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Abstract
Mesenchymal stem cell (MSC) therapy has attracted 
the attention of scientists and clinicians around the 
world. Basic and pre-clinical experimental studies have 
highlighted the positive effects of MSC treatment after 
spinal cord and peripheral nerve injury. These effects 
are believed to be due to their ability to differentiate 
into other cell lineages, modulate inflammatory and 
immunomodulatory responses, reduce cell apoptosis, 
secrete several neurotrophic factors and respond to tis-
sue injury, among others. There are many pre-clinical 
studies on MSC treatment for spinal cord injury (SCI) 
and peripheral nerve injuries. However, the same is 
not true for clinical trials, particularly those concerned 

with nerve trauma, indicating the necessity of more 
well-constructed studies showing the benefits that 
cell therapy can provide for individuals suffering the 
consequences of nerve lesions. As for clinical trials for 
SCI treatment the results obtained so far are not as 
beneficial as those described in experimental studies. 
For these reasons basic and pre-clinical studies dealing 
with MSC therapy should emphasize the standardiza-
tion of protocols that could be translated to the clinical 
set with consistent and positive outcomes. This review 
is based on pre-clinical studies and clinical trials avail-
able in the literature from 2010 until now. At the time 
of writing this article there were 43 and 36 pre-clinical 
and 19 and 1 clinical trials on injured spinal cord and 
peripheral nerves, respectively.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Basic and pre-clinical studies have highlighted 
the positive effects of mesenchymal stem cell (MSC) 
treatment after spinal cord injury (SCI) and nerve trau-
ma. There are many pre-clinical studies on MSC treat-
ment for SCI and nerve injuries. However, the same is 
not true for clinical trials, particularly those concerned 
with nerve trauma. As for clinical trials for SCI, the 
results obtained so far are not as beneficial as those 
described in experimental studies. For these reasons 
basic and pre-clinical studies dealing with MSC therapy 
should emphasize the standardization of protocols that 
could be translated to the clinical set with consistent 
and positive outcomes.
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SPINAL CORD LESION: MECHANISMS OF 
DEGENERATION AND REGENERATION 
Spinal cord injury (SCI) causes motor and sensory defi-
cits that impair functional performance, and significantly 
impacts expectancy and quality of  life of  affected indi-
viduals. The estimated annual global incidence of  SCI is 
15-40 cases per million inhabitants[1]. In addition to the 
sensory and functional deficits, spinal cord injury also 
causes great economic impact on the whole society and it 
is estimated that this impact is greater than 4 billion dol-
lars per year[2].

SCI results from primary and secondary injury mech-
anisms. Primary injury refers to the immediate physical 
injury to the spinal cord as a consequence of  laceration, 
contusion, compression, and contraction of  the neural 
tissue[3]. Pathological changes resulting from primary in-
jury mechanisms include severed axons, direct mechanical 
damage to cells, and ruptured blood vessels. Secondary 
injury is responsible for the expansion of  the injury site 
which, in turn, limits the restorative process[4,5]. Specific 
secondary sequel include alterations in local ionic concen-
trations, loss of  regulation of  local and systemic blood 
pressure, reduced spinal cord blood flow, breakdown of  
the blood-brain barrier, penetration of  serum proteins 
into the spinal cord, inflammatory responses (alterations 
in chemokines and cytokines), apoptosis, excitotoxicity, 
calpain proteases activation, neurotransmitter accumula-
tion, production of  free radicals/lipid peroxidation, and 
imbalance of  activated metalloproteinases. These changes 
lead to demyelination, ischemia, necrosis, and apoptosis 
of  spinal cord parenchyma[5]. These intrinsic responses to 
tissue injury contribute to an environment that is inhibi-
tory to axonal regrowth[6]. As a consequence of  these 
negative influences when axons in the central nervous 
system (CNS) are damaged they mount a poor regenera-
tive response. 

An injury in the central nervous system generally leads 
to transection of  some nerve fibers as well as damage to 
the surrounding tissues. The distal ends of  the damaged 
axons form dystrophic growth cones that are exposed to 
a glial hostile microenvironment. During the initial phase 
of  lesion, inhibitors associated with intact myelin oligo-
dendrocyte and myelin debris, such as NOGO (no go), 
MAG (myelin associated glycoprotein) and OMGp (oli-
godendrocyte myelin glycoprotein) proteins can restrict 
axonal growth[7]. In addition, the recruitment of  inflam-
matory cells and astrocytes, in an attempt to restore the 
blood-brain barrier, leads to the formation of  glial scar, 
which is usually accompanied by cavities filled with as-
trocytes secreted substances, such as chondroitin sulfate 
proteoglycans, which also acts as axon growth inhibitory 
molecules[8,9]. Furthermore, there is also a lack of  trophic 

factors in the lesion milieu due to intrinsic changes in 
neurons such as atrophy and death after axonal injury. 
Together, all these inhibitory molecules form a glial mi-
croenvironment which is hostile to axonal repair[2,4,10,11]. 

