storage of globotriaosylceramides and glycosphingoli-

pids (Desnick et al., 2001). Interestingly, in this study glucocereb-

rosidase did not show significant reduction in enzyme activity in

peripheral blood leucocytes of patients with Parkinson’s disease

compared to controls (Wu et al., 2008). A molecular follow-up

study identified no differences in the frequency of single nucleo-

tide polymorphisms in the promoter and exonic regions of the

alpha-galactosidase gene in patients with sporadic Parkinson’s dis-

ease and healthy control subjects (Wu et al., 2011).

Concluding remarks
Recent insights into the relationship between glucocerebrosidase

(wild-type and mutant) and a-synuclein in the synucleinopathies

have shed new light on the cellular mechanism of a-synuclein

pathology in Parkinson’s disease and dementia with Lewy

bodies. As only a minority of patients with Gaucher disease,

GBA1 mutation carries, or individuals in the overall population

develop synucleinopathies, it is apparent that the delicate balance

between a-synuclein proteostasis and glucocerebrosidase enzyme

activity must be affected by other modifiers manipulating gluco-

cerebrosidase or a-synuclein levels. It will be of interest to inves-

tigate some of the potential modifiers in cell and animal models, as

well as in patient samples. This new understanding of balancing

a-synuclein proteostasis by correcting glucocerebrosidase enzyme

levels holds novel possibilities for the future treatment of parkin-

sonism. Glucocerebrosidase-specific pharmacological chaperones,

especially activators that cross the blood–brain barrier, will be of

great interest in this endeavour. Finally, limited research on other

lysosomal storage disorders suggests that mutations in other lyso-

somal enzymes may similarly play a role as risk factors for the

synucleinopathies, but it remains to be seen whether the activity

of these enzymes also affect a-synuclein proteostasis. This story

clearly illustrates how studies into the pathogenesis and therapy of

a rare genetic disorder can lead to advances impacting the multi-

tudes of patients with common complex diseases like Parkinson’s

disease worldwide.
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