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The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not

couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental auto-

immune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood–brain barrier.

These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining

positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood–brain barrier model we

demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood–

brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed

ameliorated experimental autoimmune encephalomyelitis in Darc�/� C57BL/6 and SJL mice, as compared to wild-type control

littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc�/� and wild-type mice revealed that

increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of

erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial

DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to

the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood–brain barrier.
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Introduction
Multiple sclerosis is the most common inflammatory demyelinating

disease of the CNS with unknown aetiology to this date. Much of

our current knowledge about multiple sclerosis pathogenesis has

been obtained from its animal model experimental autoimmune

encephalomyelitis (EAE). In EAE CD4 + auto-aggressive T cells

are activated outside of the CNS. To gain access to the CNS,

where they start the molecular events leading to inflammation,

oedema formation and demyelination, T cells have to breach the

endothelial blood–brain barrier. Interaction of auto-aggressive

immune cells with the blood–brain barrier endothelium has there-

fore been recognized as a major pathophysiological hallmark of

EAE and multiple sclerosis. In fact, inhibition of immune cell traf-

ficking into the CNS with the humanized anti-�4-integrin antibody

natalizumab is a successful therapeutic regimen for the treatment

of multiple sclerosis (Engelhardt and Kappos, 2008).

The recruitment of T cells across the inflamed blood–brain bar-

rier during EAE is mediated by the sequential interaction of differ-

ent adhesion and/or signalling molecules on the immune cell and

the blood–brain barrier endothelium. P-selectin/PSGL-1-mediated

rolling and �4b1-integrin/VCAM1-mediated capture of encephali-

togenic T cells on the brain endothelium is followed by �4b1-in-

tegrin-VCAM1 and LFA-1–ICAM1/2-mediated T cell arrest on the

blood–brain barrier. This is followed by LFA-1-ICAM1/2 mediated

T cell polarization and T cell crawling on the blood–brain barrier

against the direction of blood flow with the aim to find a site

permissive for diapedesis across the blood–brain barrier

(Engelhardt and Ransohoff, 2012).

In addition to integrins and their endothelial ligands of the im-

munoglobulin superfamily there is a large body of evidence sug-

gesting that chemokines are critically involved in the migration of

inflammatory cells across the blood–brain barrier during EAE and

multiple sclerosis. Chemokine binding to their respective G-protein

coupled receptors on the leucocyte surface leads to the inside-out

activation of constitutively expressed integrins on the leucocyte

surface. Activated intergins display an increased affinity and avid-

ity, which is prerequisite for integrin-mediated firm adhesion of

immune cells to the vascular endothelium. Live cell imaging studies

have provided evidence that integrin-mediated stable adhesion of

encephalitogenic T cells in CNS microvessels requires G-protein

coupled receptor signalling (Vajkoczy et al., 2001; Piccio et al.,

2002). To act on the circulating T cells, the chemokines must be

available at the luminal surface of the blood–brain barrier. Luminal

presence of CCL2 and CCL5 on the blood–brain barrier has been

suggested by live cell imaging studies demonstrating that antibo-

dies blocking CCL2 and CCL5 prevented leucocyte adhesion but

not rolling in the inflamed brain microvasculature during EAE (dos

Santos et al., 2005). In addition, EAE studies in mice with genetic

deletions of the chemokine receptors CCR1 (Rottman et al.,

2000), CCR2 (Fife et al., 2000; Izikson et al., 2000) or CXCR2

(Carlson et al., 2008) have indicated that these molecules and

their respective ligands—CCL5, CCL2 and CXCL1 (Roy et al.,

2012)—are involved in EAE pathogenesis. In apparent contrast

to their involvement in inflammatory cell entry into the CNS

during EAE, expression of CCL2, CCL5 and CXCL1 was found

to be mainly localized to astrocytes within the CNS parenchyma,

rather than to brain endothelial cells (Ransohoff et al., 1993;

Miyagishi et al., 1997; Glabinski et al., 1999). If these chemokines

therefore function to mediate inflammatory cell entry into the CNS

parenchyma during EAE it is mandatory that they could breach the

endothelial blood–brain barrier from the abluminal to the luminal

side.

In contrast to blood vessels in peripheral organs, the highly

specialized endothelial cells forming the blood–brain barrier inhibit

transcellular or paracellular diffusion of inflammatory mediators by

their extremely low pinocytotic activity and an elaborate network

of complex P-face associated tight junctions between the endo-

thelial cells (Engelhardt and Sorokin, 2009). These physical barrier

characteristics protect the CNS parenchyma from the constantly

changing milieu in the blood stream and thus maintain CNS

homeostasis, which is prerequisite for the proper function of neu-

rons. At the same time the blood–brain barrier endothelium estab-

lishes a functional barrier by the expression of transporters and

enzymes, which strictly control the import of nutrients from the

blood stream into the CNS and the export or degradation of me-

tabolites out of the CNS (Engelhardt and Sorokin, 2009). Thus,

availability of inflammatory chemokines derived from CNS paren-

chymal cells on the luminal blood–brain barrier critically relies on

the availability of a chemokine transport system allowing CNS

expressed chemokines to breach the blood–brain barrier from

the abluminal to the luminal side.

One such transport system could be the Duffy antigen receptor

for chemokines (DARC). DARC belongs to a family of silent seven-

transmembrane spanning receptors, which because of the lack of

the DRYLAIV consensus motif in the second intracellular loop, do

not couple to G proteins and therefore do not transmit intracellular

signals like other G-protein coupled chemokine-receptors leading

to integrin activation or cell motility (Novitzky-Basso and Rot,

2012). DARC binds to a broad range of inflammatory chemokines

of both the CC and the CXC chemokine families, but does not

interact with homeostatic chemokines (Gardner et al., 2004).

DARC is expressed on erythrocytes, cerebellar neurons and most

importantly on postcapillary venule and capillary endothelial cells

in a number of peripheral organs including lymph nodes

(Kashiwazaki et al., 2003), the lung (Lee et al., 2003), and the

kidney, but not on arterial endothelial cells (Middleton et al.,

2002). In these organs, endothelial DARC is therefore specifically

expressed in the vascular segment involved in leucocyte extrava-

sation. In fact, DARC was shown to mediate chemokine transcy-

tosis from the basolateral to the luminal side of the endothelium,

where the chemokines remain immobilized on the tips of endo-

thelial apical microvilli and enhance leucocyte trafficking in vivo

(Pruenster et al., 2009).

Expression of DARC at the blood–brain barrier has not been

described. Here we investigated expression of DARC in blood–

brain barrier endothelium. We found that DARC is induced in

blood–brain barrier endothelium before onset of clinical EAE and

in multiple sclerosis in vivo and that brain endothelial DARC can

shuttle inflammatory chemokines from the abluminal to the lu-

minal surface of an in vitro blood–brain barrier model.

Contribution of DARC in EAE pathogenesis was confirmed by an

ameliorated disease course in Darc�/� SJL/J and Darc�/� C57BL/
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6 mice compared with wild-type littermates. EAE experiments in

reciprocal bone marrow chimeric mice demonstrated that although

increased plasma levels of inflammatory chemokines observed

during EAE depended on the presence of erythrocyte DARC,

amelioration of EAE required the absence of endothelial DARC.

Taken together, our data confirm a role for erythrocyte DARC

as a chemokine reservoir and demonstrate that endothelial

DARC contributes to EAE pathogenesis by shuttling chemokines

across the blood–brain barrier.

Materials and methods

Mice
Mice were bred in individually ventilated cages at specific pathogen-

free conditions according to the animal protection law of the Kanton

Bern, Switzerland. Breeding of mice and all animal experiments shown

in this study have been approved by the veterinary office of the

Kanton Bern. Wild-type SJL/J HanHsd (SJL) or C57BL/6 JOlaHsd

(C57BL/6) mice were purchased from Harlan, AD Horst, The

Netherlands. Darc�/� mice (Dawson et al., 2000) were characterized

previously and shown to lack expression of functional DARC protein.

Darc�/� mice were backcrossed into C57BL/6 or SJL background for a

minimum of 10 generations before use in experiments. The genotype

of mice was confirmed by PCR as described (Dawson et al., 2000).

Reciprocal bone marrow chimeric mice were generated by reconsti-

tuting lethally irradiated C57BL/6 or Darc�/� C57BL/6 mice (10 grey)

with 1 � 106 up to 2.5 � 106 isolated total bone marrow cells of non-

irradiated donor mice of either C57BL/6 wild-type or Darc�/� C57BL/6

mice. Recipient mice were used at 12 to 14 weeks of age and bone

marrow donor mice were used at the age of 12 weeks to 6 months.

After bone marrow reconstitution, mice were kept in individually venti-

lated cages on autoclaved bedding. Mice received trimethoprim

(0.16 mg/ml) and sulfamethoxazole (0.8 mg/ml) within their drinking

water as a precaution. Mice were used for experiments 6–8 weeks

after reconstitution.