Although effective treatments for SCI remain lim-
ited, there have been many studies in recent years that 
have promised for the future from a clinical translational 
perspective. In general, basic science, preclinical, and 
clinical studies are aimed at overcoming the factors that 
are involved in impeding recovery from SCI. Current re-
search is aimed at preventing secondary injury, promoting 
regeneration, and replacing destroyed spinal cord tissue. 
In particular, a variety of  therapies have been addressed 
to alter neuro-inflammation[12-14], reduce free radical dam-
age[15-17], reduce excitotoxic damage to neurons[18,19], im-
prove blood flow[20,21], and counteract the effects of  local 
ionic changes[20,22-25]. Current experimental studies and the 
knowledge of  clinical situations provide us with a better 
understanding of  the complex interaction of  the patho-
physiologic events after SCI. Future approaches should 
involve strategies aimed at blocking the multiple mecha-
nisms of  progressive pathogenesis in SCI and therefore 
promoting neuroregeneration. 

Methylprednisolone (MP), a glucocorticoid, is the 
only current pharmacotherapy approved for SCI in the 
human clinic. Although therapy with methylprednisolone 
has been shown to be protective, its efficacy is limited 
and it only marginally improves outcomes[14]. Recent ad-
vances in SCI research have led to a variety of  novel ex-
perimental therapeutic strategies. The approach based on 
cell therapy using various lineages of  stem cells has been 
considered as the most potential for the treatment of  spi-
nal cord injuries[26]. Cell transplantation after spinal cord 
injury has several goals, among them, filling the cavity of  
the lesion to make a bridge that joins the edges of  con-
served areas, restore dead cells (neurons or myelinating 
cells) and make a favorable environment for axonal re-
generation. Our laboratory employed in vivo experiments 
using predifferentiated embryonic stem cells[27], human 
dental pulp stem cells[28], and mesenchymal stem cell 
(MSC) (data not published) as a therapy for compressive 
spinal cord injury in mice, and our results show that these 
treatments lead to positive and similar functional and 
morphological responses. Among these lineages, mesen-
chymal stem cells have strengths such as easy extraction 
and cultivation, and do not involve ethical and moral is-
sues, making them one of  the favorite lineages for spinal 
cord injury treatment.

MSC THERAPY FOR SPINAL CORD 
LESION: FROM EXPERIMENTAL STUDIES 
TO CLINICAL TRIALS
MSC transplantation has been extensively investigated by 
several groups and these cells can be considered a fea-
sible candidate for treatment of  central nervous system 
diseases because they have characteristics that address 
the multifactorial events that occur after SCI. These cells 
have anti-inflammatory, immunomodulatory[29] and neu-
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roprotective[30] effects. It has also been shown that MSC 
can secrete trophic factors thus exerting a paracrine ef-
fect that can stimulate axon regeneration contributing to 
functional recovery enhancement. 

Concerning the paracrine effect, some groups have 
identified the ability of  these cells in secreting pro-surviv-
al factor such as insulin-like growth factor (IGF) brain-
derived neurotrophic factor (BDNF), vascular endo-
thelial growth factor (VEGF), granulocyte-macrophage 
colony stimulating factor (GMCSF), fibroblast growth 
factor-2 (FGF2) and transforming growth factor beta 
(TGF-β)[31-33]. In addition, MSC can be combined with 
gene therapy, by introducing genes to generate molecules 
with great therapeutic potential in promoting neuron 
survival and regeneration[34]. Table 1 is a summary of  
preclinical studies using MSC for spinal cord injury, from 
2010 until now.

Sources of MSC
MSC reside in a range of  adult tissues that are easily ac-
cessible such as bone marrow, adipose tissue, skin, and 
even peripheral blood[34]. Most of  the studies in SCI use 
MSC derived from bone marrow and adipose tissue, but 
it is also possible to get MSC from a perinatal source like 
umbilical cord blood, umbilical cord matrix[74], amniotic 
fluid and placenta[75-77]. MSC can be extracted from these 
tissues and plated to be used in autologous transplanta-
tion, minimizing the rejection risk.

Studies using MSC extracted from bone marrow in 
rodents have demonstrated a beneficial effect of  cell 
transplantation after SCI. The beneficial effect of  MSC 
is usually attributed to secretion of  neurotrophic fac-
tors[78,79] and anti-inflammatory cytokines[71,80,81]. Studies 
performed with pigs[82] and monkeys[83] showed that MSC 
can promote axonal growth and sprouting, corroborating 
the previous results in rodents, thus supporting the clini-
cal use of  MSC. 

MSC extracted from adipose tissue is considered an 
attractive source of  cells due to easiness of  isolation, 
obtention of  a large amount of  cells per donor, and also 
due to the fact that this tissue is usually discarded after 
liposuctions. In SCI models, treatment with these cells 
have resulted in cell survival, neuroprotection, attenua-
tion of  secondary damage, axonal regeneration, decrease 
of  gliosis, angiogenesis and enhanced functional recov-
ery[61,84-90]. A comparative study using MSC extracted from 
both bone marrow and adipose tissue after SCI found 
that both sources of  MSC expressed similar surface 
protein markers, but animals that received adipose tissue 
cells presented higher levels of  tissue BDNF, increased 
angiogenesis, higher number of  preserved axons and a 
decrease in the number of  macrophages, suggesting that 
the use of  MSC extracted from adipose tissue is a bet-
ter candidate for SCI treatment[41]. However, this is not a 
consensus and should be further investigated because in 
another comparative study published in 2012, the authors 
did not find any difference between animals that received 
MSC derived from bone marrow or adipose tissue, in 

terms of  axonal regeneration, neuroprotection and func-
tional recovery after a compression lesion in dogs[51].

