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Abstract
In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interac-

tions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an

arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to

compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction

of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the

detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external

excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography

from that induced by compositional heterogeneity.
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Introduction
It has long been recognized in the community that higher

harmonics encode detailed information about the non-lineari-

ties of the tip–sample interaction in dynamic atomic force

microscopy (AFM) [1-5]. Physically, non-linearities relate to

the chemical and mechanical composition [6] of the tip–sample

system and imply that higher harmonics can be translated into

conservative and dissipative [7] nanoscale and atomic prop-

erties [8]. Furthermore, conventional dynamic AFM can already

reach molecular [9,10], sub-molecular [11] and atomic [12,13]

resolution in some systems. Thus, the simultaneous detection

and interpretation of multiple higher harmonic signals while

scanning [14] can lead to spectroscopy-like capabilities [15,16],

such as chemical identification, with similar or higher resolu-

tion [5,17,18]. The higher harmonic approach however, and

particularly in other than highly damped environments [19,20],

requires dealing with the recurrent challenge of detecting higher
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harmonics [1,3,21,22]. Higher harmonics are a result of the

non-linear tip–sample interaction in the sense that the inter-

action effectively acts as the driving force of each harmonic

component [7]. Accordingly, relatively high peak forces, of the

order of 1–100 nN, are required [22,23] to excite higher

harmonics above the noise level. In order to address this issue,

in 2004 Rodriguez and García [23] proposed to drive the second

higher flexural mode of the cantilever with an external drive. In

this way, and by driving with sufficiently small (sub-

nanometer) second mode amplitudes, the first mode amplitude

[24] or frequency [17] can be employed to track the sample in

amplitude or frequency modulation (AM and FM), respectively.

The second mode can then be left as an open loop for high

sensitivity mapping of compositional variations [25] or as a

closed loop, in which case the tip–sample stiffness kts can be

computed [17,26]. More recently, the multifrequency AFM ap-

proach has been extended to employ three flexural modes [27]

and/or simultaneous torsional modes [28], for which, typically,

the frequency and mode under consideration are externally

excited [24]. In summary, FM and/or AM feedback systems can

be employed in one [29], several [27] or all of the modes under

consideration in order to quantify properties on the nanoscale

through observables [30] while simultaneously enhancing sensi-

tivity and throughput [31]. The dynamics in the multifrequency

approach, however, might lead to extra complexities in the

analysis, acquisition and interpretation of data [31,32]. For

example, recent studies [31] show that multiple regimes of

operation might follow depending on the relative kinetic

energy between the higher mode of choice and the fundamental

eigenmode [31,33].

Here, exact multiple harmonics of the fundamental drive

frequency are externally excited above the noise level to open

multiple contrast channels that are sensitive to compositional

variations. The focus is on amplitude modulation (AM) AFM,

in which the fundamental amplitude A1 ≡ A tracks the sample

as usual. For standard cantilevers the eigenmodes are nonhar-

monic [29]. That is, the natural resonant frequencies of the

cantilevers are not integer multiples. Furthermore, these natural

frequencies relate to the geometry and mechanical properties of

the cantilever [34]. The practical implication is that it is only

easy to induce large oscillations at the frequencies that coincide

with these natural frequencies. Nevertheless the tip–sample

coupling always occurs via harmonic frequencies. This is

because a periodic motion always implies that there is a funda-

mental frequency and that all other higher frequencies are

integer multiples of the fundamental [35]. The implication is

that externally introducing frequencies other than harmonic

frequencies could induce a fundamental sub-harmonic

frequency [24,35]. In short, the incommensurability between

external drives in the standard multifrequency approach implies

that the cantilever motion is not exactly periodic relative to the

fundamental drive and that a sub-harmonic excitation typically

follows [32]. Furthermore, simplifications in eigenmode

frequency shift theory [36] might lead to inconsistencies [37].

This issue becomes more prominent when dealing with third or

higher eigenmodes [27,38], for which the theory is now

emerging [31]. The introduction of exact harmonic external

drives keeps the fundamental frequency intact and the analyt-

ical expressions are simplified by orthogonality. Furthermore

2(N−1) observables, i.e., higher harmonic amplitudes and

phases, are made available even with peak forces no higher than

200 pN, as they are required [25,39] for high resolution and

minimally invasive imaging of soft matter. Thermal fluctua-

tions are also considered here in order to establish a possible

loss of contrast due to fundamental sources of noise. It is also

shown that true topography and apparent topography, which is

induced by chemical heterogeneity, can be decoupled at once by

monitoring the phase contrast of higher harmonics.

Results and Discussion
Consider the equation of motion of the mth eigenmode

(1)

where k(m), Q(m), ω(m), and z(m) are the spring constant, quality

factor, natural frequency and position of the mth eigenmode.

The term FD stands for the external driving force

(2)

where the subscript without brackets, n, indicates the harmonic

number. Note that here ωn = nω, where ω is the fundamental

drive frequency set near mode m = 1, i.e., ω = ω1 ≡ ω(1). The

term Fts is the tip–sample force, which is a function of both the

tip–sample distance, d, and velocity, . Here however, we

focus on conservative forces since these are present even with

gentle interactions. Hence we can write Fts(d). Since the higher

harmonic amplitudes here are externally excited, the number of

harmonics N that is to be monitored can, in principle, be arbi-

trarily chosen up to the limits of frequency detection, i.e., of the

order of MHz, without compromising detection. The main

constraint is that the number of higher modes, M, that is to be

considered needs to be consistent with the number of higher

harmonics N that are to be analysed [22]. For simplicity, we

consider M = 2 and N = 10 in the numerical analysis without

loss of generality. For clarity we emphasize that M is the

number of modes and N is the number of harmonics taken into
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consideration in the analysis in this work. A particular mode or

harmonic is referred to in lower case, i.e., m or n respectively.