Human tissue
Human brain tissues were obtained from post-mortem autopsies sup-

plied by the UK Multiple Sclerosis Tissue Bank (UK Multicentre

Research Ethics Committee, MREC/02/2/39), funded by the Multiple

Sclerosis Society of Great Britain and Northern Ireland (registered char-

ity 207495). Cortical tissue with subcortical white matter from five

cases without any diagnosed neurological disease was taken as con-

trols. These subjects had an average age of 69.4 years [�21.5 stand-

ard deviation (SD)] and an average post-mortem time of autopsy was

14.2 h (�6.98 SD). Cortical tissues from nine cases with multiple scler-

osis with average disease duration of 28.75 years (�11 SD) were used

for this study. Their average age was 56 years (�15.98 SD), and an

average post-mortem time of autopsy was 13.67 h (�6.73 SD).

DARC-positive blood vessels in subcortical white matter in mul-

tiple sclerosis and control cases were counted using the ‘cell counter’

in ImageJ and assessed per cm2. An unpaired t-test was performed

with the data for all multiple sclerosis cases (n = 10 tissue sam-

ples of nine cases) and control cases (n = 8 tissue samples of five

cases).

Experimental autoimmune
encephalomyelitis
Active EAE was induced in 8–12-week-old C57BL/6 wild-type and

Darc�/� C57BL/6 mice or in bone marrow chimeric mice 6 to 8

weeks after reconstitutions, as described previously (Engelhardt

et al., 2005; Doring et al., 2007). Active EAE in Darc�/� SJL and

wild-type SJL mice was induced as described (Engelhardt et al.,

2005; Doring et al., 2007). Weight and clinical disease were assessed

daily and scored as: 0 = healthy, 0.5 = limb tail, 1 = hind leg weakness,

2 = hind leg paraplegia, 3 = hind leg paraplegia and incontinence. Mice

with more severe EAE scores were sacrificed as requested by the vet-

erinary office of the Kanton Bern and are therefore not included into

this study.

Antibodies
Supernatants of the hybridomas Hermes-1 (9B5, anti-human CD44,

used as an isotype-matched control) and M1/9 (anti-mouse CD45)

were produced in our own laboratory and used undiluted. Mec13.3

(anti-mouse PECAM1) was a gift of Dr E. Dejana (IFOM, Milan, Italy).

A polyclonal rabbit anti-mouse DARC antibody against the C-terminus

(amino acids 319–333: LPRQASQMDALAGK) as previously published

(Kashiwazaki et al., 2003) was prepared by Sigma-Genosys, Sigma

Aldrich. Purified IgG fractions of the antisera were obtained by protein

A affinity chromatography. Specific recognition of DARC by the poly-

clonal IgG fraction was confirmed by positive immmunoreactivity on

spotted peptides, western blots of lymph nodes and specific staining of

high endothelial venules of peripheral lymph nodes in frozen tissue

sections of wild-type mice and absence of this staining in Darc�/�

mice. Secondary antibodies used were Alexa Fluor� 488 goat-anti

rat IgG, Cy3 goat anti rat IgG, biotin goat anti-rat IgG combined

with AMCA-streptavidin and Cy3-goat anti rabbit IgG (all from

Jackson ImmunoResearch Laboratories).

Immunofluorescence staining
Immunofluorscence staining of mouse tissue sections and on

pMBMECs (primary mouse brain microvascular endothelial cells)

were performed as described previously (Pfeiffer et al., 2008, 2011;

Steiner et al., 2011).

Immunohistochemistry on human brain
tissue
Cryostat sections (12mm) of fresh frozen human post-mortem cortical

tissue were fixed in 4% paraformaldehyde for 10 min at 4�C. For in-

activation of endogenous peroxidise, sections were treated with 0.6%

hydrogen peroxide in methanol for 30 min and blocked with blocking

buffer (1% normal donkey serum, 0.1% Triton, 0.05% Tween) for

1 h. Sections were incubated with the following primary antibodies

overnight at 4�C: mouse anti-human DARC (generous gift from Dr

M. Uchikawa, Japanese Red Cross, Tokyo, Japan, 1:200), mouse anti-

MOG (clone Z12, kindly provided by R. Reynolds, 1:100), mouse anti-

CD68 (Abcam Ab845, 1:50) and mouse anti-CollagenIV (Cemicon,

1:2000). Secondary botinylated antibodies (Vector Laboratories,

1:500) were applied for 2 h at room temperature, followed by ABC

complex reagent (Vector Labs) for 30 min. Colour reaction was per-

formed with 3-amino-9-ethylcarbazole. Cells were stained in haema-

toxylin for 5 min and rinsed afterwards under running tap water.
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In situ hybridization
In situ hybridization was performed as described (Alt et al., 2002).

Briefly, single-stranded 35S-labelled antisense or sense RNA-probes

were generated by in vitro transcription using T3 or T7 RNA polymer-

ases as described by the manufacturer (Stratagene). The probe for in

situ hybridization was prepared from the I.M.A.G.E. Consortium

(Lennon et al., 1996) complementary DNA Clone IMAGE:718084.

The Darc complementary DNA EcoRI/NotI fragment was subcloned

into pBluescript II KS + (Stratagene). Expression of Darc messenger

RNA was investigated in sections of brain and spinal cord derived

from two different SJL/N mice with EAE (Day 14 and Day 17 post-im-

munization, clinical score 2 and 3, respectively) and from two different

healthy age-matched control mice. Specificity of the hybridization sig-

nals was verified by the use of sense probes on serial control sections.

After hybridization, slides were coated with photographic emulsion

(Kodak NTB-2) and exposed for 4 weeks. After fixation, sections

were counterstained with Toluidine blue, dehydrated, mounted and

analysed with dark and bright field microscopy.

Quantitative polymerase chain reaction
analysis
RNA extraction, complementary DNA synthesis and quantitative real-

time PCR analysis using SYBR� Green were performed in triplicates as

described (Lyck et al., 2009). The following primer pairs were used:

Pair 1: primer 911 (50-CTTCACCTTGGGACTCAGTGT-30) and primer

912 (50-GACTGGCAGCCCTAAGAGG-30). Pair 2: primer 913 (50-AGT

GTCCTGGGCATGCTG-30) and primer 914 (50-CTGCCAGTGGAAGA

AAGGTC-30). Negative control complementary DNA samples without

reverse transcriptase enzyme were assayed in parallel. As reference s16

ribosomal protein messenger RNA was included using the following

primer pair: sense GATATTCGGGTCCGTGTGA; reverse TTGAGAT

GGACTGTCGGATG.

T cell proliferation assay
In vitro antigen-recall assays to test for antigen-specific proliferation of

T cells was determined by measuring 3H-thymidine incorporation into

the DNA of proliferating T cells as previously described (Engelhardt

et al., 1998; Doring et al., 2007).

In vitro chemokine transport across the
blood–brain barrier
For in vitro chemokine transcytosis, pMBMECs were isolated from

brains of DARC-deficient and wild-type SJL mice at 6–8 weeks of

age, as described (Steiner et al., 2010). pMBMECs plated on

Matrigel (BD Biosciences) coated 0.4 mm pore size transwell filters

(Corning; Vitaris AG) and cultured for 6 days to reach confluency.

Optionally, pMBMECs were stimulated for 16–18 h with recombinant

mouse TNF-� (12.5 ng/ml). Endothelial cell-derived chemokine pro-

duction was assayed from samples taken before the experiments.

pMBMECs were washed once in minimal assay medium [Dulbecco’s

modified Eagle medium (4500 g/l glucose), 5 % (v/v) newborn calf

serum, 25 mM HEPES, 4 mM L-glutamine] and 100 ml fresh minimal

assay media was applied to the upper chamber. Fifty nanograms per

millilitre of the respective recombinant mouse chemokines (R&D

Systems Europe Ltd) added to 600ml minimal assay media into the

lower chamber and incubated at 37�C, 10% CO2. At 1-, 2- and 3-h

time points the filter inserts were removed to stop chemokine

transport and 50 ml samples were taken from the upper chambers

and immediately frozen at �20�C. After addition of 50 ml fresh min-

imal assay media to the upper chamber, filter inserts were placed back

into the lower compartment and the assay was further incubated until

the next time point. At the 3-h time point the assay was stopped and

50 ml samples were taken from the upper and lower chambers. Filter

inserts were washed twice in PBS, fixed for 2 h in formalin gas phase

and Giemsa stained [10 % (v/v) Giemsa solution in tap water; Sigma

Aldrich] for 30 min. Cells were air-dried overnight and mounted on

glass slides. Endothelial monolayer confluency was analysed by light

microscopy. All conditions were assayed in triplicates.

Detection of chemokines in mouse
plasma
Mice were anaesthetized and blood was collected by retro-orbital

bleed. Heparin (5000 U/ml) was added immediately and blood samples

were centrifuged (3000g) for 15 min at 4�C. Translucent blood plasma

was collected and stored at �20�C. Detection of chemokines in

mouse plasma was performed using a mouse cytokine array (R&D

Systems Europe Ltd) according to the instructions provided by the

manufacturer.

Analysis of chemokine concentrations
by ELISA
Chemokine concentrations in blood plasma or in samples from che-

mokine transcytosis assays were determined by ELISA (R&D Systems

UK) according to the protocol provided by the manufacturer. Data

were analysed using GraphPad Prism software, calculating values

using a four-parameter sigmoidal curve fit model.

Permeability assay
Barrier function of pMBMEC monolayers was studied as described

(Steiner et al., 2011).