Despite being less investigated in terms of  SCI treat-
ment, MSC extracted from perinatal tissues also present 
a therapeutic potential. Human umbilical cord blood cells 
(hUCBC) transplantation in rats submitted to an injury, 
resulted in differentiation of  these cells into neural cells 
and downregulation of  the fas/caspase-3 pathway in neu-
rons and oligodendrocytes, and also increased levels of  
anti-apoptotic proteins[91,92].

The umbilical cord matrix, also known as Wharton’s 
jelly, possesses a stem cell population that present some 
advantages in comparison to other sources because they 
can proliferate more rapidly and extensively than adult 
MSC[76,93] and also because they are easily obtained after 
normal and cesarean births, with low risk of  viral con-
tamination[94,95]. Other advantage is the possibility of  
using them for allogenic transplantation because they 
act by suppressing immune response and are, therefore, 
considered non-immunogenic cells[96]. Some studies using 
umbilical cord matrix-derived MSC indicated that these 
cells can survive in the injury site and promote repair and 
recovery after SCI. This improvement is attributed to im-
munomodulatory and trophic effects through secretion 
of  glial-derived neurotrophic factor (GDNF), BDNF and 
nerve growth factor (NGF) which are known as support-
ers of  cell survival and regeneration[54,97].

The amniotic fluid cells constitute another source of  
MSC, which are obtained from discarded post-partum 
tissue, without any ethical objections about their use. 
They present similar proliferation and differentiation pat-
terns in comparison to adult MSC[98,99]. According to few 
studies, these cells are able to enhance cell survival and 
axon myelination and improve hind limb function, after 
transplantation in SCI models[100]. Some studies have also 
demonstrated the immunomodulatory effect and trophic 
support provided by these cells after SCI[101,102]. 

Issues regarding the quantity and best via of 
administration of MSC for SCI
Two important questions that should be addressed when 
we discuss MSC and its efficacy in treating central ner-
vous system disorders are: the ideal quantity of  cells and 
the best administration via Concerning the cell quantity, 
the literature presents several studies using different 
amount of  cells. In terms of  cell administration, most 
transplantation is delivered directly into the injury site or 
adjacent to it, by injecting few microliters of  cell suspen-
sion[103]. Attempts have been made to inject cells intra-
venously or intraperitoneally in order to decrease tissue 
damage and, thus, avoiding subjecting the individual to 
another surgical intervention.

There are several studies that injected different quan-
tity of  cells with similar results. Apart from the difference 
on the quantity of  cells, there are other points that make 
the comparison among these studies difficult, such as the 
diversity of  lesion models, animal types and route of  cell 
administration. For example, Cizkova and colleagues[104] 
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Table 1  Summary of pre-clinical studies using mesenchymal stem cell for spinal cord injury

Animal Lesion type Cells source Route of administration Effects on CNS regeneration Ref.

Rat Contusion Human mesenchymal 
precursor cells

Lesion site Improvement in functional recovery and tissue sparing and 
reduction of cyst volume 

[35]

Rat Contusion Human bone 
marrow-MSC

Lesion site , intracisternal, 
intravenous

Improvement in functional recovery [36]

Rat Hemisection Bone marrow-
MSC induced into 

Schwann Cells 

Lesion site Improvement in locomotor and sensory scores, axonal 
regeneration and remyelination

[37]

Rat Contusion Bone marrow-MSC Lesion site , intravenous Improvement in locomotor scores and NGF expression [38-40]
Rat Transection to the 

dorsal columns 
and tracts

Bone marrow-MSC, 
adipose derived-MSC

Lesion site Improvement in locomotor scores, increased angiogenesis, 
preserved axons, decreased numbers of ED1-positive 

macrophages and reduced lesion cavity formation

[41]

Rat Hemisection Human umbilical 
cord-derived MSC

Lesion site Suppress mechanical allodynia, and this effect seems to be 
closely associated with the modulation of spinal cord microglia 

activity and NR1 phosphorylation

[42,43]

Rat Hemisection Human bone 
marrow-MSC

Lesion site Improvement in locomotor scores, shorter latency of 
somatosensory-evoked potentials and differentiation into 

various cells types

[44]

Rat Hemisection Bone marrow-MSC Lesion site Improvement in locomotor scores and reduced lesion cavity 
formation

[45]

Mouse Compression Bone marrow-MSC Lesion site Improvement in locomotor and sensory scores and reduced 
lesion volume

[46]

Rat Contusion Human bone 
marrow-MSC

Lesion site Improvement in functional recovery, tissue sparing and 
reduction in the volume of lesion cavity and in the white 

matter loss

[35,47-49]

Rat Contusion Human umbilical 
cord-MSC

Lesion site Improvement in functional recovery, reduction of the extent of 
astrocytic activation and increased axonal preservation

[50]

Dog Compression Bone marrow, 
adipose, Wharton’s 
jelly, umbilical cord 

derived-MSC

Lesion site Improvement in functional recovery, increased numbers of 
surviving neurons, smaller lesion sizes and fewer microglia 

and reactive astrocytes in the epicenter of lesion

[51]