The nth harmonic velocity  is

(3)

Multiplying Equation 1 by Equation 3 and integrating over a

cycle results in

(4)

where 1 is assumed when no subscripts are given. The relation-

ships (ω/ω(m))
2 = k/k(m) and Q/Q(m) = ω/ω(m) [7] have been

employed in Equation 4 and it has been assumed that the funda-

mental drive frequency ω is set near ω(1). Furthermore, in Equa-

tion 4 A(m)n and An are the amplitudes of the nth harmonic that

correspond to the position of mode m, i.e., z(m), and to the

absolute position of the tip, i.e., z, respectively. Also

(5)

(6)

(7)

where  and  are the phase shifts of the nth harmonic that

correspond to the mth mode position and the absolute position,

z, respectively, and En is the energy involved with the nth

harmonic tip–sample interaction. Near the modal frequency

ω(m) only the mth mode significantly contributes to the inter-

action and B(m)n ≈ 0 and C(m)n ≈ 1 in Equation 4. This approxi-

mation has been currently employed in the literature [6]. Never-

theless, far from the modes, these terms might not be zero. To

allow for simple analytical formulae and ease the qualitative

interpretation we consider the harmonics close to the modes

only [6]. Then

(8)

If the nth drive F0n is zero, then

(9)

Equation 9 is the energy transferred to the nth harmonic of the

cantilever through the tip–sample interaction. It should be noted

that this is consistent with a conservative tip–sample force

Fts(d) since the energy is provided during each cycle by the

external driving force(s). The quadratic dependence of the

energy En on nAn is of particular relevance for the detection of

higher harmonics. First, Equation 9 implies that for a given

amplitude An the transfer of energy En scales quadratically with

the harmonic number. This explains why for sufficiently large

n, higher harmonics are typically undetectable. Second, the

proportionality between En and  in Equation 9 explains why

for higher harmonic amplitudes to be detected, the interaction in

Equation 7 needs to be considerably large, even when n is not

necessarily very large.

From Equation 8 it follows that An can be set to any arbitrary

value by increasing F0n, even if there is no tip–sample energy

transfer, i.e., En = 0. The higher harmonics for the free

cantilever are termed A0n. This case corresponds to a free

cantilever oscillating sufficiently high above the sample

(A/A0 = 1) as illustrated in Figure 1 (circles). The data has been

acquired by numerically solving the simultaneous equations in

Equation 1 for the first two flexural modes, i.e., M = 2, and for

N = 10. Furthermore, since only long range attractive forces are

of interest here, the tip–sample force is simply [23]

(10)

where R is the tip radius, H is the Hamaker constant and a0 is an

intermolecular distance (a0 = 0.165 nm throughout and in all the

data here, we consider d > a0 throughout). It is relevant to note

that the Hamaker constant depends on the tip and sample in the

sense that its value is determined by the atomic composition or

chemical elements that compose the tip and the sample [40,41].

For this reason, in this work we will employ the terms chem-

istry, Hamaker and tip–sample composition or chemistry

interchangeably. The common parameters in this work are

k = 2 N/m, Q = 100, ω = 2π·70 kHz and R = 7 nm, i.e., they

correspond to commercially available standard probes for AM

AFM. Furthermore, in Figure 1, H = 6.2 × 10−19 J, i.e., it is

close to that calculated for materials such as polystyrene or

fused quartz [40]. The parameters for the second mode have

been obtained with the above formulae [7]. The modal frequen-

cies 1 and 2 are shown with dashed lines. The phase shifts 

are shown in the vertical axis in Figure 1 for each harmonic.
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Figure 1: Phase shifts  of higher harmonics, including the fundamental shift , when N = 10 external harmonic drives are introduced. The values
 are shown for a free oscillating cantilever (circles). For the free cantilever the separation is zc >> A/A0 = 1. Then the cantilever is gently interacting

(peak forces smaller than 20 0pN) with the surface, i.e., A/A0 < 1, while the free higher harmonic amplitudes A0n are set to 1 (squares) and 100 (trian-
gles) pm.

Figure 2: Phase shift analysis, in which the contrast in the higher harmonic phase shifts Δ  = abs( (H2) − (H1)), n = 2–10, which is induced by
variations in the Hamaker constant H is shown. The variation in H is H2 − H1 = 1.0 × 10−19 J, where H2 = 1.2 × 10−19 J, and effectively corresponds to
variations in chemistry only. Results are shown when higher harmonic amplitudes A0n of 1 (circles), 10 (squares) and 100 (triangles) pm are intro-
duced. Peak forces are smaller than 200 pN throughout.