Statistics
All statistical analyses were performed using Graph Pad Prism 4.0 soft-

ware for Macintosh. If not indicated differently, data are presented as

mean � SD and Student’s t-test was performed to compare different

data sets. Asterisks indicate significant differences (*P5 0.05;

**P5 0.005; ***P5 0.001).

Results

Expression of DARC is induced in
microvascular endothelial cells of
the CNS before onset and during
experimental autoimmune
encephalomyelitis
In a previous gene expression profiling study aiming to identify

genes involved in the migration of inflammatory cells across the

blood–brain barrier during EAE, we identified upregulated expres-

sion of DARC in cerebral microvessel preparations from C57BL/6
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and SJL mice with EAE when compared with microvessel prepar-

ations from healthy control mice (Alt et al., 2005). Subtractive

suppression hybridization and subsequent sequencing corrobo-

rated induction of DARC in inflamed microvessels during EAE

(Alt et al., 2005).

As DARC belongs to the family of atypical chemokine receptors,

its upregulation in inflamed CNS microvessels during EAE sug-

gested its involvement in the transport of CNS chemokines to

the luminal surface of brain endothelial cells and consequent

leucocyte recruitment across the blood–brain barrier (Pruenster

et al., 2009). To localize DARC expression to the endothelial

cells of CNS microvessels we performed in situ hybridizations on

frozen brain sections of SJL mice with EAE and of healthy SJL

mice. We found expression of Darc messenger RNA in brain

endothelial cells of inflamed venules in mice suffering from EAE

but not in the brains of healthy SJL mice (Fig. 1). We also con-

firmed expression of Darc messenger RNA in cerebellar neurons as

previously described (Horuk et al., 1996).

To validate the expression of DARC in endothelial cells of

inflamed CNS microvessels at the protein level, we generated a

polyclonal rabbit anti-mouse DARC antibody. Immunofluorescence

staining for DARC on frozen brain and spinal cord sections of SJL

and C57BL/6 mice at different time points after induction of EAE

was combined with staining for PECAM1 to identify endothelial

cells and staining for CD45 to localize inflammatory cells. The first

detectable immunofluorescent signal for DARC on PECAM1 +

endothelial cells of brain and spinal cord venules was already

observed at Day 7 after induction of EAE in both C57BL/6 and

SJL mice (Fig. 2, Supplementary Fig. 1 and data not shown). At

that time clinical EAE had not yet started and only sparse CD45 +

inflammatory cells were present in the CNS. On Day 11 post-im-

munization at the onset of clinical EAE we observed immunofluor-

escence for DARC on PECAM1 + endothelial cells of brain and

spinal cord venules surrounded by CD45 + inflammatory cell infil-

trates. Additional immunofluorescence for DARC was observed on

PECAM1 + endothelial cells in venules not surrounded by inflam-

matory cells. At Day 13 or 14 post-immunization during ongoing

EAE immunofluorescence for DARC was not further increased and

restricted to venules surrounded by inflammatory cuffs (Fig. 2 and

Supplementary Fig. 1). Taken together these findings suggest that

expression of DARC is induced in endothelial cells of CNS venules

after the induction of EAE before immune cell recruitment across

the blood–brain barrier and might contribute to cellular infiltration

of the CNS.

Increased expression of DARC in
multiple sclerosis white matter
To investigate whether DARC is also expressed in multiple scler-

osis, immunohistochemistry was performed on post-mortem mul-

tiple sclerosis brain tissues of nine cases with multiple sclerosis

analysing chronic active and chronic inactive lesions and compared

to five control cases without any diagnosed neurological disease.

DARC-positive blood vessels were detected in inflammatory

demyelinating lesions (Fig. 3B), identified by lack of myelin

(Fig. 3A) and inflamed vessels (Fig. 3C), in meninges, and in

normal appearing white matter in multiple sclerosis as well as in

inflamed white matter microvessels of control cases characterized

by the presence of CD68 + macrophages/activated microglia

(Fig. 3). Activated microglia in multiple sclerosis and control

white matter is frequently observed in post-mortem brain tissue,

but no direct correlation with DARC immunoreactivity could be

identified. Comparison with collagen IV immunostaining (Fig. 3E),

expressed by all CNS vessels, revealed DARC expression in

a subset of microvessels in multiple sclerosis and in controls

(Fig. 3F). Interestingly, control cases showing signs of neurode-

generative diseases other than multiple sclerosis accompanied by

chronic inflammation such as Alzheimer’s disease (detection of tau

aggregates) or hypoxia also presented with increased numbers of

DARC + brain microvessels (data not shown). When excluding

Figure 1 Induction of vascular Darc expression during EAE. In

situ hybridization analysis for Darc in the cerebellum of an SJL

mouse with EAE (Day 14, clinical score 2) and in a healthy

control mouse. A specific hybridization signal for Darc can be

localized to inflamed vessels in the EAE brain but not the control

brain with the anti-sense (as) probe. Note the additional specific

hybridization signal on cerebellar neurons of the granule cell

layer in the right lower corner. Control in situ hybridization using

the sense (s) probe did not produce any signal. Sections were

counterstained with Toluidine blue. Left: Bright field images.

Right: Dark field images. Top: Enlarged bright field image

showing Darc-specific hybridization on inflamed brain vessel

during EAE. Scale bar = 50mm. One experiment out of two

analysing two mice per group is shown.
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these controls, quantification showed a comparable collagen IV-

positive vessel density in subcortical white matter between con-

trols and patients with multiple sclerosis and identified a higher

number of DARC-positive vessels in multiple sclerosis than in con-

trol white matter (Fig. 3G). Furthermore, the higher number of

DARC-positive vessels detected in multiple sclerosis tissue was

equally observed in normal appearing white matter, chronic

active lesions and chronic inactive lesions (Fig. 3). Taken together

these findings show that DARC is expressed in a subset of brain

micovessels in humans. In chronic neuroinflammatory diseases,

including multiple sclerosis, a significantly higher number of

DARC-positive microvessels could be detected, corresponding to

our findings in EAE.

Endothelial DARC shuttles
inflammatory chemokines across the
blood–brain barrier in vitro
A proinflammatory role for endothelial DARC in EAE pathogenesis

could be envisaged such that DARC transports chemokines from

the abluminal to the luminal side of the blood–brain barrier and

thus facilitates leucocyte trafficking across this vascular barrier. As

this hypothesis can only be directly tested in vitro by studying

chemokine transport across brain endothelial cells, we first asked

if DARC is expressed in endothelial cells used as in vitro blood–

brain barrier models such as the brain endothelioma cell line bEnd5

or pMBMECs (Steiner et al., 2011). We performed quantitative

PCR analysis of total messenger RNA preparations of bEnd5 and

of pMBMECs cultured for 6 days and of freshly isolated brain

microvessels (Fig. 4A). We found very low but measurable levels

of Darc messenger RNA in freshly isolated brain microvessels

arguing for a low constitutive expression of Darc messenger

RNA in brain endothelial cells in vivo. bEnd5 as well as

pMBMECs cultured for 6 days expressed Darc messenger RNA

and 16 h of TNF� treatment further increased the messenger

RNA levels to almost 10-fold, confirming that expression of Darc

messenger RNA is upregulated in inflamed CNS microvascular

endothelial cells. Immunostaining of pMBMECs isolated from

wild-type SJL mice and Darc�/� SJL mice as a negative control,

confirmed cell surface protein expression of DARC on wild-type

pMBMECs after stimulation with TNF� (Fig. 4B), whereas specific

immunostaining for DARC could not be observed on non-stimu-

lated pMBMECs (data not shown). Thus, upregulated expression

of Darc messenger RNA was accompanied by increased cell sur-

face expression of DARC protein on inflamed pMBMECs in vitro.

To ensure that lack of DARC in brain endothelial cells does not

influence barrier characteristics of brain endothelial cells per se and

would then lead to increased diffusion of chemokines across the

Darc�/� endothelial barrier, we investigated the paracellular per-

meability for small molecular tracers in the size range of chemo-

kines, namely 3 kDa and 10 kDa dextran, across pMBMECs

isolated from wild-type and Darc�/� SJL mice. We found no sig-

nificant differences in the paracellular permeabilities for 3 kDa

Figure 2 Detection of DARC at the protein level on inflamed CNS vessels. Immunofluorescence staining of frozen spinal cord tissue

sections at different time points during EAE pathogenesis of wild-type C57BL/6 mice. Mice were immunized with MOG35-55 peptide

emulsified in complete Freund’s adjuvant and tissues were prepared at Day 7, Day 11 and Day 13 post-immunization. Triple immuno-

fluorescence staining for PECAM1 (blue), CD45 (green) and DARC (red). Specific immunostaining for DARC was detectable at Day 7 after

induction of EAE. Scale bar = 20 mm. One experiment out of three analysing three mice per time point is shown.
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Figure 3 DARC expression in human subcortical white matter of control and multiple sclerosis cases. Immunohistochemical analysis of

brain vessels within the human cortex from multiple sclerosis (MS) cases with active inflammatory demyelinating lesion (first column, MS

lesions), within meninges (second column, MS Meninges), within normal appearing white matter (third column, MS NAWM) and from a

control case within subcortical white matter (fourth column, Control WM) are shown. MOG: MOG immunohistochemistry for myelin

differentiating demyelinating lesions from normal myelinated areas in cerebral cortex and subcortical cortical white matter in multiple

sclerosis and controls (A). DARC: DARC-positive blood vessels were detected in all areas in multiple sclerosis cases and in controls (B).