Rat Compression Bone marrow-MSC Intravenous Improvement in functional recovery, increase of NGF 
expression, higher tissue sparing and density of blood vessels

[52]

Rat Contusion Human umbilical 
cord-MSC

Lesion site Improvement in functional recovery, endogenous cell 
proliferation and oligogenesis, and smaller cavity volume

[53,54]

Rat Transection Human-MSC Lesion site Improvement in functional recovery, increased amplitude of 
motor-evoked potentials, differentiation into neural cells

[55,56]

Rat Contusion Bone marrow-MSC Lesion site Improvement in functional recovery, preservation of axons, 
less scar tissue formation and increase in myelin sparing; 
higher levels of IL-4 and IL-3 and higher numbers of M2 

macrophages, and reduction in TNF-α and IL-6 levels, and in 
numbers of M1 macrophages

[57-60] 

Dog Compression Neural-induced 
adipose derived-MSC

Lesion site Improvement in functional recovery and neuronal 
regeneration, and reduction of fibrosis

[61]

Mouse Transection Bone marrow-MSC Lesion site Improvement in functional recovery and neuronal survival, 
reduction of cavity volume and attenuation of inflammation, 
promotion of angiogenesis and reduction of cavity formation

[62-64] 

Rat Compression Bone marrow-MSC Lesion site Improvement in functional recovery, up-regulation of VEGF 
mRNA expression, increase in angiogenesis and prevention of 

tissue atrophy

 [65-67]

Rat Compression Human umbilical 
cord-MSC

Lesion site Improvement in functional recovery, increase in the intensity 
of 5-HT fibers and in the volume of spared myelination; 

decrease in the area of the cystic cavity

[68]

Dog Compression Umbilical cord-MSC Lesion site Improvement in functional recovery, promotion of neuronal 
regeneration and reduction of fibrosis

[69]

Dog Compression Human umbilical 
cord-MSC

Lesion site Improvement in functional recovery and remyelination [70]

Rat Contusion Bone marrow-MSC Intrathecal Improvement in functional recovery [71]
Rat Contusion Human bone 

marrow-MSC
Lesion site , lumbar 

puncture
Improvement in functional and sensory recovery [72]

Rat Contusion Neural differentiated 
and undifferentiated 

MSC

Lesion site Improvement in functional recovery and reduction of 
cavitation

[73]

CNS: Central nervous system; MSC: Mesenchymal stem cell; TNF: Tumor necrosis factor; IL: Interleukin; NGF: Nerve growth factor; VEGF: Vascular 
endothelial growth factor. 
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demonstrated cell survival and enhancement in locomo-
tor performance after MSC transplantation delivered by 
intravenous injection (one million cells in a volume of  0.5 
mL of  DMEM) in a model of  balloon compressive in-
jury in rats, while Sheth et al[105] performed cell transplan-
tation (600000 cells in a volume of  6 µL) directly into the 
injury site after contusive injury in rats, and also observed 
an enhancement in locomotor function and a decrease in 
the lesion volume, indicating a neuroprotective effect of  
these cells. Thus, it is still difficult to determine the ideal 
quantity of  cells and the best via for stem cell transplanta-
tion after SCI. The questions that arise from these stud-
ies are: Is there a minimum number of  transplanted cells 
that can be used and yet giving the best results in terms 
of  functional recovery? Can we get similar results with 
cells injected systemically in comparison to local injec-
tion? Studies using the same type of  lesion and different 
amount of  cells and administration via should be further 
undertaken in order to better clarify this issue. 

Time point for cell transplantation
Other crucial issue that should be further addressed here 
is the time point for cell transplantation after lesion. This 
is important because the environment created after SCI 
is hostile for regeneration and can negatively influence 
cell survival and differentiation. Thus, depending on the 
time that the treatment is performed the results can be 
completely different. Most studies have been performed 
in acute or sub-acute phases, which means immediately 
or 1-2 wk after injury, respectively[35,103]. There are fewer 
studies in the SCI chronic phase, when cells are delivered 
in later stages, when the glial scar is already present[38,41]. 

Clinical trials
The clinical trials conducted for SCI comprise three dif-
ferent phases with human participation in all phases. The 
phase 1 trial begins with the administration of  the cell 
transplants to a human subject with the aim to investigate 
the presence of  adverse or toxic effects and treatment 
safety. People who participate in these trials may experi-
ence some risks and have limited benefits. In phase 2, the 
objective is to determine the potential and variability of  a 
therapy in comparison with a control group. The partici-
pants are usually recruited and randomly assigned to the 
groups (experimental or control) and both, participants 
and investigators, do not know to which study they have 
been assigned to. The phase 3 clinical trials are usually the 
definitive clinical trial. The aim is to confirm the prelimi-
nary results obtained at the phase 2, with a statistically 
significant clinical benefit of  the therapeutic intervention. 
The number of  subjects is also larger and multiple study 
centers are involved[106,107]. The majority of  the studies 
using MSC transplantation after spinal cord injury are in 
phase 1 or 2.