The actual harmonic amplitudes An that resulted when inter-

acting are not shown, instead An ≈ A0n is given throughout. The

case of a free cantilever (circles) shows that the fundamental

phase shift  is exactly 90 degrees as expected while the higher

harmonic phase shifts  (n > 1) lie either close to 180° or to

0°. This is in agreement with Equation 8 when En ≈ 0 since then

(11)

where the approximation F0n ≈ k(m)n
2A0n (near m) has been

employed. Also from Figure 1 (circles) it follows that for a free

cantilever, and when n is higher than the modal frequency

(close to a given mode and for n > 1),  ≈ 180°. When n is

lower than the modal frequency  ≈ 0°. This is true irrespec-

tive of the value of A0n. When the tip is allowed to interact with

the sample En ≠ 0 and, from Equation 8, the phase shift  is

affected by the interaction. Nevertheless, the weight of the

driving force, i.e., the first term in Equation 8, increases with

increasing F0n, or A0n, and then the sensitivity of  to En

might be compromised. This is confirmed in Figure 1 by

allowing a gentle interaction, i.e., A01 ≡ A0 = 4 nm and

A/A0 ≈ 0.9 (also Figure 2 and Figure 3), and monitoring

when A0n = 1 pm (squares) and A0n = 100 pm (triangles).

When A0n = 100 pm (triangles) all  remain close to 180° or

0°. A shift in phase, i.e., from 180° to 0°, is observed for n = 2

only. While these jumps of nearly 180° might be of interest they

are ignored from now on. The reader can refer to recent works

that discuss multiple regimes of operation in bimodal AFM

[31,33]. It follows that variations in Hamaker are not detected

by higher harmonic frequencies when A0n = 100 pm. When A0n

= 1 pm (squares), however, the values of  are not exactly

180° or 0° for some n. Thus, the values  are now sensitive to
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Figure 3: Phase shift analysis, in which the contrast in the higher harmonic phase shifts Δ  = abs( (H2) − (H1)) for n = 2–10 results only from
variations in the Hamaker constant, H, or in the chemistry. The variations of H are H2 − H1 = 0.2 × 10−19 J for H2 = 0.4 × 10−19 J (circles), 0.8×10-19 J
(squares) and 1.2 × 10−19 J (triangles). These variations induce variations in peak force of 29 (circles), 8 (squares) and 3 (trinagles) pN.

the Hamaker values or tip–sample forces. The peak forces were

140 pN (circles) and 160 pN (triangles) respectively.

The loss of phase sensitivity to Hamaker variations with

increasing A0n is further corroborated with the use of Figure 2

and by varying the Hamaker values from H1 = 0.2 × 10−19 J to

H2 = 1.4 × 10−19 J, and setting A0n = 1 pm (circles), A0n =10 pm

(squares) and A0n = 100 pm (triangles). This range of H

is characteristic of materials interacting in ambient conditions

[40]. The y-axis stands for the contrast in higher harmonic

phase Δ  = abs( (H2) − (H1)). We consider that varia-

tions, for which Δ  > 0.2° lie above the noise of the instru-

ment and can potentially be detected. The corresponding varia-

tions in peak forces were 63, 47 and 79 pN respectively. The

sensitivity of Δ  is clearly controlled by the chosen values of

A0n. For example, if A0n = 100 pm then Δ  < 0.2° throughout.

If A0n = 1 or 10 pm, however, then Δ  > 0.2° at least for some

n. In particular, if A0n = 1 pm then Δ  > 0.2° for all n. This

implies that all the externally excited higher harmonics act as

simultaneous contrast channels that are sensitive to Hamaker, or

chemical, variations.

In Figure 3 the sensitivity of Δ  when A0n = 1 pm is tested by

varying H (a) from H1 = 0.2 × 10−19 J to H2 = 0.4 × 10−19 J

(peak force variat ion of 29 pN, circles) ,  (b) from

H1 = 0.6 × 10−19 J to H2 = 0.8 × 10−19 J (peak force variation

of 8 pN, squares) and (c) from H1 = 1.2 × 10−19 J to

H2 = 1.4 × 10−19 J (peak force variation of 3 pN, triangles). The

shifts Δ  are larger than 0.2° for all n provided the variations

in peak force are large enough (circles). If the variations in the

peak force are sufficiently small then Δ  > 0.2° for some n

only. Also, it can be deduced by inspection that, in general, Δ

escalates with variations in peak force and changes non-linearly

with variations in Hamaker since H2 − H1 = 0.2 × 10−19 J

throughout in the figure. In fact, from Figure 3, the total contri-

butions to the phase shift calculated as the sums ΣΔ  (n = 1–9)

are 119.8, 19.3 and 5.4° and decrease with decreasing the varia-

tions in peak force, i.e., 29, 8 and 3 pN, respectively.

It is also interesting to note that the source of variations in peak

force with variations in Hamaker H (Equation 10), i.e., van der

Waals forces, relates to variations in the distance of minimum

approach, dm, with variations in H. To be more specific, dm,

increases with increasing H. For example, in the simulations, by

varying H from H1 = 0.2 × 10−19 J to H2 = 1.4 × 10−19 J the

variation is Δdm ≈ 0.83 nm. This would experimentally result in

a chemistry-induced apparent topography of approximately

Δzc ≈ 0.83 nm. In standard AM AFM, in which a single

frequency is externally excited, this apparent topography cannot

be distinguished from true topography in the presence of

conservative forces only (Figure 4). A true topography can only

be reconstructed from AM AFM results, if there is a variation in

topography only (Figure 4a). This means that the composition

of the sample is homogeneous throughout. In particular, the

above discussion indicates that variations in H, or chemistry

alone, produce variations in apparent topography in AM AFM,

for which Δzc > 0 nm (Figure 4b). The excitation of higher

harmonics, however, provides experimental observables

to differentiate between the two cases. Namely, the true

reconstructed topography results only if Δ  = 0° for all n. That

is, if Δ  > 0°, even for a single n, there is a contribution to

apparent topography induced by chemistry or other composi-

tional variations.