CD68: CD68 immunohistochemistry detects inflamed blood vessels (first panel) as well as activated microglia throughout the white matter

(C). HE: Histology shown by haematoxylin and eosin staining of the corresponding area (D). Scale bar = 50 mm. Bottom: Collagen IV

immunohistochemistry in multiple sclerosis normal appearing white matter identifying all blood vessels (E), whereas DARC staining could

only be detected in a subset of blood vessels (F, arrows). DARC immunoreactivity was detected in larger (large arrow, higher magnification

in inset) as well as in smaller blood vessels (small arrow). Insets show area around the blood vessel highlighted by the large arrow.

Arrowhead points to a blood vessel, which is DARC-negative. Scale bar = 500 mm. (G) Quantification showing more DARC-positive blood

vessels in multiple sclerosis normal appearing white matter compared with control white matter (P-value = 0.0282).
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(data not shown) and 10 kDa (Fig. 4C) dextrans between non-

stimulated or TNF-� stimulated pMBMECs isolated from wild-

type or Darc�/� SJL mice. Thus absence of DARC did not influ-

ence barrier integrity of brain endothelial cells in vitro.

In addition, brain endothelial cells have been described to ex-

press, upon stimulation, inflammatory chemokines such as CCL2.

Endogenous chemokine expression could thus impair the analysis

of exogenous chemokine transport across the blood–brain barrier

in vitro. We therefore tested production of the chemokines CCL2

(JE), CCL5 (RANTES) and CXCL1 (KC), which we previously found

to be upregulated in inflamed CNS microvessels during EAE (Alt

et al., 2005) and the homeostatic chemokine CCL21, which does

not bind DARC, as a control from wild-type and Darc�/�

pMBMECs grown on filters and stimulated or not with TNF-�

Figure 4 Characterization of Darc�/� in vitro blood–brain barrier models. (A) Quantitative PCR analysis of Darc messenger RNA

expression in bEnd5, freshly isolated and cultured pMBMECs. bEnd5 and pMBMECs were cultured for 6 days and were either TNF� (16 h)

stimulated or not. Freshly isolated brain microvessels were used as a control. Quantitative PCR was performed with two different primer

pairs (911/912, 913/914) and Darc expression levels are shown relative to that of unstimulated pMBMECs (set to 1.0). Stimulation with

TNF� upregulated Darc messenger RNA expression in bEnd5 (10-fold) and in pMBMECs (5- to 6-fold). One experiment out of two with

comparable results is shown. (B) Immunostaining for DARC on pMBMECs. pMBMECs from wild-type SJL (wt; upper panel) and Darc�/�

SJL (DARC�/� ; lower panel) mice were cultured for 6 days on matrigel-coated permanox chamber slides and were TNF� stimulated 16 h

before staining. Positive and specific immunostaining for DARC with the rabbit anti-mouse DARC antibody could only be observed on

individual TNF� stimulated pMBMECs from wild-type SJL mice as indicated by white arrowheads (top left) despite high background

staining observed using rabbit IgG. We did not observe DARC-immunostaining on non-stimulated pMBMECs (data not shown). Scale

bars = 20 mm. (C) Dextran (10 kDa) permeability across wild-type and DARC-deficient pMBMECs. The permeability coefficients Pe of

10 kDa dextran for unstimulated and stimulated pMBMECs from wild-type (SJL-TNF and SJL + TNF) or DARC-deficient (D�/�-TNF and

D�/� + TNF) SJL mice are shown. Bars represent mean � SEM of three independent experiments. No statistically significant differences

of Pe between unstimulated or TNF-� stimulated pMBMECs from Darc�/� and wild-type SJL mice were observed. (D) CCL2 chemokine

secretion of pMBMECs. CCL2 chemokine secretion of DARC-deficient (D�/� ) and wild-type (SJL) SJL pMBMECs stimulated ( + TNF) or

not (-TNF) with TNF� for 16 h was determined after 3 h by ELISA. The total amount of chemokine found in the upper compartment

(150 ml) was calculated and the bars show mean � SD. A significant difference in CCL2 production between TNF-� stimulated DARC�/�

and wild-type pMBMECs was found. *P50.05. One experiment out of three with reproducible results is shown. rb = rabbit.
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after a 3 h and 16 h timespan. Analysing the culture supernatants of

pMBMBEs by ELISA we did not detect measurable levels of CCL21

and CXCL1 either at 3 h or at 16 h of incubation (data not shown).

CCL5 was detected in supernatants of TNF-� stimulated wild-type

and Darc�/� pMBMECs at 16 h but not at 3 h, reaching a maximal

concentration of 0.1 ng/150 mL. In contrast we found that wild-type

and Darc�/� pMBMECs constitutively produced up to 0.8 ng/

150 ml CCL2 within 16 h and up to 2.5 ng/150 mL when previously

stimulated with TNF-�. However, within 3 h, the time window

required to study exogenous chemokine transport across the

blood–brain barrier in vitro, CCL2 production remained very low

reaching a maximum of 0.3 ng/150 microliters in TNF� stimulated

pMBMECs (Fig. 4D). Interestingly, CCL2 production of TNF� stimu-

lated Darc�/� pMBMECs remained significantly lower when com-

pared with TNF� stimulated wild-type pMBMECs. In any case, we

felt confident to investigate the transport of exogenously added

chemokines across pMBMECs within a timeframe of 3 h in vitro.

The inflammatory chemokines CCL2, CCL5 and CXCL1 are po-

tential ligands for DARC, whereas the homeostatic chemokine

CCL21 does not bind DARC. We therefore investigated the trans-

port of these chemokines from the abluminal to the luminal com-

partment across pMBMECs from wild-type and Darc�/� SJL mice

grown on filter inserts and stimulated or not for 16 h with TNF�.

Thirty nanograms of the respective recombinant chemokine was

added to the lower compartment of the two chamber transwell

assay system and samples from the upper compartment were

taken at 1, 2 and 3 h of incubation, frozen immediately and

later analysed by ELISA. Transport of CCL21 across pMBMECs

was very low and as expected, we found no difference in the

transport of CCL21 from the abluminal to the luminal compart-

ment between wild-type and Darc�/� pMBMECs (Fig. 5).

Transport of CCL21 was also not increased across TNF� stimulated

pMBMECs. Although human DARC binds CXCL1 with high affin-

ity (Gardner et al., 2004), transport of murine CXCL1 across

Figure 5 DARC shuttles CCL2 and CCL5 across the inflamed blood–brain barrier in vitro. Transport of recombinant chemokines from the

basolateral to the luminal side of wild-type SJL pMBMECs (SJL, black lines) or Darc�/� SJL pMBMECs (D�/� , grey lines) with ( + TNF)

or without (�TNF) TNF�-stimulation is shown. Samples were taken at 1, 2 and 3-h time points and analysed in triplicates by ELISA. ELISA

data were analysed using Instat Prism and Microsoft Excel and the total amount of chemokine, which was translocated to the upper

compartment, was calculated. Translocation of CCL2 and CCL5 across TNF� stimulated SJL pMBMEC was found to be significantly

increased (solid black lines) correlating with induction of DARC expression after TNF� stimulation. CXCL1 and CCL21 were not trans-

located in a DARC-dependent manner. One out of three independent experiments is shown. Data were analysed using Instat Prism and

Microsoft Excel. Line graphs show mean � SD.
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pMBMECs was observed to be equally low as that of CCL21 and

was independent of the expression of DARC (Fig. 5). In contrast,

transport of CCL5 and CCL2 was generally more efficient and

found to be significantly increased across TNF-� stimulated

pMBMECs from wild-type SJL mice but not from Darc�/� SJL

mice when compared to the respective non-stimulated

pMBMECs (Fig. 5). As we found expression of DARC to be upre-

gulated on pMBMECs after TNF� stimulation (Fig. 4A), these ob-

servations demonstrate an active role for endothelial DARC in

mediating the transport of CCL2 and CCL5 but not of CXCL1

from the abluminal to the luminal side of pMBMECS. These

data therefore support a pro-inflammatory function of DARC ex-

pressed in brain endothelial cells in EAE pathogenesis by shuttling

chemokines across the blood–brain barrier.

Darc�/� C57BL/6 and Darc�/� SJL
mice develop ameliorated experimental
autoimmune encephalomyelitis
To investigate the functional contribution of DARC in EAE patho-

genesis we next investigated if development of EAE is impaired in

the absence of DARC. To this end Darc�/� mice were back-

crossed into the EAE susceptible mouse stains C57BL/6 and SJL

for at least 10 generations and the development of actively in-

duced EAE was compared in Darc�/� C57BL/6 and Darc�/� SJL

mice and the respective C57BL/6 and SJL wild-type littermate

control mice. Although we did not observe a significant difference

in disease onset, Darc�/� C57BL/6 and Darc�/� SJL mice de-

veloped a milder clinical disease during the first clinical episode

of EAE when compared with the respective wild-type control

mice (Fig. 6). Furthermore, Darc�/� C57BL/6 maintained a

milder chronic disease compared to wild-type C57BL/6 mice,

and Darc�/� SJL mice completely recovered before developing a

milder relapse when compared with wild-type SJL mice (Fig. 4).

Using the area under the curve as a measure for overall disease

activity (Fleming et al., 2005), we found a significantly reduced

severity of clinical EAE in Darc�/� C57BL/6 and Darc�/� SJL mice

compared with their respective wild-type littermates of the same

strain supporting a functional role of DARC in EAE pathogenesis.