At the time of  writing this article there were twenty 
clinical trials being either completed, ongoing or in the 
recruitment stage, using either adult or perinatal sources 
of  mesenchymal stem cells in different phases of  the dis-

ease, and most of  them use autologous transplantation 
to minimize the risk of  rejection. Table 2 list the clinical 
trials listed on the clinical trials.gov.

The number of  clinical trials using MSCs for treat-
ment of  SCI is increasing, indicating that despite several 
questions that still need to be addressed at basic and pre-
clinical levels, the MSC are considered potentially benefi-
cial for translational studies.

According to PubMed database, in the last three years 
only three studies were published in “clinical trials” cat-
egory, using MSC transplantation after SCI. One of  them 
transplanted autologous bone marrow-derived MSC into 
the cerebrospinal fluid of  patients with complete SCI. 
The authors described that 45% of  the patients showed 
a recovery, but there was no difference between these 
patients and those from control groups; they emphasized 
that despite the fact that results were not positive, the 
transplantation was a feasible and safe technique, since 
patients did not present any adverse reaction[108]. On the 
other hand, Park et al[109] using the same cell source, and 
repeated cells injections directly into the spinal cord, 
demonstrated that three of  ten patients presented a mo-
tor improvement, and significant magnetic resonance 
changes and electrophysiological results. These results 
are similar to those obtained by Dai et al[110] who also 
demonstrated a clinical improvement in patients that re-
ceived autologous MSC transplantation. The results of  
these studies are not conclusive, and, unfortunately, not 
as good as those obtained in pre-clinical experiments. In 
spite of  that, all of  them emphasize mesenchymal stem 
cell clinical potential.

WALLERIAN DEGENERATION AND NERVE 
REGENERATION IN THE PERIPHERAL 
NERVOUS SYSTEM
Traumatic injury to nerves in the peripheral nervous 
system (PNS) is a large-scale problem annually affecting 
more than one million people worldwide. These injuries 
often result in pain and disabilities, owing to reduction in 
motor function and sensory perception. Moreover, the 
trauma can cause emotional, social and work-related dis-
orders, and the affected individuals undergo a reduction 
in their quality of  life[111,112]. 

While it is widely accepted that the PNS has an inher-
ent potential for regeneration, functional recovery after a 
lengthy peripheral nerve injury (PNI) remains unsatisfac-
tory[113]. After an extensive traumatic nerve injury with a 
large gap between the proximal and distal nerve stumps, 
a long period of  time is required for regenerating axons 
to cross that gap. During that time, the ability of  axoto-
mized neurons to regenerate declines and Schwann Cells 
(SC) can no longer support regenerating neurons and 
their axons. As a result, regenerating axons fail to reach 
their target organs and the injury cannot be successfully 
repaired. In order to accelerate the rate of  axonal growth 
many therapeutic strategies are being developed and in-
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vestigated. The identification of  crucial elements respon-
sible for successful regeneration in injured peripheral 
nerves will be quintessential in improving regenerative 
outcomes after peripheral and central nerve injuries.

Nerve trauma elicits a cascade of  molecular, cel-

lular, and ultrastructural responses which are necessary 
for degeneration and posterior regeneration, including: 
disruption of  axonal conduction; increase in cell body 
metabolism and protein synthesis; degeneration of  the 
distal stump of  injured axons; dedifferentiation and pro-
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Table 2  Summary of clinical trials studies using mesenchymal stem cell for spinal cord injury

Title Lesion type Cells source Phase of the study Status Effects on CNS regeneration

Clinical study of treatment for acute SCI using 
cultured bone marrow stromal cells

Cervical SCI Autologous Bone 
marrow-MSC

Terminated 1/2 Rapid and remarkable 
recovery of ASIA B and 

C patients, but gradual or 
limited in ASIA A patients.

Autologous mesenchymal stem cell in SCI patients Complete cervical 
or thoracic SCI

Autologous bone 
marrow-MSC

Enrolling by 
invitation

2 Not informed

Different efficacy between rehabilitation therapy 
and umbilical cord derived MSCs transplantation in 
patients with chronic SCI in China

Traumatic SCI Umbilical cord 
derived-MSC

Recruiting 3 Not informed

A phase Ⅲ/Ⅳ clinical trial to evaluate the safety 
and efficacy of bone marrow-derived MSC 
transplantation in patients with chronic SCI

Cervical SCI Autologous bone 
marrow-MSC

Recruiting 1/2 Not informed

Phase Ⅰ/Ⅱ trial of autologous bone marrow derived 
MSCs to patients with SCI
Safety of autologous adipose derived MSCs in 
patients with SCI

Traumatic thoracic 
or lumbar SCI

Clinical diagnosis 
of SCI 

(ASIA A to C)

Autologous bone 
marrow-MSC

Autologous Adipose 
derived-MSC

Recruiting
Completed

1/2
1

Not informed

The effect of intrathecal transplantation of autologous 
adipose tissue derived MSCs in the patients with 
SCI, phase I clinical study

Clinical diagnosis 
of SCI

Autologous Adipose 
derived-MSC

Recruiting 1 Not informed

Phase I, single center, trial to assess safety and 
tolerability of the intrathecal infusion of ex-vivo 
expanded bone-marrow derived MSCs for the 
treatment of SCI

Clinical diagnosis 
of SCI (ASIA A)