Thermal noise and higher harmonic external
drives
As stated in the introduction, it has long been known that under

ambient conditions higher harmonic amplitudes might be too
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Table 1: Harmonic amplitudes An and the corresponding phase shifts  that result from Hamaker values of H1 = 0.2 × 10−19 J and
H2 = 1.4 × 10−19 J. The differences in amplitudes ΔAn and phases Δ  are also shown. A single external drive force has been employed (the funda-
mental frequency) and no thermal noise has been allowed.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

An [pm] for H1 3600.00 4.38 1.03 0.21 0.16 1.11 0.39 0.12 0.06 0.03
An [pm] for H2 3600.00 3.31 0.57 0.08 0.05 0.23 0.06 0.01 0.00 0.00

ΔA1 ΔA2 ΔA3 ΔA4 ΔA5 ΔA6 ΔA7 ΔA8 ΔA9 ΔA10
ΔAn [pm] 0.00 −1.07 −0.46 −0.12 −0.12 −0.89 −0.33 −0.11 −0.05 −0.03

 [°] for H1 115.83 141.25 167.20 12.77 39.91 66.18 90.49 116.55 142.44 168.29

 [°] for H2 115.84 141.25 167.20 12.77 39.90 66.18 90.48 116.52 142.29 167.78

Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ  [°] 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 −0.03 −0.14 −0.50

Figure 4: (a–c) Illustration of a cantilever oscillating above a surface
and recovering the true height Δzc = h when there are no composi-
tional heterogeneity or chemical variations. (d–f) Topographical varia-
tions Δzc > 0 nm induced by chemical or another compositional hetero-
geneity. The two cases can be decoupled by noting that it is only a
compositional heterogeneity, if the phase shifts of higher harmonics,
Δ , are non-zero.

small to be detected [3,15,42]. This is particularly true when

monitoring higher harmonics and simultaneously applying

gentle tip–sample forces [23]. In liquid environments, however,

the second harmonic amplitude might be large enough [43] to

be recorded to map the properties even of living cells [44,45].

Still, even in highly damped environments, harmonic ampli-

tudes rapidly decrease with increasing harmonic number partic-

ularly when imaging soft matter [6,15,46]. The main discussion

above has focused on externally driving higher harmonics to

amplitudes that could be experimentally detected. Then, once

these amplitudes are sufficiently high, the phase shifts Δ  have

been employed to map the composition through variations in

the tip–sample Hamaker constant, H, in Equation 10. In this

section, the presence of thermal noise is discussed with respect

to the contrast in amplitude ΔAn and phase Δ  in the presence

and absence of external drive forces at the higher harmonics

frequencies.

First an example of the magnitude of the harmonic amplitudes

and respective phase shifts that would result when higher

harmonics are not externally excited is given (Table 1). In order

to sense long-range forces only, the cantilever is driven with

relatively small amplitudes, i.e., A0 = 4 nm and A/A0 = 0.9 as in

the examples above. The harmonic amplitudes An are given in

pm. Two examples for the amplitude response are shown, one

for amplitudes resulting from H1 = 0.2 × 10−19 J (top row) and

one for H2 = 1.4 × 10−19 J (second row). For H1, A2 is approx. 4

pm whereas A3 and A6 are approx. 1 pm. All other higher

harmonics lie below 1 pm. For H2, A2 is approx. 3 pm and all

other higher harmonics have values below 1 pm. The differ-

ence in amplitudes ΔAn = An(H2) − An(H1) that results from the

variation in H is also given in the table. Only the second

harmonic results in variations above 1 pm. Practically, these

results imply that while higher harmonic amplitudes depend on

the value of the Hamaker constant, or sample composition, the

amplitude values are typically in the order of 1 pm or fractions

of a pm. This is also true for variations in higher harmonic

amplitudes ΔAn. The corresponding phase shifts  and varia-
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tions in phase shifts Δ  are also shown in Table 1 for H1 and

H2. These are of the order of a hundredth of a degree or less

except for sufficiently high harmonic numbers, i.e., n = 9 and

10. The amplitudes for these higher harmonics, however, are of

the order of tens of femtometers or less.

Thermal fluctuations are a fundamental source of intrinsic noise

in atomic force microscopy [47]. Thus, while other sources of

intrinsic and extrinsic noise should be acknowledged and might

be present in a given experiment, thermal fluctuations are

analyzed next in terms of their effects on amplitude and phase

shifts. This should provide a measure of the impact of thermal

noise on the enhanced contrast reported in this work (Figure 2

and Figure 3). Other technical issues such as tilt and probe

geometry have also been ignored for simplicity since these typi-

cally involve a correction factor [48]. As in the work of Butt

and Jaschke [47], the equipartition theorem is employed to esti-

mate the thermal noise present in a given mode. However, since

higher harmonics are discussed here, particular emphasis should

be given to the noise at the frequencies of interest, i.e., at exact

harmonic frequencies, and the noise in the detection band-

widths of interest. Then, the thermal noise power ΔPTN(Δf) in

the detection bandwidth of interest, Δf, can be defined as

(12)

where TN stands for thermal noise, fn is the frequency of

interest (ωn = 2πfn), that is the frequency of a particular

harmonic n, GTN is the power spectral density due to thermal

noise, and |HZF|2 is the modulus of the squared transfer func-

tion of a particular mode m of position zm relative to thermal

force FTN. If GTN is assumed to be constant for the bandwidth

of interest in AFM experiments, i.e., f = 102–106, it follows

from Equation 1 that the thermal energy in a given mode m, by

invoking the equipartition theorem, is

(13)

where here T = 300 K throughout, f(m) is the natural resonant

frequency of mode m in Hz and df = (f(m)/ω(m))dω. Then

(14)