Immunohistological stainings for CD45 + inflammatory infiltrates

and for CD3 + T cells, B220+ B cells, Gr1 + and CD11b + myeloid

cells in brain and spinal cord sections of wild-type and Darc�/�

C57BL/6 and SJL mice during the peak of EAE suggested the pres-

ence of smaller inflammatory infiltrates in Darc�/� SJL and Darc�/�

C57BL/6 mice when compared with wild-type controls, however,

we did not observe striking differences in the number of inflam-

matory cuffs or their cellular composition (data not shown).

Darc�/� mice C57BL/6 mice have no
defect in antigen-specific T cell priming
and proliferation
Expression of DARC was previously described on high endothelial

venules in peripheral lymph nodes (Kashiwazaki et al., 2003). We

confirmed specific immunostaining for DARC on high endothelial

venules in pheripheral lymph nodes of healthy C57BL/6 and SJL

mice using our novel anti-mouse DARC antibody (data not

shown). We first asked if expression of DARC is altered in draining

lymph nodes after induction of EAE. By performing immunostainings

on frozen tissue sections of draining lymph nodes taken from C57BL/

6 mice at Days 6, 10 and 14 after subcutaneous immunization with

MOGaa35–55 in complete Freund’s adjuvant we found no difference

in high endothelial venule-specific immunostaining for DARC (data

not shown). As absence of DARC could influence lymphocyte recir-

culation through non-inflamed or inflamed lymph nodes, we asked if

absence of DARC on the high endothelial venules might influence

the priming and proliferation of encephalitogenic T cells after induc-

tion of EAE. To this end Darc�/� C57BL/6 mice and wild-type

C57BL/6 mice were subcutaneously immunized with MOGaa35–55/

complete Freund’s adjuvant and subsequently we performed anti-

gen-recall proliferation assays with lymph node cell suspensions from

draining lymph nodes at Days 6 and 9 post-immunization. We

observed comparable MOGaa35-55 specific T cell proliferation re-

sponses in wild-type and Darc�/� C57BL/6 mice (Fig. 7) and there-

fore conclude that priming and proliferation of encephalitogenic T

cells is not impaired in the absence of DARC.

DARC regulates increased plasma levels
of chemokines during experimental
autoimmune encephalomyelitis
In addition to endothelial DARC, availability of inflammatory che-

mokines within the blood stream can be regulated by erythrocyte

DARC. Erythrocyte DARC has been reported to serve as a blood

reservoir for inflammatory chemokines but at the same time also

as a chemokine sink that buffers increases in plasma chemokine

levels. To determine the influence of DARC on the presence of

circulating chemokines we asked if the inflammatory chemokines

CCL2, CCL5 and CXCL1, which we also investigated for their

DARC-mediated transport across the blood–brain barrier, can be

detected in the plasma of Darc�/� and wild-type C57BL/6 mice

during EAE. Using a mouse cytokine array we detected CXCL1

and CCL2 in the plasma of C57BL/6 mice but not of Darc�/�

C57BL/6 mice at the clinical onset (Day 10 post-immunization) of

EAE (Fig. 8A). In contrast, CCL5 was not detected in plasma sam-

ples of both Darc�/� and wild-type C57BL/6 mice. Soluble

ICAM1 was investigated as a marker of inflammation and positive

control and was observed at comparable levels in the plasma of

Darc�/� and wild-type C57BL/6 mice (Fig. 8A). Thus, in the ab-

sence of DARC, neuroinflammation is not accompanied by the

occurrence of increased levels of inflammatory chemokines in

the plasma supporting the notion that DARC serves as a blood

reservoir for inflammatory chemokines.

To understand if absence of inflammatory chemokines in the

plasma of Darc�/� C57BL/6 mice during EAE is because of the

lack of vascular or erythrocyte DARC we generated reciprocal

bone marrow chimeras by transferring bone marrow cells from

Darc�/� C57BL/6 mice into lethally irradiated wild-type C57BL/

6 mice and vice versa. Eight weeks after recovery, active EAE was

induced by subcutaneous immunization with MOGaa35–55 in com-

plete Freund’s adjuvant and plasma samples were collected, and

immediately frozen, from the four groups of mice at different days
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(Days 6, 10, 14 and 35) post-immunization. In addition we col-

lected plasma samples from non-immunized mice to determine the

chemokine plasma concentrations of healthy bone marrow chi-

meric mice. All plasma samples were tested for CCL2, CCL5 and

CXCL1. CCL5 could not be detected in any of the plasma samples

investigated. In contrast, very low levels of CCL2 (550 pg/ml) and

low levels of CXCL1 (5500 pg/ml) were already detected in

plasma samples in all four groups of non-immunized mice, prob-

ably because of the higher sensitivity of the ELISA when compared

with the cytokine microarray performed previously (Fig. 8B). After

induction of EAE we found significantly increased plasma levels of

CXCL1 in both groups of bone marrow chimeric mice expressing

DARC on erythrocytes but not in bone marrow chimeric mice

lacking erythrocyte DARC, which underscores a role for erythro-

cyte DARC as a blood reservoir for CXCL1. Increased levels of

CXCL1 were detectable on Day 6 post-immunization, before the

onset of EAE, and remained elevated on Day 10 post-immuniza-

tion, coinciding with the onset of clinical EAE. At Day 14 post-

immunization, plasma levels of CXCL1 declined to baseline levels

(Fig. 8B).

CCL2 plasma concentrations detected in non-immunized bone

marrow chimeric mice were 10-fold lower when compared with

CXCL1. After induction of EAE, plasma concentrations of CCL2

slightly increased in a similar kinetic in all four groups of chimeric

mice reaching significantly increased levels of CCL2 when compared

with non-immunized mice at the onset of EAE (Day 10 post-immun-

ization), decreasing to baseline levels at Day 14 post-immunization,

and remaining low until Day 35 post-immunization during chronic

EAE. At none of the time points investigated did plasma levels of

CCL2 significantly differ between the four groups of bone marrow

chimeric mice (Fig. 8B) suggesting that plasma levels of CCL2 do not

critically rely on the expression of DARC.

Figure 6 Darc�/� SJL or Darc�/� C57BL/6 mice develop ameliorated EAE. (A) In Darc�/� C57BL/6 mice (backcrossing generation N12)

and wild-type C57BL/6 littermates active EAE was induced by subcutaneous immunization with MOGaa35–55 in complete Freund’s

adjuvant. The left graph shows mean disease scores of 10 animals per group � SEM, evaluated daily following induction of EAE. (B) In

Darc�/� SJL mice (backcrossing generation N10) active EAE was induced by subcutaneous immunization with PLP139-151 in complete

Freund’s adjuvant. The left graph shows mean disease scores of nine animals per group � SEM, evaluated daily following induction of

EAE. The bar graphs show the area under the curve (AUC) calculated from the EAE clinical course for each mouse between Days 0–42 (A)

or Days 0–45 (B) post-immunization. Shown are the mean area under the curve values for each group � SD. Statistical analysis of area

under the curve values with the Mann-Whitney test revealed significantly reduced EAE severity in Darc�/� mice (grey bars) compared to

wild-type controls (black bars) mice in both C57BL/6 mice (A) and SJL mice (B). *P50.05. (A) One experiment out of three including a

total of 26 Darc�/� C57BL/6 and wild-type C57BL/6 mice, respectively is shown. (B) One experiment out of three including a total of 24

Darc�/� SJL and wild-type SJL mice, respectively is shown.
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Absence of endothelial DARC
ameliorates experimental autoimmune
encephalomyelitis
Having established apparently opposing roles of endothelial and

erythrocyte DARC with vascular DARC shuttling CCL2 but not

CXCL1 across the blood–brain barrier and erythrocyte DARC

maintaining increased plasma levels of CXCL1 but not of CCL2,

we finally asked if ameliorated EAE is due to the lack of endothe-

lial or erythrocyte DARC. To distinguish between a role of erythro-

cyte and endothelial DARC to EAE pathogenesis, we generated

reciprocal bone marrow chimeras by transferring bone marrow

cells from Darc�/� C57BL/6 mice into lethally irradiated wild-

type C57BL/6 mice and vice versa. After a recovery for 8

weeks, active EAE was induced in bone-marrow chimeric mice

by subcutaneous immunization with MOGaa35–55 in complete

Freund’s adjuvant. Darc�/� C57BL/6 mice, reconstituted with

either Darc�/� or wild-type C57BL/6 bone marrow cells,

showed a delayed onset of EAE when compared with wild-type

C57BL/6 mice reconstituted with either Darc�/� or wild-type

C57BL/6 bone marrow cells (Fig. 9A) and an ameliorated disease

as determined by the area under the curve (Fig. 9B). These ob-

servations supported our previous observations of ameliorated EAE

in Darc�/� C57BL/6 mice compared with wild-type C57BL/6 mice

Figure 8 DARC regulates increased plasma levels of chemo-

kines during EAE. (A) Mouse cytokine array analysing plasma

samples prepared from Darc�/� C57BL/6 and wild-type C57BL/

6 mice 10 days post-immunization (p.I.) with MOGaa35–55 in

complete Freund’s adjuvant. CCL2 and CXCL1 were found in

the plasma of wild-type C57BL/6 mice but were absent in the

plasma of Darc�/� C57BL/6 mice. Soluble ICAM1 was chosen

as a DARC-independent positive control and detected with

comparable signal intensities in both Darc�/� C57BL/6 mice

and wild-type C57BL/6 controls. One out of two independent

experiments is shown. (B) CXCL1 (top) and CCL2 (bottom)

plasma levels of bone marrow chimeric mice at different time

points during EAE pathogenesis measured by ELISA are shown.