Autologous bone 
marrow-MSC

Active, not 
recruiting

1 Not informed

Study the safety and efficacy of bone marrow derived 
autologous cells for the treatment of SCI

Clinical diagnosis 
of SCI

Autologous bone 
marrow-MSC

Recruiting 1/2 Not informed

Surgical transplantation of autologous bone marrow 
stem cells with glial scar resection for patients of 
chronic SCI and intra-thecal injection for acute and 
subacute injury-a preliminary study

Complete spinal 
cord trans-section

Autologous bone 
marrow-MSC

Completed 1/2 Not informed

To study the safety and efficacy of autologous bone 
marrow stem cells in patients with SCI

SCI below C5 
(ASIA A to C)

Autologous bone 
marrow-MSC

Recruiting 1/2 Not informed

Safety of autologous stem cell treatment for SCI in 
children

Clinical diagnosis 
of SCI 

(ASIA A to D)

Bone marrow-MSC Recruiting 1 Not informed

Autologous bone marrow derived cell transplant in 
SCI patients

Traumatic SCI Autologous bone 
marrow-MSC

Completed 1/2 Not informed

Phase 1 study of autologous bone marrow stem cell 
transplantation in patients with SCI

Traumatic thoracic 
or lumbar SCI

Autologous bone 
marrow-MSC

Not informed 1 Not informed

Phase I pilot study to evaluate the security of local 
Administration of autologous stem cells obtained 
from the bone marrow stroma, in traumatic injuries 
of the spinal cord

Traumatic SCI 
between C3 and 

L1

Autologous bone 
marrow-MSC

Recruiting 1 Not informed

Feasibility and safety of umbilical cord blood cell 
transplant into injured spinal cord: an open-labeled, 
dose-escalating clinical trial

Chronic SCI 
between C5 and 

T11 (ASIA A)

Umbilical cord 
blood mononuclear 

derived-MSC

Active, not 
recruiting

1/2 Not informed

Efficacy difference between rehabilitation therapy 
and umbilical Cord derived  transplantation in 
patients with acute or chronic SCI in China

Clinical diagnosis 
of SCI

Umbilical cord 
derived-MSC

Not informed 2 Not informed

Safety and feasibility of umbilical cord blood cell 
Transplant Into Injured Spinal cord: an open-labeled, 
dose-escalating clinical trial

Chronic SCI 
between C5 and 

T11 (ASIA A)

Umbilical cord 
derived-MSC

Active, not 
recruiting

1/2 Not informed

Safety and effect of lithium, umbilical cord blood 
cells and the combination in the treatment of acute 
and sub-acute spinal cord injury : a randomized, 
double-blinded placebo-controlled clinical trial

Acute or Subacute 
traumatic SCI 

between C5 and 
T11 (ASIA A)

Umbilical cord 
derived-MSC

Active, not 
recruiting

1/2 Not informed

MSC: Mesenchymal stem cell; CNS: Central nervous system; SCI: Spinal cord injury. 
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liferation of  SC; degradation of  the myelin sheath; re-
cruitment of  macrophages to the site of  injury[114], as well 
as the release of  cytokines, neurotrophins and growth 
factors[115-117]. These events will allow rapid and efficient 
removal of  the growth inhibitory cellular debris present 
in the injured peripheral nerve milieu, producing a favor-
able microenvironment for axonal growth[118].

After an injury the axon is divided into two segments: 
a proximal stump that remains in contact with the cell 
body, and a distal stump which is separated from the 
rest of  the neuron. The distal nerve stump undergoes a 
cascade of  events called “Wallerian degeneration”[119,120], 
which is initiated within 24 to 48 h by the entry of  cal-
cium in the axoplasm. Calcium influx activates proteases, 
such as calpains that promote cytoskeletal degradation 
and disintegration of  axoplasm, myelin and axolem-
ma[121,122]. The rupture of  the blood-nerve barrier allows 
the entry of  macrophages into the site of  injury and, 
together with SC, these cells initiate intense phagocytosis 
and removal of  degenerating axon and myelin debris. The 
barrier permeability decreases two weeks after the injury 
and then, in the fourth week, increases again in order to 
regain homeostasis after Wallerian degeneration[118]. 

Immediately after injury, the SC in the distal stump 
of  the nerve begin the process of  dedifferentiation. Even 
before axonal degeneration occurs, SC can modify its 
gene expression[123] and 48 h after injury, they decrease 
myelin protein expression, acquire a non-myelinating 
phenotype and begin to express genes related to regen-
eration, like growth associated protein 43 (GAP-43), 
neurotrophic factors and their receptors, neuroregulins 
and their receptors, and assume an intense proliferative 
activity[124,125]. About four days after injury SC reach their 
proliferation peak. These proliferative cells are confined 
within the tube formed by its own basal lamina and align 
forming the so called bands of  Büngner. These bands 
columns will form a supportive substrate, providing clues 
that will guide axon growth toward the target organ, 
through the release of  trophic factors. When SC contact 
the regenerating axons, the process of  re-myelination is 
started[126].