From Equation 13 and Equation 14, the thermal noise power in

the detection bandwidth of interest, ΔPTN(Δf), is found to be

(15)

Finally, the associated amplitude due to thermal noise ATN in

the detection bandwidth Δf is

(16)

It should be noted that ATN gives the contribution of thermal

noise to the amplitude of a given mode m only. Each modal

contribution of thermal noise to the amplitude should be calcu-

lated separately for each frequency in the formalism developed

here. A driving force, FTN, can also be associated to thermal

noise and the respective amplitude, ATN, (Equation 16) through

a standard expression [49]

(17)

Equation 17 gives the effective drive force FTN due to thermal

fluctuations that should be expected for a given detection band-

width Δf and a given mode m. Since the upper boundaries for

noise will be considered here, the phase of the thermal noise

signal has been set to be in quadrature with respect to the

external drive, i.e., either the fundamental external drive or the

higher harmonic external drives when these are present. Focus

is now placed on the harmonics n = 1, 2, 3 (close to the funda-

mental frequency of mode 1) and 6 (close to the fundamental

frequency of mode 2), since these are sufficiently close to a

given mode that only the contribution of thermal noise to the

amplitude from a single mode needs to be considered. This

simplifies the following discussion.

In Table 2 the amplitudes ATNn and forces FTNn calculated for

three different values of detection bandwidth Δf (5 kHz, 2 kHz

and 0.2 kHz) are shown for n = 1, 2, 3 and 6. The values have

been computed with the use of Equation 16 and Equation 17,

with frequencies centered at the harmonic frequencies fn, for a

given detection bandwidth Δf. It is interesting to note that ATN1

lies between 44 and 19 pm for the three choices of detection

bandwidth. These values are in agreement with those expected

from an analysis that implies that all the thermal noise is

centered exactly at resonance [47]. This is because the Q factors
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are relatively high (Q1 = 100 and Q2 = 600). The values of the

thermal-noise amplitude expected at harmonics 2, 3 and 6

however are of the order of 0.1–1.0 pm.

Table 2: Amplitudes ATNn resulting from thermal noise for n = 1, 2, 3
and 6 and respective drive forces FTNn for detection bandwidths Δf of
5, 2 and 0.2 kHz.

Δf
[kHz]

ATN1
[pm]

FTN1
[pN]

ATN2
[pm]

FTN2
[pN]

ATN3
[pm]

FTN3
[pN]

ATN6
[pm]

FTN6
[pN]

5 62.23 1.27 0.42 2.83 0.17 2.83 0.42 2.83
2 56.57 1.13 0.28 1.70 0.14 1.70 0.28 1.70
0.2 26.87 0.57 0.08 0.57 0.04 0.57 0.07 0.57

The effects that the thermal noise amplitudes in Table 2 have on

the enhanced contrast reported in this work have been analyzed

by adding the associated thermal noise forces, also shown in

Table 2, to the equation of motion in Equation 1. The discus-

sion below focuses on the values obtained for Δf = 2 kHz in

Table 2 since this is a detection bandwidth of practical rele-

vance in standard AFM experiments [50].

The sensitivity of the phase shift to noise and signal can

be defined here, and for the purpose of phase shifts in

AM AFM, as follows. First assume that noise is allowed

according to Table 2 (Δf = 2 kHz) for a given value of the

Hamaker constant, H. Here both H1 = 1.4 × 10−19 J and

H2 = 1.4 × 10−19 J have been used in the simulations.

According to this, thermal noise alone should lead to a differ-

ence in phase shift Δ (H) = (ATN > 0) − (ATN = 0) for a

given value of H since there is an effective driving force FTNn

due to thermal fluctuations (Table 2). The average of Δ  for

the two Hamaker values can be taken as the noise in the phase

signal as follows

(18)

where TN stands for thermal noise as usual and Δ (TN) stands

for the difference in phase shift at harmonic n that induced by

thermal noise alone. Next the signal is defined as the phase shift

induced by variations in Hamaker alone

(19)

Finally, a parameter that quantifies the sensitivity of the phase

shift to noise and signal, the phase ratio PR( ) can be defined

from the ratio between Equation 19 and Equation 18:

(20)

Large values of PR result in a high sensitivity of the phase shift

to the signal, whereas low values of PR indicate a sensitivity of

the phase shift to noise only. Three cases are discussed, which,

for simplicity, focus on harmonics 2, 3 and 6 only and on

A0n = 0, 1 and 10 pm.

Case 1: First, no higher harmonic external drives are allowed,

which implies that A0n = 0 in Equation 2 for n > 1. This is the

standard operational mode in dynamic AFM, in which a single

external drive is employed. In this case we have PR = 0

throughout (Table 3).

Case 2: Higher harmonic external drives are allowed. In par-

ticular, A0n = 1 pm in Equation 2 for n > 1. This is the proposed

mode of operation in this work. In this case we have PR > 1

throughout but the exact value depends on harmonic number

(Table 3).

Case 3: Higher harmonic external drives are allowed. In par-

ticular, A0n = 10 pm in Equation 2 for n > 1. This is the

proposed mode of operation in this work. When compared to

case 2, however, the magnitudes of the external drives have

been increased. In this case we also have PR > 1 throughout

(Table 3).