White bar = Darc�/� BM:Darc�/� (Darc�/� C57BL/6 mice

reconstituted with Darc�/� bone marrow); light grey

bar = Darc�/� BM:C57 (C57BL/6 mice reconstituted with

Darc�/� bone marrow), dark grey bar = C57 BM: Darc�/�

(Darc�/� C57BL/6 mice reconstituted with C57BL/6 bone

marrow), black bar = C57 BM: C57 (C57BL/6 mice reconstituted

with C57BL/6 bone marrow). Bars show mean � SD. Number of

samples for CXCL1: non-immunized mice (n.i.) and Day 6 post-

immunization n = 4; Days 10 and 14 post-immunization n = 6.

Number of samples for CCL2: n = 4 for all timepoints. *Bordered

line P5 0.05 between both groups of wild-type and Darc�/�

BM recipients; *simple line P50.05 between the individual

columns. Significantly elevated plasma levels of CXCL1 were

only detected in the presence of erythrocyte DARC starting at

Day 6 post-immunization before onset of clinical EAE.

Figure 7 Lack of DARC does not alter antigen-induced T cell

proliferation in C57BL/6 mice. Plots show MOGaa35–55 peptide

induced T cell proliferation of primary cultures from draining

lymph node lymphocytes prepared 6 days (A) and 9 days (B)

post-immunization of Darc�/� C57BL/6 mice and wild-type

C57BL/6 mice upon stimulation with increasing MOGaa35–55

peptide concentrations (mean � SD). MOG-specific prolifer-

ation was normalized against baseline proliferation. Proliferation

was measured by 3H-dT incorporation. One representative ex-

periment out of six is shown.
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(Fig. 6) and demonstrated that absence of endothelial but not

erythrocyte DARC is required for establishing ameliorated

EAE (Fig. 9). These observations underscore the pro-inflammatory

role of DARC by shuttling chemokines across the blood–brain

barrier.

Discussion
DARC belongs to the family of atypical ‘silent’ chemokine chemo-

kine receptors, which are structurally similar to other G-protein

coupled receptors with seven transmembrane spanning helices

and extracellular domains binding chemokines with high affinity.

In contrast with other chemokine receptors, atypical chemokine

receptors including DARC fail to engage G-proteins and therefore

do not couple to signalling cascades inducing integrin activation

and cell motility. The inability to trigger conventional chemokine

responses has led to concepts of chemokine scavenging, seques-

tration, buffering and transcellular transport by these atypical che-

mokine receptors. It has been shown that human DARC can bind

many, but not all pro-inflammatory CC and CXC chemokines

(Gardner et al., 2004). Depending on its cellular expression, the

biological functions assigned to DARC have been quite different.

Whereas erythrocyte DARC was shown to bind chemokines and

either serve as a sink or a reservoir for inflammatory chemokines in

the circulation, endothelial DARC was described to internalize and

transcytose chemokines from their parenchymal sites of synthesis

to the luminal side of the endothelium, where the chemokines

were found immobilized and could contribute to leucocyte ex-

travasation in vivo (Novitzky-Basso and Rot, 2012).

Based on these findings we considered DARC to be a candidate

molecule mediating during neuroinflammation the transport of

CNS-derived inflammatory chemokines across the highly specia-

lized and polarized endothelial cells forming the blood–brain bar-

rier. Our present study demonstrates that DARC is upregulated on

endothelial cells in CNS microvessels during EAE and in multiple

sclerosis and contributes to EAE pathogenesis. Although erythro-

cyte DARC served as a chemokine reservoir during EAE, brain

endothelial DARC was found to shuttle recombinant chemokines

from the abluminal to the luminal side of an in vitro blood–brain

barrier model. Absence of endothelial, but not erythrocyte DARC,

was responsible for amelioration of EAE in line with a contribution

of endothelial DARC in shuttling inflammatory chemokines from

the CNS parenchyma across the blood–brain barrier influencing

immune cell interaction with the inflamed blood–brain barrier

during EAE and multiple sclerosis.

The infiltration of immune cells into the CNS is an essential step

in the neuropathogenesis of multiple sclerosis and its animal model

EAE. Live cell imaging studies observing the interaction of ence-

phalitogenic T cells with brain or spinal cord microvessels during

EAE demonstrated the prerequisite of G-protein coupled receptor

signalling for the integrin-mediated firm arrest of T cells to the

inflamed CNS microvessels (Vajkoczy et al., 2001; Piccio et al.,

2002). These observations suggested the involvement of chemo-

kines available on the luminal surface of the blood–brain barrier

endothelium in T cell trafficking across the blood–brain

barrier. Glycosaminoglycans (GAGs), most importantly heparan

Figure 9 Lack of vascular DARC ameliorates EAE. MOG35–55 peptide-induced active EAE in bone marrow chimeric mice (backcrossing

generations N11 to N14) is shown. (A) The graph shows mean disease scores of five animals per group � SEM, evaluated daily following

induction of EAE. Darc�/� C57BL/6 mice reconstituted with Darc�/� bone marrow (DARC�/�
!DARC�/� ; grey filled circles) or

C57BL/6 wild-type bone marrow (BL/6!DARC�/� ; black grey semi-filled circles) developed ameliorated EAE when compared to

C57BL/6 mice reconstituted with either C57BL/6 bone marrow (BL6!BL6; black filled squares) or Darc�/� bone marrow

(DARC�/�
!BL/6; grey/black semi-filled squares). (B) Area under the curve (Days 0–16 post-immunization) as a measure for overall

disease severity was calculated and found to be significantly reduced (*P50.05) in Darc�/� C57BL/6 mice reconstituted with either wild-

type or Darc�/� bone marrow, when compared to wild-type recipients irrespective of reconstitution with wild-type or Darc�/� bone

marrow. One experiment out of three investigating a total of 10 to 14 mice for each group is shown.
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sulphates, are abundant on the luminal surface of endothelial cells

including brain endothelial cells, and have been shown to avidly

bind chemokines (Parish, 2006). Luminal presence of CCL2 and

CCL5 on the blood–brain barrier has been suggested by live cell

imaging studies demonstrating that antibodies blocking CCL2 and

CCL5 prevented leucocyte adhesion but not rolling in the inflamed

brain microvasculature during EAE (dos Santos et al., 2005).

Interestingly, although expression of CCL2 and CCL5 can read-

ily be detected in cultured brain endothelial cells in vitro (Holman

et al., 2011), in multiple sclerosis lesions and in EAE, both chemo-

kines are expressed rather by astrocytes or infiltrating immune cells

(Ubogu et al., 2006). In contrast, expression of the homeostatic

chemokines CCL19 and CCL21 was found to be upregulated in

brain endothelial cells in a mouse model of EAE (Alt et al., 2002)

and in multiple sclerosis lesions (Krumbholz et al., 2007), but their

involvement in leucocyte migration across the blood–brain barrier

during neuroinflammation remains to be shown. In addition,

increased CNS expression of CXCL12 in EAE and multiple sclerosis

was found to be accompanied by the loss of polarized expression

of this chemokine in CNS microvascular endothelial cells

(McCandless et al., 2006, 2008). CXCL12 might therefore

become luminally available during neuroinflammation and mediate

T cell arrest to the inflamed blood–brain barrier in EAE and mul-

tiple sclerosis (McCandless et al., 2006, 2008; Moll et al., 2009).

In addition to homeostatic chemokines, there is abundant evi-

dence for the involvement of inflammatory chemokines and their

receptors e.g. CCR1 (Rottman et al., 2000), CCR2 (Fife et al.,

2000; Izikson et al., 2000) and CXCR2 (Carlson et al., 2008), in

the pathogenesis of EAE and multiple sclerosis (Ubogu et al.,

2006). Intriguingly, most of the chemokines shown to be involved

in EAE pathogenesis are expressed by glial cells or inflammatory

cells localized in the CNS parenchyma in EAE brains and multiple

sclerosis lesions (Glabinski et al., 1998; Sorensen et al., 1999; Lund

et al., 2004; Omari et al., 2006). Considering the unique barrier

characteristics of the brain endothelial cells it is highly unlikely that

sufficient amounts of these chemokines diffuse across the blood–

brain barrier to target circulating immune cells into the CNS. Thus,

the contribution of inflammatory chemokines to the pathogenesis

of multiple sclerosis and EAE by mediating the migration of circu-

lating leucocytes across the blood–brain barrier into the CNS re-

quires the existence of a putative transport mechanism for

inflammatory chemokines from the abluminal to the luminal side

of the blood–brain barrier endothelium.

In fact it has been demonstrated that CCL2 can be transported

from the abluminal to the luminal side of brain microvascular

endothelial cells by a transcellular mechanism that at least in

part involves binding of CCL2 to CCR2 and caveolae (Dzenko

et al., 2001; Ge et al., 2008).