The injury also causes a rapid arrival of  signals from 
the damaged axons to the neuronal body resulting in an 
extraordinary change from a transmitting to a growth 
promoting phenotype. Cell body suffers a process 
called chromatolysis, which is characterized by swelling 
of  the neuronal body and by dispersion of  Nissl cor-
puscles[127,128]; These changes reflects variations in the 
metabolic activity of  neurons which, as a result, fail to 
synthesize proteins required for neurotransmission, and 
start producing substances that are important for axonal 
sprouting and growth[129]. The regeneration that follows 
occurs via different mechanisms: the elongation of  the 
distal end of  injured axons and the growth of  collateral 
axons from nodes of  Ranvier in the proximal stump. 
However, the success of  regeneration and target organ 
reinnervation depends mostly on the enhancement of  
the number of  regenerating axons, the velocity of  axon 

growth and on the ability of  affected neurons to survive 
and acquire a regenerative phenotype. 

In the clinical settings, reconstruction of  transected 
peripheral nerve requires accurate microsurgical repair 
that connects the proximal and distal stumps of  the nerve 
in a tension-free manner. In cases of  injury with tissue 
loss, autologous peripheral nerve grafts, i.e., autografts, 
is considered by neurosurgeons the gold standard tech-
nique, but unfortunately, even in these cases, the clinical 
results remain disappointing and, therefore, the search for 
better strategies is an urgent necessity. In cases of  digital 
nerve lesions, biodegradable artificial nerve conduits are 
being used in the clinical settings, but their use is still 
limited to these thin nerves. An advantage of  the use of  
these conduits is that they can be combined with other 
pro-regenerative strategies, such as the local injection of  
neurotrophic factors and cells. 

New therapeutic approaches should have as a goal 
an increase of  the intrinsic regenerative capacity of  tran-
sected nerve fibers and a decrease of  the extrinsic factors 
that limit regeneration of  severed nerve fibers, thus creat-
ing an appropriate environment in which, axon elonga-
tion, remyelination and proper reinnervation of  target 
organ may occur. A stem cell-based therapy represents 
an important new strategy to manage peripheral nerve 
injury. In the next part of  this review we will discuss the 
potential use of  mesenchymal stem cells, in promoting 
nerve regeneration. 

MSC THERAPY IN PNS: FROM 
EXPERIMENTAL STUDIES TO CLINICAL 
TRIALS
A number of  experimental studies have shown the po-
tential of  MSC to improve peripheral nerve regeneration 
following traumatic injuries[130-135]. These cells may act on 
nerve regeneration mainly by paracrine, neuro/axonopro-
tective, or immunomodulatory effects; by transdifferen-
tiation into SCs; by cell-to-cell contact; or even by a com-
bination of  the above mechanisms[134]. However, most 
of  the beneficial effects exerted by the MSC are strongly 
correlated with the production of  neutrophic substances, 
such as FGF, NGF, ciliary neurotrophic facto, BDNF, 
GDNF among others[132,133,136,137].

Our group showed the presence of  high levels of  
NGF-b in the in MSC in vitro suggesting that they are 
also able to express this potent neurotrophic factor in 
vivo; this result could represent one mean by which these 
cells acted on the enhancement of  axon regeneration and 
remyelination, consequently contributing to the observed 
return of  motor function[133]. In agreement with these 
findings, bone marrow-MSC locally injected in the mouse 
ischiatic nerve resulted in improvement of  regeneration 
of  sensory and motor axons[134]. Because these authors 
also observed that these cells were capable of  increasing 
neurite outgrowth in vitro through NGF releasing, and 
that they presented low potential to differentiate into SC 
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in vivo, they suggested that the beneficial effects exerted 
by the implanted cells were mainly dependent on their 
trophic activity rather than their stemness potential[134]. In 
another work, our group also observed the benefits of  
bone marrow-MSC locally injected in the mouse median 
nerve following transection and conduit repair. This cell 
system was capable of  increasing the number of  both 
myelinated and unmyelinated fibers, preventing the mus-
cle atrophy and, most importantly, improving functional 
performance[130]. 

It is also possible that MSC can act indirectly on nerve 
regeneration by modulating cellular behaviors such as 
inducing SC to survive, proliferate, produce neurotrophic 
factors and promote remyelination. A coculture system 
with rat bone marrow-MSC conditioned media and SC 
demonstrated cell-cell interactions despite no direct con-
tact between the two population of  cells. MSC not only 
favored survival and proliferation of  SC but also induced 
them to express NGF, BDNF and NGF receptors[138]. 
This is an important MSC feature as it might indicates 
that MSC can relay and magnify neurotrophic function 
from stem cells to glia cells, thus improving peripheral 
nerve regeneration. 

Besides rodents, larger animal models have also been 
used to investigate the effects of  MSC-based therapy on 
more challenging nerve gaps. Few authors have shown 
the successful bridging of  a 30 mm-long ischiatic nerve 
defect by means of  a biodegradable conduit in dogs[139]. 
After six months of  MSC implantation, they observed 
the reconstruction of  ischiatic nerve trunk with restora-
tion of  nerve continuity, functional recovery for conduc-
ing electrical impulses and transporting materials, and 
muscle re-innervation, which lead to improvement of  lo-
comotion activities. Even more challenging, using a two-
fold nerve gap in a similar experimental model but with 
addition of  autologous MSC, the same group[140] demon-
strated that the cellular treatment improved nerve regen-
eration and functional recovery in a manner comparable 
to the autograft-treated animals, which is considered by 
neurosurgeons the current gold standard for peripheral 
nerve repair.