Table 3: The phase ratio for a given harmonic phase shift n, PR( ),
as defined by Equation 20 when 1) no higher harmonic external drives
are allowed (A0n = 0) and when external drives lead to 2) A0n = 1 pm
and 3) A0n = 10 pm.

PR ( ) PR ( ) PR ( )

case 1: A0n =0 0.00 0.00 0.00
case 2: A0n =1 pm 1.90 22.09 7.29
case 3: A0n =10 pm 5.20 2.01 195.85

When looking at Table 3, one should recall that these are the

upper-boundary values for noise since the phase of the thermal

noise drives was set to be in quadrature. In summary, Table 3

shows that the phase ratio PR increases when external drives are

applied at a given exact harmonic frequency, i.e., when A0n > 0.

This is consistent with standard multifrequency operation, for

which impressive results have already been obtained by exciting

frequencies close to the resonant frequency of the second flex-

ural mode [17,25,26]. In standard monomodal dynamic AFM,

in which a single external drive is employed, the higher

harmonics are excited by the tip–sample interaction according
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to Equation 9. That is, energy needs to flow into the higher

harmonic frequencies in order to increase the amplitude signal.

It is reasonable to assume that the increase in the sensitivity of

the phase shift to the signal, i.e., the force, when external drives

are applied is a consequence of energy both entering and

leaving the given harmonic frequency of choice. That is, the

fact that energy is supplied by the external drive at a given

harmonic n implies that both positive and negative energy

transfer might also occur at that frequency. Furthermore, when

external drives are employed, this transfer occurs for a given

phase shift that is now measured relative to the angle of the

driving force. This is in agreement with the presence of the

phase shift in Equation 8 and the absence of the phase shift in

Equation 9 and might be related to the increase in the sensi-

tivity of the phase shift to the tip–sample force as predicted

here.

Conclusion
In summary, we have introduced a method that makes readily

accessible an arbitrary number of exact higher harmonics by

externally driving them with amplitudes above the noise level.

Driving with exact higher harmonics does not introduce sub-

harmonic frequencies to the motion and the amplitudes do not

significantly decay when the interaction is gentle. Once higher

harmonic amplitudes are accessible, one can also detect varia-

tions in higher harmonic phase shifts. In this work, variations in

sample composition, or chemistry, here modelled through the

Hamaker constant, have been shown to lead to variations in

higher harmonic phase shifts and amplitudes. In particular, vari-

ations in the Hamaker constant of the order of 1020 J can in-

duce higher harmonic phase shifts in the order of 10°. This is

provided the higher harmonic amplitudes are small enough, i.e.,

about 1–10 pm. These small variations in phase shift would

suffice to distinguish between metals such as gold, silver or

copper [40]. Higher harmonic phase shifts also provide the

means to decouple the true topography from an apparent topog-

raphy, which is induced by compositional variations. Further-

more this outcome should still be valid in standard bimodal

imaging. Overall, the proposed approach, and variations, might

ultimately fulfil the promise of rapid chemical identification

with multiple contrast channels while simultaneously exerting

only gentle forces on samples. Still it has to be acknowledged

that, experimentally, it is expected that technical issues might

arise from the multiple excitation of exact frequencies and from

the set-up required to detect variations in higher harmonic

phase. In particular, the set-up would require the generation of

exact harmonic external drives to bring the harmonic ampli-

tudes above the noise level while keeping them small enough to

provide enough phase contrast. This last point is relevant since

it has been shown that higher harmonic amplitudes should

remain in the sub-100-pm range for the higher harmonic phase

shifts to be significantly large, i.e., above 0.2°, in response to

variations in the tip–sample force. On the other hand, an

analysis of thermal fluctuation that exploits the equipartition

theorem has also indicated that thermal noise should be of the

order of 0.1–1.0 pm close to the higher harmonics modes. The

implication is that the working amplitudes should lie in the

range of 1 to 100 pm. The noise analysis has also shown that

there is an increase in sensitivity of the phase shift to the

tip–sample force when frequencies are externally excited.

Nevertheless, ultimately, only experimental practice, implemen-

tation, ingenuity and further theoretical advances in the field are

to establish what the limits of this approach are.

Acknowledgements
This project was funded by Ministerio de Economía y Competi-

tividad (MAT2012-38319). The artistic figure was designed by

Maritsa Kissamitaki.

References
1. Stark, R. W.; Heckl, W. M. Surf. Sci. 2000, 457, 219–228.

doi:10.1016/S0039-6028(00)00378-2
2. Stark, M.; Stark, R. W.; Heckl, W. M.; Guckenberger, R.

Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 8473–8478.
doi:10.1073/pnas.122040599

3. Sahin, O.; Quate, C.; Solgaard, O.; Atalar, A. Phys. Rev. B 2004, 69,
165416. doi:10.1103/PhysRevB.69.165416

4. Dürig, U. New J. Phys. 2000, 2, 1–12. doi:10.1088/1367-2630/2/1/005
5. Sahin, O.; Quate, C.; Solgaard, O.; Giessibl, F. J. Higher-Harmonic

Force Detection in Dynamic Force Microscopy. In Springer Handbook
of Nanotechnology; Bhushan, B., Ed.; Springer Verlag: Berlin,
Germany, 2010; pp 711–729. doi:10.1007/978-3-642-02525-9_25