Another potential candidate molecule able to transport chemo-

kines across the blood–brain barrier is the atypical chemokine re-

ceptor DARC, which binds most inflammatory chemokines. DARC

is expressed in microvascular endothelial cells in peripheral organs

and the current view is that DARC can mediate the transcellular

transport of chemokines across vascular barriers. Support for this

view came from elegant in situ studies that followed the traffick-

ing of radiolabelled chemokines in skin explants from the intersti-

tial space through the vesicular network of endothelial cells to the

luminal surface of venules where they co-localized with DARC

immunoreactivity (Middleton et al., 1997; Hub and Rot, 1998;

Pruenster et al., 2009). In heterologous transfectants DARC was

shown to relocalize from the basolateral to the apical side through

an intracellular vesicular compartment upon binding of inflamma-

tory chemokines (Pruenster et al., 2009). In this study it was also

shown that the functional chemokines translocated with DARC.

The precise mechanism of DARC-mediated chemokine transcytosis

remains to be investigated. Although some studies localized DARC

to caveolin 1 and therefore to caveolae as vesicular transport com-

partment (Luo et al., 1997; Middleton et al., 1997) DARC-

mediated chemokine endocytosis seems to occur through a

macropinocytosis-like process in endothelial cells for which caveo-

lin 1 was dispensable (Zhao et al., 2011).

These findings prompted us to investigate if DARC is also ex-

pressed at the blood–brain barrier and could serve as a chemokine

shuttle across the blood–brain barrier during neuroinflammation.

In a gene expression profiling study we identified upregulated

expression of DARC in cerebral microvessel preparations from

C57BL/6 and SJL mice suffering from EAE compared with micro-

vessel preparations of healthy control mice (Alt et al., 2005). A

similar approach confirmed upregulated expression of DARC in

acute white matter lesions in the brain of a patient with multiple

sclerosis, when compared with normal-appearing white matter

(Whitney et al., 1999). Performing in situ hybridization and immu-

nohistology in the present study we demonstrate increased ex-

pression and immunostaining of DARC in CNS microvessels

starting before the clinical onset of EAE. As most of the inflam-

matory chemokines involved in EAE pathogenesis are upregulated

in the CNS during preclinical stages already (Carlson et al., 2008)

this finding further supports a potential involvement of endothelial

DARC in shuttling inflammatory chemokines from the CNS paren-

chyma to the luminal surface of the blood–brain barrier. Detection

of increased DARC immunostaining in brain microvessels in acute

lesions of multiple sclerosis brains further corroborates the contri-

bution of DARC to autoimmune neuroinflammation. Using a well-

differentiated mouse in vitro blood–brain barrier model that has

proven to reliably mimic blood–brain barrier characteristics under

physiological and pathological conditions (Coisne et al., 2005,

2013; Enzmann et al., 2013), we found that expression of

DARC in brain endothelial cells is upregulated by proinflammatory

stimuli and that expression of endothelial DARC correlates with

increased basolateral to luminal transport of recombinant CCL2

and CCL5 but not of CXCL1 in vitro. As to date there are no

binding studies investigating the interaction of mouse DARC with

mouse chemokines, the affinity of CXCL1 to murine DARC is un-

known. In contrast, human DARC has been shown to bind CCL2,

CCL5 and CXCL1 with similarly high affinities (Gardner et al.,

2004). As we used recombinant chemokines in this assay, which

might be different from endogenous chemokines in their post-

translational modifications including but not limited to their glyco-

sylation patterns, one could speculate that post-translational modi-

fication of recombinant CXCL1 might not be favourable for DARC

binding. Finally, our in vitro studies investigating DARC-mediated

chemokine shuttling across the blood–brain barrier have employed

recombinant chemokines,
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It is noteworthy, however, that the amounts of CXCL1 we

found to be shuttled across the tight brain endothelial cell mono-

layers in vitro independent of DARC expression were in general 5-

to 10-fold below those detected for CCL5 and CCL2, respectively.

In contrast, when studying the role of erythrocyte DARC during

EAE in reciprocal bone marrow chimeras we found plasma levels

of soluble endogenous CXCL1 but less so of CCL2 to strictly

depend on erythrocyte but not on endothelial DARC. This could

be due to a different glycosylation status of the respective che-

mokines within the circulation versus the inflamed CNS paren-

chyma, which might differentially influence chemokine binding

to endothelial versus erythrocyte DARC. In any case, these find-

ings confirm the function of erythrocyte DARC as a chemokine

reservoir rather than a chemokine sink also in neuroinflammation.

Plasma levels of CCL2 were found be 10-fold lower than those

detected for CXCL1, which might be an alternative explanation of

the lack of a significant correlation of increased CCL2 plasma

levels with erythrocyte DARC in EAE.

In contrast, increased plasma levels of CXCL1 were detected in

bone marrow chimeric mice expressing erythrocyte DARC before

the onset of the clinical disease 6 days after the induction of EAE.

As CXCL1 can be induced by IL17 it is tempting to speculate that

in contrast to CCL2, CXCL1 might be induced by encephalitogenic

TH17 cells in peripheral tissues and thus might readily be detected

in the plasma of mice expressing erythrocyte DARC (Onishi and

Gaffen, 2010).

Involvement of DARC in EAE pathogenesis is demonstrated

by our findings that absence of DARC ameliorates chronic

EAE in C57BL/6 mice and relapsing-remitting EAE in SJL/ mice.

When addressing the impact of erythrocyte DARC versus endo-

thelial DARC in EAE pathogenesis using reciprocal bone marrow

chimeric mice, we found that absence of endothelial rather than

erythrocyte DARC ameliorated the disease course. Although our

findings confirmed an important role of erythrocyte DARC as a

chemokine reservoir in the blood stream during EAE, this function

of DARC seems to have no significant influence in EAE patho-

genesis. In contrast, endothelial DARC contributes to EAE

pathogenesis by shuttling chemokines across the blood–brain

barrier.

In summary our study demonstrates the involvement of endo-

thelial DARC in mediating the transport of inflammatory chemo-

kines across the blood–brain barrier during neuroinflammation and

its impact in disease severity and progression.

Funding
For this study the BE laboratory has been supported by the

Kamillo-Eisner Foundation, the Swiss Multiple Sclerosis Society,

the Swiss National Science Foundation (grant N�

31003A_118390) and the Microscopy Imaging Center of the

University of Bern (www.mic.unibe.ch). AR laboratory has been

supported by MRC Grants G0802838 to AR and G9818340 to

MRC CIR; the NSW laboratory has been supported by the

National Multiple Sclerosis Society (grant RG 4249A2/2).

Supplementary material
Supplementary material is available at Brain online.

References
Alt C, Duvefelt K, Franzén B, Yang Y, Engelhardt B. Gene and protein

expression profiling of the microvascular compartment in experimental

autoimmune encephalomyelitis in C57Bl/6 and SJL mice. Brain Pathol

2005; 15: 1–16.

Alt C, Laschinger M, Engelhardt B. Functional expression of the lymphoid

chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier

suggests their involvement in G-protein-dependent lymphocyte re-

cruitment into the central nervous system during experimental auto-

immune encephalomyelitis. Eur J Immunol 2002; 32: 2133–44.
Carlson T, Kroenke M, Rao P, Lane TE, Segal B. The Th17-ELR + CXC

chemokine pathway is essential for the development of central ner-

vous system autoimmune disease. J Exp Med 2008; 205: 811–23.

Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, et al.

Mouse syngenic in vitro blood-brain barrier model: a new tool to

examine inflammatory events in cerebral endothelium. Lab Invest

2005; 85: 734–46.

Coisne C, Lyck R, Engelhardt B. Live cell imaging techniques to study T

cell trafficking across the blood-brain barrier in vitro and in vivo. Fluids

Barriers CNS 2013; 10: 7.

Dawson TC, Lentsch AB, Wang Z, Cowhig JE, Rot A, Maeda N, et al.

Exaggerated response to endotoxin in mice lacking the Duffy antigen/

receptor for chemokines (DARC). Blood 2000; 96: 1681–4.
Doring A, Wild M, Vestweber D, Deutsch U, Engelhardt B. E- and

P-selectin are not required for the development of experimental auto-

immune encephalomyelitis in C57BL/6 and SJL Mice. J Immunol 2007;

179: 8470–9.
dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM,

Carvalho-Tavares J. CCL2 and CCL5 mediate leukocyte adhesion in

experimental autoimmune encephalomyelitis—an intravital microscopy

study. J Neuroimmunol 2005; 162: 122–9.
Dzenko KA, Andjelkovic AV, Kuziel WA, Pachter JS. The chemokine re-

ceptor CCR2 mediates the binding and internalization of monocyte

chemoattractant protein-1 along brain microvessels. J Neurosci 2001;

21: 9214–23.

Engelhardt B, Kappos L. Natalizumab: targeting alpha4-integrins in mul-

tiple sclerosis. Neurodegener Dis 2008; 5: 16–22.

Engelhardt B, Kempe B, Merfeld-clauss S, Laschinger M, Furie B, Wild MK,

et al. P-selectin glycoprotein ligand 1 is not required for the development

of experimental autoimmune encephalomyelitis in SJL and C57BL/6

mice. J Immunol 2005; 175: 1267–75.

Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D,

Hoch G. The development of experimental autoimmune encephalomy-

elitis in the mouse requires alpha4-integrin but not alpha4beta7-integ-

rin. J Clin Invest 1998; 102: 2096–105.

Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to

breach the blood-brain barriers. Trends Immunol 2012; 33: 579–89.

Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal

fluid barriers: function and dysfunction. Semin Immunopathol 2009;

31: 497–511.

Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S,

Hannocks MJ, et al. The neurovascular unit as a selective barrier to

polymorphonuclear granulocyte (PMN) infiltration into the brain after

ischemic injury. Acta Neuropathol 2013; 125: 395–412.

Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2

is critical for induction of experimental autoimmune encephalomyelitis.

J Exp Med 2000; 192: 899–905.
Fleming KK, Bovaird JA, Mosier MC, Emerson MR, Levine SM,

Marquis JG. Statistical analysis of data from studies on experimental

autoimmune encephalomyelitis. J Neuroimmunol 2005; 170: 71–84.

1468 | Brain 2014: 137; 1454–1469 C. Minten et al.

www.mic.unibe.ch
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu045/-/DC1


Gardner L, Patterson AM, Ashton BA, Stone MA, Middleton J. The
human Duffy antigen binds selected inflammatory but not homeostatic

chemokines. Biochem Biophys Res Commun 2004; 321: 306–12.

Ge S, Song L, Serwanski DR, Kuziel WA, Pachter JS. Transcellular trans-

port of CCL2 across brain microvascular endothelial cells. J Neurochem
2008; 104: 1219–32.

Glabinski AR, Krakowski M, Han Y, Owens T, Ransohoff RM. Chemokine

expression in GKO mice (lacking interferon-gamma) with experimental

autoimmune encephalomyelitis. J Neurovirol 1999; 5: 95–101.
Glabinski AR, Tuohy VK, Ransohoff RM. Expression of chemokines

RANTES, MIP-1alpha and GRO-alpha correlates with inflammation

in acute experimental autoimmune encephalomyelitis.
Neuroimmunomodulation 1998; 5: 166–71.

Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines

and multiple sclerosis. Biochim Biophys Acta 2011; 1812: 220–30.

Horuk R, Martin A, Hesselgesser J, Hadley T, Lu ZH, Wang ZX, et al. The
Duffy antigen receptor for chemokines: structural analysis and expres-

sion in the brain. J Leukoc Biol 1996; 59: 29–38.

Hub E, Rot A. Binding of RANTES, MCP-1, MCP-3, and MIP-1alpha to

cells in human skin. Am J Pathol 1998; 152: 749–57.
Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to ex-

perimental autoimmune encephalomyelitis in mice lacking the CC che-

mokine receptor (CCR)2. J Exp Med 2000; 192: 1075–80.

Kashiwazaki M, Tanaka T, Kanda H, Ebisuno Y, Izawa D, Fukuma N,
et al. A high endothelial venule-expressing promiscuous chemokine

receptor DARC can bind inflammatory, but not lymphoid, chemokines

and is dispensable for lymphocyte homing under physiological condi-
tions. Int Immunol 2003; 15: 1219–27.

Krumbholz M, Theil D, Steinmeyer F, Cepok S, Hemmer B, Hofbauer M,

et al. CCL19 is constitutively expressed in the CNS, up-regulated in

neuroinflammation, active and also inactive multiple sclerosis lesions.
J Neuroimmunol 2007; 190: 72–9.

Lee JS, Frevert CW, Thorning DR, Segerer S, Alpers CE, Cartron JP, et al.

Enhanced expression of Duffy antigen in the lungs during suppurative

pneumonia. J Histochem Cytochem 2003; 51: 159–66.
Lennon G, Auffray C, Polymeropoulos M, Soares MB. The I.M.A.G.E.

Consortium: an integrated molecular analysis of genomes and their

expression. Genomics 1996; 33: 151–2.
Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S,

et al. Increased CXCL8 (IL-8) expression in Multiple Sclerosis.

J Neuroimmunol 2004; 155: 161–71.

Luo H, Chaudhuri A, Johnson KR, Neote K, Zbrzezna V, He Y, et al.
Cloning, characterization, and mapping of a murine promiscuous che-

mokine receptor gene: homolog of the human Duffy gene. Genome

Res 1997; 7: 932–41.

Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, et al.
Culture-induced changes in blood-brain barrier transcriptome: implica-

tions for amino-acid transporters in vivo. J Cereb Blood Flow Metab

2009; 29: 1491–502.

Mccandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH, et al.
Pathological expression of CXCL12 at the blood-brain barrier correlates

with severity of multiple sclerosis. Am J Pathol 2008; 172: 799–808.

Mccandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12
limits inflammation by localizing mononuclear infiltrates to the perivas-

cular space during experimental autoimmune encephalomyelitis. J

Immunol 2006; 177: 8053–64.

Middleton J, Neil S, Wintle J, Clark-lewis I, Moore H, Lam C, et al.
Transcytosis and surface presentation of IL-8 by venular endothelial

cells. Cell 1997; 91: 385–95.

Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA.

Leukocyte extravasation: chemokine transport and presentation by
the endothelium. Blood 2002; 100: 3853–60.

Miyagishi R, Kikuchi S, Takayama C, Inoue Y, Tashiro K. Identification of

cell types producing RANTES, MIP-1 alpha and MIP-1 beta in rat ex-
perimental autoimmune encephalomyelitis by in situ hybridization.

J Neuroimmunol 1997; 77: 17–26.

Moll NM, Cossoy MB, Fisher E, Staugaitis SM, Tucky BH, Rietsch AM,

et al. Imaging correlates of leukocyte accumulation and CXCR4/

CXCL12 in multiple sclerosis. Arch Neurol 2009; 66: 44–53.

Novitzky-basso I, Rot A. Duffy antigen receptor for chemokines and its

involvement in patterning and control of inflammatory chemokines.

Front Immunol 2012; 3: 266.
Omari KM, John G, Lango R, Raine CS. Role for CXCR2 and CXCL1 on

glia in multiple sclerosis. Glia 2006; 53: 24–31.

Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms

of interleukin-17 function in disease. Immunology 2010; 129: 311–21.

Parish CR. The role of heparan sulphate in inflammation. Nat Rev

Immunol 2006; 6: 633–43.
Pfeiffer F, Kumar V, Butz S, Vestweber D, Imhof BA, stein JV, et al.

Distinct molecular composition of blood and lymphatic vascular endo-

thelial cell junctions establishes specific functional barriers within the

peripheral lymph node. Eur J Immunol 2008; 38: 2142–55.

Pfeiffer F, Schafer J, Lyck R, Makrides V, Brunner S, Schaeren-

wiemers N, et al. Claudin-1 induced sealing of blood-brain barrier

tight junctions ameliorates chronic experimental autoimmune enceph-

alomyelitis. Acta Neuropathol 2011; 122: 601–14.

Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, et al.

Molecular mechanisms involved in lymphocyte recruitment in

inflamed brain microvessels: critical roles for P-selectin glycoprotein

ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002;

168: 1940–9.

Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M, Middleton J,

et al. The Duffy antigen receptor for chemokines transports chemo-

kines and supports their promigratory activity. Nat Immunol 2009; 10:

101–8.
Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA,

et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/

MCP-1 in experimental autoimmune encephalomyelitis. FASEB J 1993;

7: 592–600.

Rottman JB, Slavin AJ, Silva R, Weiner HL, Gerard CG, Hancock WW.

Leukocyte recruitment during onset of experimental allergic enceph-

alomyelitis is CCR1 dependent. Eur J Immunol 2000; 30: 2372–7.

Roy M, Richard JF, Dumas A, Vallieres L. CXCL1 can be regulated by IL-

6 and promotes granulocyte adhesion to brain capillaries during bac-

terial toxin exposure and encephalomyelitis. J Neuroinflammation

2012; 9: 18.

Sorensen TL, Tani M, Jensen J, Pierce V, lucchinetti C, Folcik VA, et al.

Expression of specific chemokines and chemokine receptors in the cen-

tral nervous system of multiple sclerosis patients. J Clin Invest 1999;

103: 807–15.
Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B,

et al. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1

in shear-resistant T cell arrest, polarization, and directed crawling on

blood-brain barrier endothelium. J Immunol 2010; 185: 4846–55.

Steiner O, Coisne C, Engelhardt B, Lyck R. Comparison of immortalized

bEnd5 and primary mouse brain microvascular endothelial cells as

in vitro blood-brain barrier models for the study of T cell extravasa-

tion. J Cereb Blood Flow Metab 2011; 31: 315–27.

Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of

chemokines involved in CNS inflammation. Trends Pharmacol Sci

2006; 27: 48–55.

Vajkoczy P, Laschinger M, Engelhardt B. Alpha4-integrin-VCAM-1 binding

mediates G protein-independent capture of encephalitogenic T cell blasts

to CNS white matter microvessels. J Clin Invest 2001; 108: 557–65.

Whitney LW, Becker KG, Tresser NJ, Caballero-Ramos CI, Munson PJ,

Prabhu VV, et al. Analysis of gene expression in mutiple sclerosis le-

sions using cDNA microarrays. Ann Neurol 1999; 46: 425–8.

Zhao Y, Mangalmurti NS, Xiong Z, Prakash B, Guo F, Stolz DB, et al.

Duffy antigen receptor for chemokines mediates chemokine endocyto-

sis through a macropinocytosis-like process in endothelial cells. PLoS

One 2011; 6: e29624.

DARC in EAE Brain 2014: 137; 1454–1469 | 1469