As aforementioned, the great majority of  the experi-
mental studies of  mesenchymal stem cell-based therapy 
on the peripheral nerve regeneration use rodents (mainly 
mice and rats) as animal models[130,133,134,138], perhaps be-
cause they are small size mammals and, consequently, 
easy to handle; also, they have been extensively used in 
the field of  genetic engineering for a diversity of  ex-
perimental trials of  gain and loss of  function as well as 
reporter assays. However, there are few studies using 
non-human primates such as cynomolgus and rhesus 
monkeys, which share high level of  sequence homology 
with human genome, that have confirmed the feasibility 
of  this cell system for improving nerve regeneration af-
ter severe nerve lesions. MSC transplantation into either 
allogeneic nerve grafts[141] or artificial conduits[142] for 
bridging severe upper extremity nerve defects in higher 
primates yielded structurally and functionally regenerated 

nerves; these studies proved to be safe and effective, thus 
giving great insight into the use of  MSC in human clinics. 

MSC obtained from human subjects have also been 
used in pre-clinical studies for promoting nerve regen-
eration, yielding promising results[143-145]. These studies 
are of  great relevance because they address human MSC 
properties, clarifying their mechanisms of  action, and 
also provide insight into their effects on peripheral ner-
vous tissue recovery. Interestingly, the authors of  these 
studies demonstrated that human MSC-based therapy 
improved peripheral nerve regeneration as well as func-
tional recovery. However, McGrath et al[145] showed that 
MSC survived in the conduit and enhanced axonal regen-
eration only when transplantation was combined with the 
immunosuppressive treatment, cyclosporine A. As these 
results provide evidence of  the nerve regeneration po-
tential of  human MSC, and taking into account that one 
of  the great advantages of  MSC is the possibility of  auto 
transplantation without donor-site morbidity, they might 
encourage the use of  this cell system for treating human 
peripheral nerve trauma.

Thus, the results of  pre-clinical studies highlighting 
the improved outcomes yielded by using MSC with the 
aim to repair a large nerve gap may increase the feasibility 
of  translation of  MSC-based therapy to clinical trials for 
peripheral nerve applications. 

Table 3 summarizes the studies using MSC for nerve 
injuries, either in pre-clinical or clinical trials, since 2010 
until now. To date, only one clinical trial has used autolo-
gous bone marrow mononuclear cells within silicone 
tubes to repair human median or ulnar nerves[146]. In this 
study scores for motor function, sensation and the ef-
fect of  pain on function were better than those obtained 
from individuals that had the tubular nerve repair only; 
However, a possible limitation in this study is the fact 
that there was a difference between groups regarding the 
age of  individuals and the length of  follow-up after treat-
ment, which could represent biases in this study. So, the 
interval between injury and treatment was always longer 
than 75 d, which could possibly limit the positive effects 
exerted by the cells on the nerve regeneration process. 
Another possible disadvantage of  this work is that nerve 
conduits were made of  silicone, a non-biodegradable 
material, thus requiring a second surgery to remove the 
conduit. In spite of  these limitations cells-treated patients 
presented a better recovery compared to the untreated. 
The results of  this study will, hopefully, encourage sub-
sequent clinical studies to be conducted safely, with fewer 
biases, and with the association of  the cellular treatment 
with suitable biodegradable conduits, thus preventing 
discomfort and complications generated from the use of  
silicone material. 

Although important advances have been achieved in 
the use of  stem cells for improving nerve regeneration, 
they are still limited to basic and pre-clinical trials. In ad-
dition, there are several variables among these studies, 
such as tissue source; methods of  cell isolation, expan-
sion and characterization; route of  cell delivery; number 
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of  transplanted cells; therapeutic time window; animal 
and nerve models; type of  injury; number of  transplanted 
cells; and immunogenicity. These variables represent an 
important obstacle for comparing and contrasting study 
outcomes from different groups, thus hindering progress 
in the field. 

In 2006, The International Society for Cellular The-
rapy proposed the development of  a set of  minimal 
criteria (adherence to plastic in standard culture condi-
tions, expression of  a number of  markers and multipo-
tent differentiation potential into osteoblasts, adipocytes 
and chondroblasts) for defining the MSC for research 
purposes[177]. Although this action represented a great 
attempt to allow for comparison of  scientific studies 
among different groups, the criteria for mesenchymal 
cells from different species should be further considered 
and well-defined, in particular the non-human and hu-
man primate MSC.

CONCLUSION
Pre-clinical studies have shown the beneficial effects of  
MSC therapy in the neurotrauma field. Unfortunately, 
these effects are not usually seen in the clinical trials, and 
the results are far from being as good as those described 
in experimental studies. Therefore, there is an urgent 
need to seek for standardization of  protocols in terms of  
source of  cells, culture conditions, time of  treatment af-
ter injury, number and via of  administration of  cells, plas-
ticity and capability of  human MSC after extraction and 
expansion in culture, among other concerns. Basic and 
pre-clinical studies focusing on these important points 
will, hopefully, be of  great help in terms of  their success-
ful implementation in clinical trials.
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