6. Payam, A. F.; Ramos, J. R.; Garcia, R. ACS Nano 2012, 6,
4663–4670. doi:10.1021/nn2048558

7. Garcia, R.; Herruzo, E. T. Nat. Nanotechnol. 2012, 7, 217–226.
doi:10.1038/nnano.2012.38

8. Garcia, R.; Proksch, R. Eur. Polym. J. 2013, 49, 1897–1906.
doi:10.1016/j.eurpolymj.2013.03.037

9. Fukuma, T.; Kobayashi, K.; Matsushige, K.; Yamada, H.
Appl. Phys. Lett. 2005, 86, 193108–193110. doi:10.1063/1.1925780

10. Gotsmann, B.; Schmidt, C. F.; Seidel, C.; Fuchs, H. Eur. Phys. J. B
1998, 4, 267–268. doi:10.1007/s100510050378

11. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. Science 2009,
325, 1110–1114. doi:10.1126/science.1176210

12. Wastl, D. S.; Weymouth, A. J.; Giessibl, F. J. Phys. Rev. B 2013, 87,
245415–245424. doi:10.1103/PhysRevB.87.245415

13. Giessibl, F. J. Science 1995, 267, 68–71.
doi:10.1126/science.267.5194.68

14. Kawai, S.; Hafizovic, S.; Glatzel, T.; Baratoff, A.; Meyer, E.
Phys. Rev. B 2012, 85, 165426–165431.
doi:10.1103/PhysRevB.85.165426

15. Stark, R. W. Nanotechnology 2004, 15, 347–351.
doi:10.1088/0957-4484/15/3/020

16. Hutter, C.; Platz, D.; Tholén, E. A.; Hansson, T. H.; Haviland, D. B.
Phys. Rev. Lett. 2010, 104, 050801–050804.
doi:10.1103/PhysRevLett.104.050801

http://dx.doi.org/10.1016%2FS0039-6028%2800%2900378-2
http://dx.doi.org/10.1073%2Fpnas.122040599
http://dx.doi.org/10.1103%2FPhysRevB.69.165416
http://dx.doi.org/10.1088%2F1367-2630%2F2%2F1%2F005
http://dx.doi.org/10.1007%2F978-3-642-02525-9_25
http://dx.doi.org/10.1021%2Fnn2048558
http://dx.doi.org/10.1038%2Fnnano.2012.38
http://dx.doi.org/10.1016%2Fj.eurpolymj.2013.03.037
http://dx.doi.org/10.1063%2F1.1925780
http://dx.doi.org/10.1007%2Fs100510050378
http://dx.doi.org/10.1126%2Fscience.1176210
http://dx.doi.org/10.1103%2FPhysRevB.87.245415
http://dx.doi.org/10.1126%2Fscience.267.5194.68
http://dx.doi.org/10.1103%2FPhysRevB.85.165426
http://dx.doi.org/10.1088%2F0957-4484%2F15%2F3%2F020
http://dx.doi.org/10.1103%2FPhysRevLett.104.050801


Beilstein J. Nanotechnol. 2014, 5, 268–277.

277

17. Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E.
Phys. Rev. Lett. 2009, 103, 220801–220804.
doi:10.1103/PhysRevLett.103.220801

18. Hembacher, S.; Giessibl, F. J.; Mannhart, J. Science 2004, 305,
380–383. doi:10.1126/science.1099730

19. Basak, S.; Raman, A. Appl. Phys. Lett. 2007, 91, 064107–064109.
doi:10.1063/1.2760175

20. Xu, X.; Melcher, J.; Basak, S.; Reifenberger, R.; Raman, A.
Phys. Rev. Lett. 2009, 102, 060801–060804.
doi:10.1103/PhysRevLett.102.060801

21. Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O.
Nat. Nanotechnol. 2007, 2, 507–514. doi:10.1038/nnano.2007.226

22. Gadelrab, K.; Santos, S.; Font, J.; Chiesa, M. Nanoscale 2013, 5,
10776–10793. doi:10.1039/c3nr03338d

23. Rodríguez, T. R.; García, R. Appl. Phys. Lett. 2004, 84, 449–551.
doi:10.1063/1.1642273

24. Lozano, J. R.; Garcia, R. Phys. Rev. Lett. 2008, 100, 076102–076105.
doi:10.1103/PhysRevLett.100.076102

25. Patil, S.; Martinez, N. F.; Lozano, J. R.; Garcia, R. J. Mol. Recognit.
2007, 20, 516–523. doi:10.1002/jmr.848

26. Martinez-Martin, D.; Herruzo, E. T.; Dietz, C.; Gomez-Herrero, J.;
Garcia, R. Phys. Rev. Lett. 2011, 106, 198101–198104.
doi:10.1103/PhysRevLett.106.198101

27. Solares, S. D.; Chawla, G. Meas. Sci. Technol. 2010, 21, 125502.
doi:10.1088/0957-0233/21/12/125502

28. Kawai, S.; Glatzel, T.; Koch, S.; Such, B.; Baratoff, A.; Meyer, E.
Phys. Rev. B 2010, 81, 085420–085426.
doi:10.1103/PhysRevB.81.085420

29. Proksch, R. Appl. Phys. Lett. 2006, 89, 113121–113123.
doi:10.1063/1.2345593

30. Herruzo, E. T.; Perrino, A. P.; Garcia, R. Nat. Commun. 2014, 5,
No. 3126. doi:10.1038/ncomms4126

31. Kiracofe, D.; Raman, A.; Yablon, D. Beilstein J. Nanotechnol. 2013, 4,
385–393. doi:10.3762/bjnano.4.45

32. Stark, R. W. Appl. Phys. Lett. 2009, 94, 063109–063111.
doi:10.1063/1.3080209

33. Chakraborty, I.; Yablon, D. G. Nanotechnology 2013, 24, 475706.
doi:10.1088/0957-4484/24/47/475706

34. Steidel, R. An introduction to mechanical vibrations, 3rd ed.; John
Wiley & Sons: New York, NY, USA, 1999.

35. Tolstov, G. P.; Silverman, R. A. Fourier Series; Dover Publication: New
York, NY, USA, 1976.

36. Herruzo, E. T.; Garcia, R. Beilstein J. Nanotechnol. 2012, 3, 198–206.
doi:10.3762/bjnano.3.22

37. Aksoy, M. D.; Atalar, A. Phys. Rev. B 2011, 83, 075416–075421.
doi:10.1103/PhysRevB.83.075416

38. Solares, S. D.; Chawla, G. J. Appl. Phys. 2010, 108, 054901.
doi:10.1063/1.3475644

39. Engel, A.; Müller, D. J. Nat. Struct. Mol. Biol. 2000, 7, 715–718.
doi:10.1038/78929

40. Israelachvili, J. Intermolecular and Surface Forces; Academic Press:
Burlington, MA, USA, 1991.

41. Hamaker, H. C. Physica (Amsterdam) 1937, 4, 1058–1072.
doi:10.1016/S0031-8914(37)80203-7

42. Stark, R. W.; Heckl, W. M. Rev. Sci. Instrum. 2003, 74, 5111–5114.
doi:10.1063/1.1626008

43. Preiner, J.; Tang, J.; Pastushenko, V.; Hinterdorfer, P. Phys. Rev. Lett.
2007, 99, 046102–046105. doi:10.1103/PhysRevLett.99.046102

44. Dulebo, A.; Preiner, J.; Kienberger, F.; Kada, G.; Rankl, C.;
Chtcheglova, L.; Lamprecht, C.; Kaftan, D.; Hinterdorfer, P.
Ultramicroscopy 2009, 109, 1056–1060.
doi:10.1016/j.ultramic.2009.03.020

45. Turner, R. D.; Kirkham, J.; Devine, D.; Thomson, N. H.
Appl. Phys. Lett. 2009, 94, 043901. doi:10.1063/1.3073825

46. Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.;
Susilo, M.; Nauman, E.; Contera, S. A. Nat. Nanotechnol. 2011, 6,
809–814. doi:10.1038/nnano.2011.186

47. Butt, H.-J.; Jaschke, M. Nanotechnology 1995, 6, 1–7.
doi:10.1088/0957-4484/6/1/001

48. Heim, L.-O.; Kappl, M.; Butt, H.-J. Langmuir 2004, 20, 2760–2764.
doi:10.1021/la036128m

49. Hu, S.; Raman, A. Nanotechnology 2008, 19, 375704–375714.
doi:10.1088/0957-4484/19/37/375704

50. Ramos, J. R. Desarrollos y applicaciones de la microscopía de fuerzas
para el estudio de proteínas y de células cancerosas. Ph.D. Thesis,
Universidad Autónoma de Madrid, Madrid, 2013.

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.5.29

http://dx.doi.org/10.1103%2FPhysRevLett.103.220801
http://dx.doi.org/10.1126%2Fscience.1099730
http://dx.doi.org/10.1063%2F1.2760175
http://dx.doi.org/10.1103%2FPhysRevLett.102.060801
http://dx.doi.org/10.1038%2Fnnano.2007.226
http://dx.doi.org/10.1039%2Fc3nr03338d
http://dx.doi.org/10.1063%2F1.1642273
http://dx.doi.org/10.1103%2FPhysRevLett.100.076102
http://dx.doi.org/10.1002%2Fjmr.848
http://dx.doi.org/10.1103%2FPhysRevLett.106.198101
http://dx.doi.org/10.1088%2F0957-0233%2F21%2F12%2F125502
http://dx.doi.org/10.1103%2FPhysRevB.81.085420
http://dx.doi.org/10.1063%2F1.2345593
http://dx.doi.org/10.1038%2Fncomms4126
http://dx.doi.org/10.3762%2Fbjnano.4.45
http://dx.doi.org/10.1063%2F1.3080209
http://dx.doi.org/10.1088%2F0957-4484%2F24%2F47%2F475706
http://dx.doi.org/10.3762%2Fbjnano.3.22
http://dx.doi.org/10.1103%2FPhysRevB.83.075416
http://dx.doi.org/10.1063%2F1.3475644
http://dx.doi.org/10.1038%2F78929
http://dx.doi.org/10.1016%2FS0031-8914%2837%2980203-7
http://dx.doi.org/10.1063%2F1.1626008
http://dx.doi.org/10.1103%2FPhysRevLett.99.046102
http://dx.doi.org/10.1016%2Fj.ultramic.2009.03.020
http://dx.doi.org/10.1063%2F1.3073825
http://dx.doi.org/10.1038%2Fnnano.2011.186
http://dx.doi.org/10.1088%2F0957-4484%2F6%2F1%2F001
http://dx.doi.org/10.1021%2Fla036128m
http://dx.doi.org/10.1088%2F0957-4484%2F19%2F37%2F375704
http://creativecommons.org/licenses/by/2.0
http://www.beilstein-journals.org/bjnano
http://dx.doi.org/10.3762%2Fbjnano.5.29

	Abstract
	Introduction
	Results and Discussion
	Thermal noise and higher harmonic external drives

	Conclusion
	Acknowledgements
	References

